
Received 26 June 2024, accepted 19 July 2024, date of publication 29 July 2024, date of current version 6 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3434552

Reinforcement Learning Aided Sequential
Optimization for Unsignalized
Intersection Management
of Robot Traffic
NISHCHAL HOYSAL G 1, (Student Member, IEEE),
AND PAVANKUMAR TALLAPRAGADA 1,2, (Member, IEEE)
1Robert Bosch Centre for Cyber Physical Systems, Indian Institute of Science at Bengaluru, Bengaluru 560012, India
2Department of Electrical Engineering, Indian Institute of Science at Bengaluru, Bengaluru 560012, India

Corresponding author: Nishchal Hoysal G (nishchalg@iisc.ac.in)

This work was supported in part by Nokia Corporate Social Responsibility (CSR) grant through the Nokia Centre of Excellence in
Networked Robotics at Indian Institute of Science (IISc).

ABSTRACT We consider the problem of optimal unsignalized intersection management, wherein we
seek to obtain safe and optimal trajectories, for a set of robots that arrive randomly and continually. This
problem involves repeatedly solving amixed integer program (with robot acceleration trajectories as decision
variables) with different parameters, for which the computation time using a naive optimization algorithm
scales exponentially with the number of robots and lanes. Hence, such an approach is not suitable for
real-time implementation. In this paper, we propose a solution framework that combines learning and
sequential optimization. In particular, we propose an algorithm for learning a shared policy that given the
traffic state information, determines the crossing order of the robots. Then, we optimize the trajectories
of the robots sequentially according to that crossing order. This approach inherently guarantees safety
at all times. We validate the performance of this approach using extensive simulations and compare our
approach against 5 different heuristics from the literature in 9 different simulation settings. Our approach,
on average, significantly outperforms the heuristics from the literature in various metrics like objective
function, weighted average of crossing times and computation time. For example, in some scenarios, we have
observed that our approach offers up to 150% improvement in objective value over the first come first
serve heuristic. Even on untrained scenarios, our approach shows a consistent improvement (in objective
value) of more than 30% over all heuristics under consideration. We also show through simulations that the
computation time for our approach scales linearly with the number of robots (assuming all other factors
are constant). We further implement the learnt policies on physical robots with a few modifications to the
solution framework to address real-world challenges and establish its real-time implementability.

INDEX TERMS Robot coordination, deep reinforcement learning, autonomous intersection management,
warehouse automation.

I. INTRODUCTION
Unsignalized intersection management [1] requires that a
number of robots coordinate their trajectories for ensuring
safe and efficient use of the intersection. This problem and its
parts have been studied under various names like Cooperative

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhiwu Li .

intersection management [1], Intersection management of
CAVs [2], Coordination of CAVs at intersection [3],
[4], Cooperative intersection control/crossing [5], [6], [7],
Coordination at unsignalized intersections [8], Autonomous
intersection management [9] etc. Its application can be found
in contexts like automatedwarehouses with hundreds or thou-
sands of mobile robots. The problem of optimal unsignalized
intersection management involves getting optimal and safe

104052

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-7413-1466
https://orcid.org/0000-0001-9938-1437
https://orcid.org/0000-0003-1547-5503

Nishchal Hoysal G, P. Tallapragada: Reinforcement Learning Aided Sequential Optimization

trajectories for the considered robots to cross the intersection.
Note that optimal trajectories inherently determine an optimal
crossing order. Solutionmethods to such a problem inherently
involve repeatedly solvingmixed integer programs, for which
the computational complexity of naive optimization methods
scales very badly with the number of robots and lanes. As a
result, they are not suitable for real-time implementation.
In this work, we propose a learning based solution framework
to get safe, near-optimal solutions in real-time, a combination
that is not addressed in any single framework in the
literature.

A. RELATED WORK
Unsignalized intersection management for robots or con-
nected and automated vehicles has been studied using
different methods and tools over the years. Surveys in
[1], [2], [10], [11], and [12] give a detailed description of the
recent literature. Here we focus on the optimal unsignalized
intersection management problem, which is a very common
formulation in the area. While some formulate this problem
as a mixed integer linear program [3], [13], [14], [15], others
consider a model predictive control approach [4] and some
formulate a non-linear problem and use genetic algorithms
to solve it [5], [6]. While typically the optimization goal
is to minimize the cumulative travel times or maximize the
cumulative distance covered by all the robots, recent works
like [7], [16], [17], and [18] also take energy consumption
into account while computing the optimal trajectories. Works
like [9] and [19] discretize the space and use A∗ like
algorithms to get collision free optimal trajectories for the
participating agents.

As naive or generic optimization methods for these
problems scale very badly with the number of robots and
lanes, there is also interest in developing computationally
simpler solution methods. With this motivation, [8], [20],
[21], [22] propose solutions that cluster the vehicles/robots
in order to reduce the computational or communication
effort. To address computational complexity, works like [23]
describe general ideas of prioritized motion planning for
coordination among multiple agents, but, assuming the
knowledge of some pre-assigned priorities to each agent.
Similarly, in line with prioritized planning idea, some other
works, such as [14] and [24] use model based heuristics to
decide the crossing order and solve centralized/decentralized
optimization problems preserving that order to get the
trajectories for involved robots in an intersection. Work [25]
uses a similar approach for the ramp merging problem.
While some works like [26], [27] consider finding optimal
and safe trajectories to robots assuming a priority (e.g.
first-in first-out) rule, some like [28], [29] propose an
optimization problem to get such priority rule and solve
another optimization problem (in receding horizon control
framework) to get trajectories. Work [30] proposes a two-
stage optimization method combining the discrete tile and
conflict point methods. In [31], optimization based methods

are proposed for intersection management with bounded
location uncertainties of agents. Other approaches to the
problem include auction based methods [32], [33] and
first come first serve based reservation of regions against
time [19]. Work in [33] proposes a game-theoretic social-
welfare optimal auction strategy to decide the crossing
order. Others [4], [34] construct/use a priority graph to get
feasible solutions and conflict resolution.Work [35] proposes
an algorithm which improves upon the reservation based
strategy. Work [18] uses similar approach to the intersection
management problem and computes the priority/crossing
order using a set of features associated with the robots. Then
the robots solve an optimal control problem sequentially to
obtain their trajectories.

Some works like [36], [37], and [38] take a new approach
and use gaussian process to get multi-agent trajectories and
motion plans. Specifically, [36] and [37] use factor graph
methods to improve computation time.

The current literature on the use of learning methods
for intersection management includes [39], [40], [41], [42],
[43], [44], [45]. These papers consider only a first order
kinematic model for the robots and the learnt policy gives the
position trajectories of the robots. Works like [46], [45], and
[47] propose multi-agent learning methods to approach the
intersection management problem. Reference [38] proposes
a learning based solution for optimizing robots’ trajectories
under bounded deviations of other robots from some nominal
trajectories. Work [48] uses reinforcement learning to form
platoons of vehicles and makes them pass through the
intersection. In other multi-robot applications, there are
works like [49] and [50] that learn path planning policies
for navigation through narrow passages or hallways. Other
works such as [51] present RL algorithms for general multi-
robot trajectory coordination for purely first order kinematic
robots. The core idea of our work has similarities to [52],
[53], [54], and [55], which use RL methods to improve the
efficiency of solving a parametrized combinatorial or mixed-
integer optimization problem, for which the parameters are
revealed online.

One of the main applications of our work is collision free
warehouse automation. Prioritized/sequential planning seems
to be a popular approach since it is both scalable and gives
near-optimal solutions. Someworks like [23], [56], [57], [58],
and [59] assume the knowledge of some priorities over agents
negotiating a path conflict (at an intersection), while [60] uses
first come first serve policy for conflict resolution.

B. DRAWBACKS OF CURRENT LITERATURE AND
MOTIVATION
For computational scalability, several works decide the cross-
ing/planning sequence (scheduling) among the robots and
then get their trajectories by solving optimization problems
in that order (prioritized/sequential planning). Scheduling
is done using various techniques like auctions [32], job
scheduling mechanisms [21] or some heuristics [14], [24],

VOLUME 12, 2024 104053

Nishchal Hoysal G, P. Tallapragada: Reinforcement Learning Aided Sequential Optimization

[25], [33]. The problem with this approach is that scheduling
is dissociated from the trajectory generation and may
lead to sub-optimal trajectories. Moreover, optimal policy
for scheduling may be highly dependent on the type of
intersection and other settings. Our past work [18] has a
similar solution framework as in this paper. However, [18]
contains no method or learning algorithm for obtaining a
policy for determining crossing orders.

To the best of our knowledge, there are very few
works like [28], [29], and [61] which make a systematic
attempt at assigning priorities to the involved agents.
Existing approaches to find a good set of priorities include
iterative search algorithms [61] or solving an optimization
problem [28], [29], which themselves are time consuming.

Although [39], [40], [41], [43], [44], [47] use RL to directly
generate trajectories of the robots, the approach inherently
cannot guarantee safety in a deterministic way. Further, these
works only consider first order kinematic models of the
robots, whereas we consider a double integrator model for
the robots. Our proposed approach is very similar in spirit
to [52], [53], [54], [55], which use learning methods to solve
combinatorial optimization problems. However, these papers
are for very different applications. Additionally, all these
works provide algorithms that learn policies for a single agent
rather than multiple agents.

1) MOTIVATION
Scalability, provable safety and efficiency are very important
aspects for multi-robot systems like in autonomous ware-
houses since they directly affect the capital/operational cost.
In light of the drawbacks of the existing literature, it is
important to address all these three aspects in a combined
manner. In this work, we address scalability, provable safety
and efficiency together by proposing a way to combine
learning and optimization methods. In particular, we use the
optimization framework to ensure provable safety and use
learning framework to improve scalability, while ensuring
near-optimality.

C. CONTRIBUTIONS
The following are the main contributions of this paper.
• We propose an algorithm for learning a policy for
determining the order in which the robots cross an
isolated intersection, given certain features of the traffic.
The algorithm learns a policy that is shared among all
the robots. We use this policy over a solution framework
that combines learning and online optimization for
unsignalized intersection management for a continual
stream of robot traffic. The framework we use does
sequential optimization of trajectories for each robot
using the trajectories of other robots ahead of it in the
sequence as constraints. This way, we ensure scalability
as well as safety at all times, both during training
and deployment. The framework implicitly handles
continual stream of robot traffic.

FIGURE 1. A schematic of an example intersection and the region of
interest (RoI) with 8 lanes.

• Through extensive simulations, we establish that the
proposed framework solves the intersection manage-
ment problem in real-time and provides near-optimal
solutions. In general, the performance of the trained
policies is significantly superior compared to many
heuristics from the literature. For example, in some
scenarios, the learnt policies on average provide up to
150% improvement in terms of the considered objective
function and up to 60% improvement in terms of average
time to cross, when compared against the first come first
serve heuristic. Also, in many empirical simulations,
the trained RL policy outperforms all the compared
heuristics by 40% in terms of the objective function and
by 20% in terms of average time to cross weighted by
robot priorities for a considerable range of arrival rates.

• We propose some adaptations to the underlying solu-
tion framework to address real-world implementation
challenges like tracking errors and delays associated
with communication and computation. The framework
with these adaptations is deployed on physical robots to
establish the real-time implementability of the frame-
work i.e., communication and computations delays in
the deployed framework are smaller than the spare-time
available in the framework.

II. UNSIGNALIZED INTERSECTION MANAGEMENT AND
PROBLEM SETUP
In this section, we first present the unsignalized intersection
management problem and discuss some challenges in solving
it in real-time. Then, we pose a problem of learning
computationally efficient and near-optimal policies that can
be utilized for safe intersection management in real-time.
We first describe the intersection geometry, robots and
notation.

We consider an isolated region of interest (RoI), denoted
as R ⊂ R2, consisting of M number of fixed lanes. Let S(l)
for l ∈ {1, . . . ,M} be the set of points in RoIR that form the
l th lane. Without loss of generality, we assume that each lane
S(l), for all l ∈ {1, . . . ,M} is an open set. The intersection
in the RoIR is

I := {z∈R | z∈S(l1) ∩ S(l2), l1, l2∈{1, . . . ,M}, l1 ̸= l2},

104054 VOLUME 12, 2024

Nishchal Hoysal G, P. Tallapragada: Reinforcement Learning Aided Sequential Optimization

i.e., the set of all points in the RoI that belong to at least
two lanes. We assume that the intersection I is a connected
set and that each lane leads to, goes through and leaves the
intersection I only once.
Figure 1 shows one such example configuration, with the

intersection I in the center. For a lane l, we denote its length
of approach to the intersection as d(l).

A. DEFINITIONS OF ROBOT RELATED VARIABLES AND
PARAMETERS
We assume that the robots travel only along the fixed lanes
inside the RoI, i.e., they do not change lanes. We denote the
set of robots under consideration by V . We denote the length
of robot i ∈ V with Li. Further for a robot i ∈ V , we denote
its lane number, time of arrival into the RoI, time of entry
into and time of exit from the intersection by qi, tAi , tEi and
tXi , respectively. The time of arrival of a robot into the RoI
is unknown before its arrival. We use xi(t), vi(t) and ui(t) to
denote the longitudinal position (specifically, front end of the
robot), longitudinal velocity and longitudinal acceleration of
the robot, respectively, along its lane qi at time t ≥ 0. We use
ẋi(t) and v̇i(t) to denote the time derivative of xi(t) and vi(t)
evaluated at time t , respectively. On each lane, we set up the

coordinates such that for a robot i ∈ V we have, xi(tAi) =
−d(qi) and xi(tEi) = 0. To capture if two robots i, j ∈ V are
on lanes that intersect in the intersection area, we define a
variable c(i, j) as

c(i, j) =

0 if qi = qj
1 if qi ̸= qj and S(qi) ∩ S(qj) = ∅
−1 if qi ̸= qj and S(qi) ∩ S(qj) ̸= ∅,

(1)

where ∅ denotes the empty set. Hence, c(i, j) is equal to 0,
1 and−1 if and only if the robots i and j are on the same lane,
on different lanes that do not intersect and on different lanes
that intersect, respectively. See Table 1 for a comprehensive
list of important notations and their definitions used in this
paper.

B. CONSTRAINTS
We assume that the robots follow the double integrator
dynamics with longitudinal acceleration as their input, i.e.,

ẋi(t) = vi(t) v̇i(t) = ui(t), ∀i ∈ V , t ≥ tAi , (2)

where, ẋi(t) and v̇i(t) are the time derivatives of position and
velocity of robot i at time t . ui(t) is the acceleration input to
the robot i at time t . tAi is the arrival time of robot i.
We assume that the robots’ velocities and accelerations are

bounded, i.e.,

vi(t) ∈ [0, v̄i] and ui(t) ∈ [u, ū], ∀i ∈ V , ∀t ≥ tAi (3)

where, u < 0, ū > 0 and v̄i > 0 ∀i ∈ V .
To avoid collisions inside the intersection between robots

on a pair of conflicting or incompatible lanes (pairs of lanes
which intersect), we impose the constraint

tEi ≥ t
X
j OR tEj ≥ t

X
i , ∀i, j ∈ V , if c(i, j) = −1, (4)

where, tEi and tXi are time of intersection entry and exit of
robot i ∈ V . Note that the constraint (4) is combinatorial.

Next, we formulate the rear-end safety constraint. In inter-
section management literature it is common to enforce
that any two robots on a lane are separated by at least a
fixed distance. However, note that in situations like ware-
houses, there is always a chance of robot or communication
or coordination failure. Hence we propose a conservative
rear-end safety constraint, which ensures the existence at
all times, of a feasible input (acceleration) trajectory for a
robot to come to a stop, avoiding collision, irrespective of
the trajectory taken by the robot ahead. We formally describe
this idea in the following definition and Lemma 1, which
are adapted from [62]. Subsequently, we present the rear-end
safety constraint.
Definition 1 (Safe Following Distance [62]): The maxi-

mum braking maneuver (MBM) of a robot is a control action
that sets its acceleration to u until the robot comes to a stop,
and its acceleration is set to 0 thereafter. For two robots
i, j ∈ V on the same lane with i following j, i.e., c(i, j) = 0
and tAi > tAj , a quantityD(i, j, t) is a safe-following distance
at time t if xj(t)−xi(t) ≥ D(i, j, t) ≥ Lj and, if each of the two
robots were to perform the MBM, then they would be safely
separated, i.e. xj(t̂) − xi(t̂) ≥ Lj, ∀t̂ ∈ [t, t̄], where t̄ ≥ t is
the time when robot j comes to a complete stop. •

Lemma 1 (Minimum Safe Following distance [62]): Let
i, j ∈ V be a pair of robots with i following j on the same
lane, i.e., c(i, j) = 0 and tAi > tAj . Then, the continuous
function

D(i, j, t) = Lj +max

{
0,
v2i (t)− v

2
j (t)

−2u

}
(5)

provides a safe-following distance at time t for the pair of
robots i and j. •

In light of this, we impose the rear-end safety constraints

xj(t)− xi(t) ≥ Lj +max

{
0,
v2i (t)− v

2
j (t)

−2u

}
,

∀t ≥ tAi ,∀i, j ∈ V , s.t. c(i, j) = 0 and tAi > tAj . (6)

C. CONTROL OBJECTIVE
Consider a set of robots V that arrive into the RoI at different
times during a time interval of interest. Since the robots arrive
at different into the RoI at different times, we also call V a
stream of robots. For the robots in V , we want to minimize
their cumulative time taken to cross the intersection weighted
by their priorities, i.e.,

min
{ui : i∈V }

∑
i∈V

ri(tXi − t
A
i)

s.t. (2), (3), (6),∀t ∈ [tAi , tXi], ∀i ∈ V , (4), (7)

where ri > 0 is a weight indicating the priority of robot i.
Note that tXi , for any i ∈ V , depends on the decision
variable ui(.), which is the control input trajectory to robot

VOLUME 12, 2024 104055

Nishchal Hoysal G, P. Tallapragada: Reinforcement Learning Aided Sequential Optimization

TABLE 1. Table of some important notations.

i ∈ V . Hence, Problem (7) is a variable horizon optimal
control problem, with each robot in V having a different time
horizon. This is particularly difficult to handle for a stream
of robots that arrive at different times. Hence, we formulate
the following proxy optimal control problem for intersection
management for a stream of robots V .

max
{ui : i∈V }

∑
i∈V

ri

tAi +Th∫
tAi

vi(t)dt

s.t. (2), (3), (6),∀t ∈ [tAi , tAi + Th], (4). (8)

Here Th is a sufficiently long time horizon. We assume that
the arrival time, tAi , of a robot i ∈ V is random and is
unknown before its arrival. Notice that Problem (8) is a proxy
for Problem (7) and we use the formulation (8) as it has the
advantage of a fixed time horizon Th for each robot.
Remark 1 (Challenges in Solving Problem (8) Directly):

There are several challenges in solving Problem (8). They
mainly stem from the following factors.
(i) At any given time instant, the exact information about

the future arrival of robots is not available.
(ii) Constraint (4) is combinatorial, which makes Prob-

lem (8) a mixed integer program. A naive optimization
approach scales exponentially with the number of
robots and lanes. This is problematic because inter-
section management problem is both time and safety
critical.

In order to counter these challenges, we use a data-driven
approach similar to the one in [18], wherein data obtained
through simulations was used to manually tune the policy.
In the current work, we propose algorithms that learn
near-optimal policies to Problem (8). •

D. INFORMAL PROBLEM STATEMENT
In this work, we seek to develop algorithms that learn
near-optimal policies for Problem (8). While we allow the
learning to be centralized, implementation of learnt policies
should be distributed, i.e., the policy for each robot should
depend on only the data that can be easily obtained using
robot-to-robot and robot-to-infrastructure communication.
The proposed solution should be applicable to a continual
stream of robots arriving randomly into the RoI. Note that any
feasible solution to Problem (8) implicitly guarantees safety.

III. SOLUTION FRAMEWORK TO ADDRESS RANDOM
ARRIVAL TIMES
In this section, we present an overall framework/algorithm
for solving the intersection management problem. The broad
solution framework is a modified version of the one in [18].
We recap the main aspects of this framework.

As the arrival times of robots are unknown beforehand
and coordination between robots requires planning for groups
of robots at a time, we split the trajectory of each robot
into two phases - provisional phase and coordination phase.
Provisional phase of a robot begins when it arrives at the RoI
and ends when its coordination phase begins. A coordination
phase algorithm runs every Tc seconds and assigns safe and
efficient trajectories for crossing the intersection to the robots
in their provisional phase.

Before we discuss the specifics of this framework,
we introduce some notation. For a robot i ∈ V , tCi ≥ tAi
represents the time at which its coordinated phase starts, and
hence tCi = kTc for some k ∈ {1, 2, . . .}. We let V (k) := {i ∈
V : tAi < kTc} be the set of robots which entered the RoI
before kTc, Vs(k) := {i ∈ V (k) : tCi < kTc} be the robots that
entered coordinated phase before kTc, Vp(k) := V (k) \Vs(k),

104056 VOLUME 12, 2024

Nishchal Hoysal G, P. Tallapragada: Reinforcement Learning Aided Sequential Optimization

i.e., the set of robots that need coordinated phase trajectories
at kTc.

A. PROVISIONAL PHASE
Consider a robot i ∈ Vp(k) (k ∈ N). To ensure that the robot
does not enter the intersection before it enters the coordinated
phase, we impose the constraint

vi(t) ≤
√
2uxi(t). (9)

We let the robot’s acceleration input for the provisional phase
trajectory in the time interval [max{tAi , (k−1)Tc}, kTc] be an
optimal solution of the following problem.

max
ui(.)

kTc∫
max{tAi ,(k−1)Tc}

vi(t)dt

s.t. (2), (3), (6), (9), ∀t ∈ [max{tAi , (k − 1)Tc}, kTc]. (10)

B. COORDINATED PHASE
At the time kTc, for each k ∈ N, some or all the robots in
Vp(k) are assigned their coordinated phase trajectories, which
they start executing immediately. Ideally, we would like the
coordinated phase control input trajectories for the robots in
Vp(k) to be an optimal solution of Problem (11), which we
call as the combined optimization problem.

max
{ui : i∈Vp(k)}

∑
i∈Vp(k)

ri

kTc+Th∫
kTc

vi(t)dt

s.t. (2), (3), (6), ∀t ∈ [kTc, kTc + Th], (4). (11)

Note that the robots in Vs(k) would also appear in the
constraints of Problem (11). Intersection safety constraint in
Problem (11) is still combinatorial. Solving Problem (11)
inherently involves picking a feasible solution with highest
objective value among all the feasible crossing orders. As a
result, this formulation scales exponentially with the number
of robots and is not suitable for real-time implementation.
We illustrate this exponential scaling of computation times
through simulations in Figure 5.
Algorithm 1 presents the overall framework for coordinat-

ing the stream of robots. It describes when provisional and
coordinated phases are run and on what robots. Algorithm 1
perpetually checks for new robots entering the RoI and
assigns them provisional phase trajectories as and when they
arrive. Periodically, with period Tc, the algorithm computes
coordinated phase trajectories for all the robots in their
provisional phase. Among these robots, those that can cross
the intersection with the computed trajectory start executing
it and hence enter their coordinated phase. On the other hand,
the robots that cannot cross the intersection with the newly
computed trajectories, continue in provisional phase with
updated provisional phase trajectories, computed as per (10).
Remark 2 (Possibility of Multiple Provisional Phases for

a Robot): In busy intersections, there might be cases where
the solution to Problem (11) gives a trajectory for a robot

Algorithm 1 overall_algorithm
Inputs: Coordinated Phase Time Period Tc.

1 k = 1, Vp(1) = ∅, Vs(1) = ∅
2 while True do
3 if robot enters RoI then
4 Run provisional_phase for robot
5 Add robot to Vp(k)
6 end
7 if time = kTc then
8 Compute coordinated_phase on Vp(k)
9 Set Vnc(k) as the set of robots among Vp(k) for

which trajectories computed for the
coordinated phase do not let them cross the
intersection

10 Set Vs(k + 1) = Vs(k) ∪ Vp(k) \ Vnc(k) and
Vp(k + 1) = ∅

11 for i ∈ Vnc(k) do
12 Run provisional_phase for i
13 Add i to Vp(k + 1)
14 end
15 Set k = k + 1
16 end
17 end

i ∈ Vp(k) such that the robot does not exit the intersection
by kTc + Th. This can potentially cause infeasibility of
Problem (11) in subsequent coordinated phases. In order
to avoid such a situation, such affected robots (robot i
and its successors in the crossing order) go through the
provisional phase again for the interval [kTc, (k+ 1)Tc). This
is the reason why the time horizon for robot i ∈ Vp(k) is
[max{tAi , (k − 1)Tc}, kTc] in Problem (10). We emphasize
the difference between a robot going through coordinated
phase computation and going through coordinated phase
itself (using the computed coordinated phase trajectories).
Specifically, in Algorithm 1, the robots in Vp(k) are going
through coordinated phase computation and at the end of k th

iteration in Algorithm 1, only the robots in Vs(k + 1) \ Vs(k)
start their coordinated phase. Robots inVnc(k) will go through
a provisional phase again. •

C. SEQUENTIAL OPTIMIZATION FOR COORDINATED
PHASE
To address non-scalability of combined optimization for
obtaining coordinated phase trajectories, we present a
modified version of sequential optimization from [18] in
Algorithm 2. The algorithm takes as input a set of quantities
called precedence indices (pi ∈ R, ∀i ∈ Vp(k)), which
determine the crossing order. Each robot in Vp(k) obtains its
coordinated phase trajectory sequentially, as per the crossing
order, by solving the optimization problem in (12).
In Algorithm 2, at the beginning of each iteration of the

while loop, VQ is the subset of robots in Vp(k) that do not
have a coordinated phase trajectory yet. In Step 3, F is the

VOLUME 12, 2024 104057

Nishchal Hoysal G, P. Tallapragada: Reinforcement Learning Aided Sequential Optimization

Algorithm 2 sequential_optimization
Inputs: Vp(k), Vs(k), pi ∀i ∈ Vp(k)

1 VQ = Vp(k)
2 if |VQ| > 0 then
3 F ← {i ∈ VQ : xi ≥ xj, ∀j ∈ VQ s.t. qi = qj}
4 i∗← argmax

j∈F
{pj}

5 V i∗
s ← Vs(k) ∪ (Vp(k) \ VQ)

6 ui∗ (.)← Solve (12) for robot i∗

7 if i∗ crosses the intersection by
time kTc + Th with ui∗ (.), then

8 tCi∗ ← kTc
9 i∗ starts executing u∗i at t

C
i∗

10 Remove i∗ from VQ
11 Go back to line 2
12 end
13 end

set of robots in VQ that are nearest to the intersection in their
respective lanes. In Step 4, we obtain the robot i∗ in F with
the largest precedence index pi∗ , after breaking ties arbitrarily.
In Step 5, V i∗

s is the set of all robots that were assigned
a coordinated phase trajectory before the robot i∗. If u∗i (.),
computed in Step 6, enables the robot to cross the intersection
before kTc + Th, then the robot i∗ starts executing u∗i (.) as its
coordinated phase control trajectory, starting at tCi∗ = kTc.
Then, i∗ is removed from VQ and the loop continues. On the
other hand, if i∗ cannot cross the intersection with the control
trajectory ui∗ (.) then we break out of the loop and i∗ and the
rest of the robots in VQ go through another provisional phase,
as described in Remark 2.

In Step 6 of Algorithm 2, ui∗ (.) is obtained by solving the
following optimization problem.

J∗i∗ = max
ui∗ (.)

kTc+Th∫
kTc

vi∗ (t)dt

s.t. (2), (3), (6), ∀t ∈ [kTc, kTc + Th], with i = i∗,

and tEi∗ ≥ τi∗ , (12)

where τi∗ is the minimum wait time of i∗ ∈ Vp(k), given by,

τi∗ = max{tXm : m ∈ V
i∗
s s.t. qi∗ and qm intersect}.

Remark 3 (Features of Algorithm 2): Algorithm 2 has
several good features, which help in achieving the design
goals of scalability and real-time implementation. In a
variety of simulations, we have consistently observed that the
computation for Algorithm 2 scales linearly with the number
of robots. We illustrate this feature in Figure 5. Algorithm 2
is an efficient version of the DD-SWA algorithm proposed
in [18], as the precedence indices need not be recomputed
after the trajectory optimization for each robot. The solution
framework, including Algorithm 2, can be implemented in a

distributed manner. Reader may refer to relevant discussions
in [18]. •

The solution framework is recursively feasible under
the assumption that every robot enters the RoI satisfying
constraints (3), (6) and (9). Theorem 1 formalizes the result
guaranteeing the safety of the system for all time. This result
is very similar to the one in [18].
Theorem 1 (System Wide Recursive Safety [18]): If every

robot i ∈ V satisfies the rear-end safety constraint (6)
at the time of its arrival, tAi , and its initial velocity is

such that vi(tAi) ≤ min(v̄i,
√
2uxi(tAi)), feasibility of

problems (10), (11) and (12) is guaranteed. Consequently,
safety of all the robots is also guaranteed for all time under
Algorithm 1.

Proof: Recall that each robot i ∈ V is allowed to
decelerate i.e., ui < 0. Hence, due to the assumption
that robot’s entry velocity, vi(tAi) is less than the allowed
upper-bound and satisfies the rear-end safety constraint (6),
infeasibility cannot occur due to the violation (6). Further,

it is also assumed that vi(tAi) ≤
√
2uxi(tAi), ensuring the

existence of a feasible control trajectory so that the robot
comes to a stop before entering the intersection, making
Problem (10) feasible.

Notice that if Problem (10) is feasible, the trajectory of
provisional phase guarantees for robot i that when it goes
through the coordinated phase computations, say at tCi , the
intersection safety constraint (4) is satisfied at tCi . This
inherently ensures that tEi ≥ τi is feasible (recall τi is the
minimum wait time for i). This guarantees feasibility of
problems (11) and (12). □
For the solution framework to be complete, we still need to

specify how the precedence indices pi are to be chosen. In the
next section, we propose an algorithm for learning a policy
that gives out ‘‘near-optimal’’ precedence indices, given some
information about the traffic state.

IV. LEARNING A POLICY THAT GIVES NEAR-OPTIMAL
CROSSING ORDERS
Recall that at kTc, the beginning of the k th coordinated
phase, Vp(k) is the set of robots that need coordinated phase
trajectories and Vs(k) is the set of robots that are already
executing their coordinated phase trajectories. Notice that
Algorithm 2 takes as input the precedence indices of the
robots in Vp(k), using which it sequentially optimizes the
coordinated phase trajectories of the robots. In this section,
we are interested in obtaining a policy that determines
the precedence indices of the robots in Vp(k), given the
traffic state, so that Algorithm 2 provides optimal or at
least near-optimal solutions to the combined optimization
problem (11) and more generally to the original optimization
problem (8).

In particular, we propose a centralized algorithm for
learning a policy, which
(i) can be implemented online in real-time.
(ii) is shared, i.e., the same policy is used by all the robots.

104058 VOLUME 12, 2024

Nishchal Hoysal G, P. Tallapragada: Reinforcement Learning Aided Sequential Optimization

(iii) is distributed, i.e., a policy to which the inputs are
information available to a robot locally or through
communication with its neighbouring robots.

(iv) can be implemented on an arbitrary number of robots.
We denote the shared policy by the function g(.). For robot i,
the input to the policy is the feature vector, fi, that captures
the state of the traffic relevant to robot i. Then, the precedence
indices are

pi = g(fi), ∀i ∈ Vp(k). (13)

There may be different number of robots in Vp(k) for
different k ∈ N. However, given the dimensions of the RoI
and lengths of the robots we can determine Nr , an upper
bound on the number of robots that could ever be in Vp(k).
Then, we pad the set of robots in Vp(k) with Nr − |Vp(k)|
number of pseudo robots so that the state and action space
dimensions remain constant for each k ∈ N. Pseudo robots
are virtual robots with features chosen such that they do not
affect the feasibility and optimality of the crossing order and
trajectories of the real robots. For e.g., the position of a pseudo
robot can be picked far away from entry to RoI.

A. MARKOV DECISION PROCESS FORMULATION
Let Ṽ (k) be the union of Vp(k) and the set of pseudo robots,
so that |Ṽ (k)| = Nr . Then, we consider the Markov decision
process (MDP) with the state, action, reward and the next
state at the k th iteration defined as follows.
(i) The state, s, is the vector formed by concatenated

feature vectors of all the robots in Ṽ (k).
(ii) The action, a, is the vector of precedence indices of all

the robots in Ṽ (k) (by extension, the crossing order).
(iii) The reward, R, is as given in (14).
(iv) The next state, s′, is the concatenated feature vectors of

the robots in Ṽ (k + 1).
The state space can be described as the set of all con-

catenated feature vectors (including those of an appropriate
number of pseudo robots). Similarly, the action space is the
set of all precedence index vectors of all the robots (including
pseudo robots), i.e., RNr .
Given a state at k th coordination phase computation, the

RL agent decides an action as precedence indices indicating
the crossing order. This is fed as an input to the sequential
optimization (Algorithm 2), which outputs coordinated phase
trajectories for the robots. These trajectories along with the
trajectories of the robots in their provisional phase during
[kTc, (k + 1)Tc) determine the state s′ at the next, (k +
1)th, coordinated phase computation time. This way, the
provisional phase and the sequential optimization algorithms
act as the environment to the RL agent.
Remark 4 (Reward Function): Consider the k th coordi-

nated phase. Given the action a (precedence indices), let

Vc(k) := {i ∈ Vp(k) : tCi = kTc}, Vnc(k) := Vp(k) \ Vc(k),

where tCi is the time at which robot i begins its coordinated
phase, according to Algorithm 2. Thus, Vc(k) is the set of

robots that begin their coordinated phase at kTc, while the
robots in Vnc(k) undergo another provisional phase. Then the
reward function is

R =
∑

i∈Vc(k)

ri
xi(tAi + Tr)− xi(t

A
i)

|Vp(k)|

−

∑
j∈Vnc(k)

r̄
(d(qj)− xj(kTc))2

|Vp(k)|
, (14)

where Tr is a suitable time horizon for the computation
of the reward and r̄ = max

i∈V
ri is the maximum priority

among all the the considered robots. The first term is the
weighted sum of distances covered by the robots in Vc(k)
during a time interval of length Tr since their arrival into
RoI. As Algorithm 2 does not provide a coordinated phase
trajectory for the robots in Vnc(k), for each robot in Vnc(k),
we have a penalty term proportional to the square of the
distance covered by the robot from its time of arrival up to
kTc. This penalty helps in learning a near-optimal precedence
index policy (13). We observed that penalizing all the robots
with the equal weight of r̄ (in contrast to weighing penalty
terms by individual priorities) leads to better policies. This
may be due to the reason that a low priority robot crossing
quickly makes way for a higher priority robot which will
arrive in the future to travel quickly. •

1) MULTI-AGENT JOINT-ACTION DDPG (MAJA-DDPG)
We use a modified version of the centralized multi-
agent Deep Deterministic Policy Gradient (MA-DDPG [63])
algorithm to learn the precedence index policy (13). In this
framework, the shared policy g(.) is encoded by an actor
neural network. In addition, there are neural networks
encoding a target actor, a critic network encoding the
estimated action value function Q(.) and a target critic
network Q̂(.). Let θ , θ̂ , φ and φ̂ be the parameters of the actor,
target actor, critic and target critic networks, respectively.
We store the (joint-state, joint-action, reward and joint-next-
state) tuples in the replay buffer and use samples from this
replay buffer to update the central-critic and shared actor
networks in each learning iteration.

Suppose that (sm, am,Rm, s′m) is the m
th sampled tuple out

of N samples. The critic is updated to minimize the loss
function E , given in (15). The actor is updated according to
‘‘gradient’’ ascent of the sampled gradient of estimated return
J with respect to actor parameters θ , as in (16).

E =
1
N

∑
m

(Rm + γ Q̂(s′m, Ĝ(s′m))− Q(sm, am))2. (15)

∇θJ =
1
N

∑
m

∇aQ(s, a)|s=sm,a=G(sm)∇θG(s)|s=sm . (16)

Here G(s) and Ĝ(s) represent the joint action (concatenated
precedence indices of all robots in Vp(k)) and joint target
action of all the robots in Vp(k), respectively. Rest of the
updates for target networks are similar to what is followed
in the DDPG algorithm in [64].

VOLUME 12, 2024 104059

Nishchal Hoysal G, P. Tallapragada: Reinforcement Learning Aided Sequential Optimization

2) ONLINE AND OFFLINE LEARNING APPROACHES
Algorithm 3 is the online approach to the proposed learning
algorithm. We generate streams of robots using a poisson
process for determining the arrival times of robots and
choosing their initial velocities randomly. All these robots
go through provisional and coordinated phases as described
in Section III, where Algorithm 2 is used for obtaining
coordinated phase trajectories. Since in Algorithm 2, we only
care about the relative order of the precedence indices,
we have a softmax layer (only during training) as the last
layer in the RL actor network and use these values as the
precedence indices of corresponding robots.We observed that
having this layer leads to quicker learning since it limits the
possibility of different actions leading to same crossing order.
We add the corresponding state, action, reward and next state
tuple to the replay buffer and update the critic, actor and the
target networks as described above. Note that because of the
softmax layer, the implementation of this algorithm cannot
be done in a truly distributed manner. We use a modified
Ornstein-Uhlenbeck process (with decaying variance in
added Gaussian noise) as the exploration noise. Algorithm 3
can be run in an online loop continuously, gathering data
and learning from it. A schematic flow of Algorithm 3 is
presented in Figure 2.

Algorithm 3 online_learning
Inputs: Vp(k), Vs(k), Shared-Policy g, Replay-Buffer

1 Ṽ (k)← Vp(k) ∪ pseudo robots
2 s← concatenated feature vectors of

robots in Ṽ (k)
3 P←

(
g(fj)

)j=|Ṽ |
j=1

4 a← softmax(P) + exploration_noise
5 sequential_optimization

(
Vp(k), Vs(k),

{aj : j ∈ Vp(k)}
)

6 Compute reward R according to (14)
7 s′← concatenated feature vectors of

robots in Ṽ (k + 1)
8 Add (s, a,R, s′) tuple to replay-buffer
9 Update g and Q as in [64] using (15)

and (16)
10 Update targets ĝ and Q̂ using a polyak

factor as in [64]
11 Return replay-buffer, g

Similar to DDPG and MADDPG, the proposed algorithm
can also be used for offline learning. Given a data-rich
replay buffer, the mini-batches can be sampled from this
replay buffer and the RL agent’s actor and critic networks
can be updated iteratively. We propose an offline learning
approach which involves constructing multiple individual
replay buffers, one for each average arrival rate of robots
using the steps as indicated in the online-approach and then
merging them to form a new merged replay buffer. This
merged replay buffer is then used to train a common policy,

FIGURE 2. A schematic of online learning algorithm to train the shared
policy.

FIGURE 3. A schematic of the shared policy neural network.

FIGURE 4. A schematic of offline learning framework using
Collect-Merge-Learn (CML) approach.

which can then be deployed for a range of average arrival
rates. We refer to this as the Collect-Merge-Learn (CML)
approach. A schematic of this approach is presented in the
Figure 4. In all our simulations and experimental results,
we use the shared policy kernel, g(.), represented by a very
simple neural network of the architecture whose schematic is
presented in Figure 3 (see Remark 7 for details).

104060 VOLUME 12, 2024

Nishchal Hoysal G, P. Tallapragada: Reinforcement Learning Aided Sequential Optimization

Remark 5 (Differences Between DDPG [64], MAD-
DPG [63] and MAJA-DDPG): While DDPG, MADDPG
and MAJA-DDPG are all centralized learning algorithms,
DDPG learns a policy for a single agent. Both MADDPG
and MAJA-DDPG learn a shared policy for multiple agents.
The main difference between MADDPG and our proposed
MAJA-DDPG is in the computation of the sampled gradient
of J in (16). MAJA-DDPG uses the gradient of the critic
action value function Q with respect to the shared actor
parameters θ through the joint action (concatenated actions
of all the agents), whereas MADDPG estimates the gradient
of Q with respect to the shared actor parameters θ through
the action of a randomly selected agent in the corresponding
computation. •

Remark 6 (List of Features of a Robot): We consider the
following quantities as features of a robot i ∈ Vp(k): its
distance from the entry to RoI (xi(kTc) − d(qi)), its current
velocity (vi(kTc)), its priority (ri), its lane identifier (qi),
upper-bound on its velocity (v̄i), upper-bound on acceleration
(ū), time since its arrival into RoI (kTc − tAi), its estimated
minimum wait time

(
τ̄i = max{tXj : j ∈ Vs(k)}

)
, the

number of robots following on its lane, and the average
distance between the robots following it on its lane. As can
be seen, most of these features can be directly measured or
computed by robot i, whereas the others can be obtained by
communicating with neighbouring robots. •

Remark 7 (Structure of the Shared Policy): We use a neu-
ral network to capture the shared policy, g(.), which gives the
precedence index pi of a robot i ∈ V . Figure 3 presents a
schematic of this neural network. The input to this network
is the features, fi of the robot i ∈ V , (fi ∈ R10 since we use
10 features for a robot as listed in Remark 6). This input is
processed through two hidden layers. The first hidden layer
has 4 units with ReLU activation and the other hidden layer
has 2 units with linear activation. A linear combination of the
outputs at the last hidden layer is taken as the output of the
policy (the precedence index). •

Remark 8 (Centralized and Distributed Implementations
of Trained Policy): Notice that once a policy is trained, it can
be implemented either in a centralized or distributed manner,
with the help of robot to infrastructure (R2I) and robot to
robot (R2R) communication. For centralized implementation,
a central intersection manager collects and maintains the up-
to-date information about the state of all the robots in the
ROI. The provisional phase for new robots and coordinated
phases for existing robots can be computed in a centralized
way (following Algorithm 2) and faithfully relayed to the
vehicles through the R2I communication. For a distributed
implementation, notice that all the features of a robot can be
constructed using local information and can be acquired by
a chain of R2R and R2I links. Also, the softmax activation
in computing precedence indices can be ignored. Moreover,
trajectories for a robot in the coordinated phase can also
be computed locally on that robot, after all the required
information for that robot-specific optimization problem
being communicated using R2R and R2I communication.

We assume that all communications are instantaneous and
error-free. Hence discussions on required bandwidth, specific
communication protocols to be used etc. are outside the scope
of this work. A more detailed discussion of a distributed
implementation can also be found in [18]. •

V. SIMULATION RESULTS
In this section, we present simulations comparing the
proposed learning based sequential optimization algorithm
against combined optimization and some other policies from
literature.

The source code for the simulations is available at the
link https://github.com/Control-Network-Systems-Group-
IISc/IntMan-SeqOpt-Learn.

A. SIMULATION SETUP
1) SIMULATION PARAMETERS
We consider a warehouse scenario with 8 lanes meeting in
the intersection from 4 directions. Each lane has an approach
length of 7m, i.e., d(l) = 7m, ∀l ∈ {1, 2, . . . , 8} in
Figure 1. Each lane is 0.7m wide, making the intersection
a square of side 2.8m. For each robot i, its length Li is
0.75m and upper and lower bounds on its acceleration are
2m/s2 and−2m/s2, respectively. The initial velocity of robot
i is sampled from a uniform distribution on [0, v̄i]. We carried
out simulations for streams of randomly arriving robots with
various average arrival rates. In particular, streams were
generated by choosing tentative arrival times of robots into
the lanes according to a poisson process, with a specified
average arrival rate. The actual arrival time of each robot
is delayed till the rear-end-safety condition (6) is satisfied.
We set the coordinated phase computation interval to 6s, i.e.,
Tc = 6s.

We say that a simulation has homogeneous traffic if all the
lanes have the same average arrival rate and heterogeneous
traffic otherwise. If the (lane dependent) average arrival
rate remains same throughout the duration of simulation,
we say that the simulation has static traffic and time-varying
otherwise. For the simulations having static heterogeneous
traffic we choose the average arrival rates on differ-
ent lanes to be 0.13, 0.18, 0.08, 0.15, 0.19, 0.09, 0.05 and
0.16 robots/lane/s on lanes 1, 2, 3, 4, 5, 6, 7 and 8 respec-
tively. We further differentiate how the average arrival
rates vary with time by saying that the simulation has
random-time-varying traffic or burst-mode-time-varying traf-
fic. In the case of random-time-varying traffic we choose
to sample the average arrival rate on each lane uni-
formly from {0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12,
0.13, 0.14, 0.15} every 100s. In case of burst-mode-time-
varying traffic, every 30s, we choose to set average arrival rate
to be 0.15 robots/lane/s for the first 10s and 0.05 robots/lane/s
for the remaining 20s.

A simulation is said to have homogeneous parameters if all
the robots involved in the simulation share the same priority
and upper bound on velocity i.e., ri = 1 and v̄i = 1.5m/s

VOLUME 12, 2024 104061

https://github.com/Control-Network-Systems-Group-IISc/IntMan-SeqOpt-Learn
https://github.com/Control-Network-Systems-Group-IISc/IntMan-SeqOpt-Learn

Nishchal Hoysal G, P. Tallapragada: Reinforcement Learning Aided Sequential Optimization

∀i ∈ V . On the other hand, the simulation is said to
have heterogeneous parameters if the priorities and velocity
upper bounds are different for different robots. Specifically,
we choose to set the robot priorities randomly by sampling
from the set {1, 2, 4, 5} with probability 0.5, 0.3, 0.15 and
0.05 respectively at the time of its entry into RoI. We choose
to set lane dependent velocity upper bounds where robots
on lanes 1, 4, 5 and 8 have velocity upper bound as 1.5m/s
and those on lanes 2, 3, 6 and 7 have velocity upper bound
as 1m/s.

Different simulation settings we use to study the perfor-
mance of the proposed approach is presented in Table 3.
Each cell that shows homogeneous and static traffic, also
shows the set of arrival rates in robots/lane/s for which the
corresponding training or testing simulations were done.

2) CML TRAINING
For training the policies, we collect 10 individual replay
buffers (one for each average arrival rate for cases with
training on homogeneous traffic setting and 10 of the
same average arrival rate setting for cases with training
on heterogeneous traffic setting), each containing data of
5000 coordinated phases collected from random streams
(evolving according to Algorithm 3). These individual replay
buffers are merged to form a single merged replay buffer.
This merged replay buffer is then used to train, using the
CML approach, a set of 10 policies (with different network
initializations). We use a discount factor of 0.99 for all
training simulations.

B. SUB-OPTIMALITY AND COMPUTATION TIMES OF
SEQUENTIAL OPTIMIZATION METHOD
In this subsection, we first demonstrate that, in general,
sequential optimization can give near-optimal solutions. For
this, we compare the performance of combined optimization
against sequential optimization for all possible crossing
orders and choosing the one with the best crossing order
by exhaustive search, which we call as BESTSEQ. We also
illustrate that there is a tremendous computational advantage
of sequential optimization, with a CML policy determining
the precedence indices over combined optimization and
BESTSEQ.

For these comparisons, we collected coordinated phase
problem instances (Vp(.) and Vs(.)) from 3 streams of 500s
each, with an average arrival rate of 0.08 robots/lane/s with
BESTSEQ (homogeneous, static traffic and heterogeneous
parameter setting with Th = 30s). For each coordinated
phase instance, we also computed the optimum solution using
combined optimization.

For a given coordinated phase problem instance, let CCO
andCBS denote the objective values of Problem (11) obtained
using combined optimization and BESTSEQ respectively.
Since combined optimization is computationally expensive,
we consider only those coordinated phases with |Vp(.)| ≤ 6,
making a total of 217 coordinated phase instances. Table 2
presents the number of problem instances (No. of inst.),

TABLE 2. Sub-Optimality of BESTSEQ.

FIGURE 5. Computation time per-robot for combined optimization,
BESTSEQ and CML trained sequential optimization.

average (avg) and 90th percentile (90thp) of optimality gaps,

opt_gap :=
CCO − CBS

CCO
%

We see that, on average, the sub-optimality of BESTSEQ is
within an acceptable range (∼ 2%).
For the same set of problem instances, computation

time per robot for combined optimization, BESTSEQ and
sequential optimization, with a CML trained policy, are
compared in Figure 5. In this figure, bold black lines represent
the mean, boxes represent the range of values between the
first and third quartile, the whiskers represent the 10th and
90th percentile and red circles are outliers. We see that, with
some sub-optimality, BESTSEQ incurs far less computation
times compared to combined optimization. The computation
time per robot for sequential optimization, with a CML
trained policy, is essentially constant with the number of
robots and several orders of magnitude lower than that of
BESTSEQ and combined optimization - specially for higher
number of robots. Thus, our proposed framework is far more
suitable for real-time implementation.

C. COMPARISON OF CML TRAINED POLICIES AGAINST
OTHER POLICIES
Next, we compare the performance of CML trained policies
against some heuristics from literature. Since the computation
time for combined optimization is prohibitive except for very
low traffic arrival rates, we skip it from these comparisons.
Though BESTSEQ is not as computationally intensive as
combined optimization, it too is prohibitively costly and we
report data from BESTSEQ only for low traffic conditions.
Given its small optimality gap with respect to combined
optimization, it also serves as a reasonable benchmark where
its computation time is manageable.

104062 VOLUME 12, 2024

Nishchal Hoysal G, P. Tallapragada: Reinforcement Learning Aided Sequential Optimization

TABLE 3. Traffic parameters and other parameters used in different simulations. Acronyms: Hm. - Homogeneous, Ht. - Heterogeneous, Param. -
Parameters. Note: For Sim-1 to Sim-5, we train separate CML policies for each simulation. But for testing Sim-6 to Sim-9 we use the policies trained in
Sim-2.

In the overall solution framework described in Section III,
we compare the performance of several policies for
determining the crossing order in sequential optimization,
Algorithm 2. We compare the policies generated by CML
against the following policies for various situations.
(i) BESTSEQ: Sequential optimization for the best cross-

ing order, which is determined with an exhaustive
search.

(ii) CMLCEN: Sequential optimization with a central (not-
shared) RL policy deciding the precedence indices for
each involved robot as a function of features of all the
involved robots and pseudo-robots.

(iii) FCFS [9], [16]: First come first serve. Complete
trajectory for a robot, say i ∈ V , to cross the
intersection is obtained as and when it enters the RoI
(at tAi) considering Vp(.) = {i} and Vs(.) = {j : j ∈
V ∧ tAj < tAi }.

(iv) TTR (Time to react) [24]: Sequential optimization with
negative of the ratio of distance to intersection and
current velocity of a robot as its precedence index.

(v) PDT [33]: Sequential optimization with negative of
product of distance to intersection and time-to-react of
a robot as its precedence index.

(vi) CDT [25]: Sequential optimization with a con-
vex combination of distance to intersection and

time-to-react of a robot as its precedence index, with
the convex combination parameter 0.5.

(vii) OCP [28]: Sequential optimization with order in
‘virtual’ intersection entry and exit times deciding the
crossing order. As suggested in [28], these ‘virtual’
intersection entry and exit times are computed by
solving the combined optimization problem (11) at that
coordinated phase neglecting the intersection safety
constraints (4). Then the steps 1 to 5 proposed in
Section III(a) of [28] are followed to decide the
crossing order.

We compare the performance of the proposedCML (shared
policy) approach against the above mentioned policies for
various traffic and parameter settings, for e.g., homogeneous
traffic (Sim-1 through Sim-4) and heterogeneous traffic
(Sim-5). For Sim-1 through Sim-5, we train different policies
for each simulation. We also compare the performance of
policies trained on some set of average arrival rates against
heuristics on a test set of different average arrival rates (Sim-6
and Sim-7) and time varying average arrival rates (Sim-8
and Sim-9) unseen during training. For testing in Sim-6 to
Sim-9, we use the policies trained in Sim-2. These serve
as a test for learnt policy generalization. Table 3 presents a
comprehensive list of training and testing traffic and other
parameters used in different simulations.

VOLUME 12, 2024 104063

Nishchal Hoysal G, P. Tallapragada: Reinforcement Learning Aided Sequential Optimization

We compare the different policies in the following way.
We run each of the heuristic policies on 100 randomly
generated streams each of 300s long, for each average arrival
rate. For the learnt policies from CML approach, we run
each of the 10 trained policies on 10 randomly generated
streams (hence 100 random streams), for each average arrival
rate in the simulation (refer to Table 3). We remove the
data of first 90s in each stream to neglect transient traffic
behaviour and compute the average (over 100 streams) of the
control objective values (value of the objective function of
Problem (8) with the first Th seconds of a robot’s trajectory
data) from generated streams. We call this the average
performance of policy p, denoted by J̄p, for a given arrival
rate. We then compare the average performance of the learnt
CML policy against some policy p using the quantity

E(p) :=
J̄CML − J̄p

J̄p
% (17)

for each average arrival rate in the test cases.
We also compare the learnt policies against the heuristics

using weighted average (over all robots over 100 streams)
of time to cross (TTC) the intersection since their entry into
RoI. For this, say for a given random stream, Ĵp represents the
weighted average of the TTC (TTC of each robot weighted by
its priority value). Then we compare the learnt CML policy
against some policy p using the quantity

B(p) :=
ĴCML − Ĵp

Ĵp
% (18)

for each average arrival rate in the test cases. Both E(p)
and B(p) averaged over multiple random streams specify
how suboptimal the policy p is compared to the learnt CML
policy in terms of distance covered and time taken to cross
respectively.

Figures 6 through 11 compare the performance of
different heuristics against the policies learnt using CML
after 100000 learning iterations under different traffic
and parameter configurations. The common legend for
Figures 6, 7 and 8 is in Figure 9.
Figures 6 and 7 compare the performance of CML policies

over other policies, in homogeneous traffic setting. We see
that CML policy, in general, outperforms all the heuristics
by a good margin both in terms of average performance
(in terms of E(.) and B(.)) and average TTC over a large
range of average arrival rates. Note that average TTC is an
inverse measure of average intersection throughput (low TTC
implies high intersection throughput). We also note that the
central CML (CMLCEN) policy performs poorly compared
to the shared CML policy. This may be due to increase in
the number of parameters to be learnt in a central policy
and possibly more local minima which come along with it.
Since BESTSEQ is computationally expensive, we present
comparisons of CML and other heuristics against BESTSEQ
only for the set-up in Sim-1 (Figures 6a and 7a), that too for
arrival rates 0.01 to 0.05 robots/lane/s. Beyond this arrival

rate, the computation time for BESTSEQ is prohibitively
large. For very low arrival rates (0.01 to 0.04 robots/lane/s),
we notice that the heuristics do better than CML trained
policies. This may be because a CML policy generalizes for
better performance over a large range of average arrival rates.

In Figure 8 (results related to Sim-6 and Sim-7), we see
that the policies trained on homogeneous traffic setting
on a range of average arrival rates {0.11, 0.12, . . . , 0.2}
outperform other heuristics in test traffic generated using
other average arrival rates too. Figures 10a and 11a present
comparisons between different policies in heterogeneous
traffic setting (Sim-5). In Sim-5, the CML policy outperforms
other heuristics by a large margin. This may be due to
the bad performance of heuristics in such settings. We see
similar results when the same trained policies are tested
on time varying traffics – homogeneous burst-mode traffic
(Sim-8) presented in Figures 10b and 11b and heterogeneous
random traffic (Sim-9) presented in Figures 10c and 11c.
Figures 8, 10b, 10c, 11b and 11c also demonstrate that
the learnt CML policies generalize well to traffic situations
unseen during training.

In Figure 12, we compare the computation times required
for getting the crossing order (precedence indices) for various
policies/heuristics collected over a random stream of 500s,
with average arrival rate for all lanes set to 0.2 robots/lane/s
with heterogeneous parameters. Note that computing prece-
dence indices is the only part of the framework where
the computation efforts differ for various policies/heuristics,
since sequential optimization follows precedence index
computations for all heuristics. In Figure 12, we see that
heuristics TTR, PDT and CDT take the least time (less
than 20µs), the CML policy takes close to 3ms on average
and the OCP heuristic takes up to 250ms on average. This
can be attributed to the fact that for TTR, PDT and CDT,
computations are just algebraic operations. For CML, a neural
network needs to be evaluated. However, for OCP, a non-
linear optimization problem needs to be solved to get the
precedence indices.

Similarly, in Figure 13 we compare the average time
taken per robot to solve the provisional and coordinated
phase optimization problems for various policies. We run this
comparison on 10 (same) random streams on each of the
heuristics for Sim-1 and Sim-2 settings. Notice that for CML
and other heuristic policies except FCFS, a robot may go
through provisional phase multiple times. Due to this, FCFS
incurrs far less computation time compared to the heuristics
for all arrival rates. For lower arrival rates, CML seems to take
the same amount of time as other heuristics, which changes as
the arrival rates increase. This may be due to the CML policy
allowing for better platooning by making some low priority
robots go through more provisional phases compared to other
heuristics.

VI. ADAPTATIONS FOR IMPLEMENTATION
For practical implementation of the algorithm, we need to
address the issues arising from the simplifying assumptions

104064 VOLUME 12, 2024

Nishchal Hoysal G, P. Tallapragada: Reinforcement Learning Aided Sequential Optimization

FIGURE 6. Percentage improvement in average performance of CML trained policies over that of different heuristics (E(.), see (17)) averaged over
100 random streams for various heuristics and average arrival rates (Figures (a), (b), (c) and (d) for Sim-1, Sim-2, Sim-3 and Sim-4 respectively). Dashed
black line is 0%. See Figure 9 for legend.

FIGURE 7. Percentage reduction in weighted average of TTC for CML when compared with various heuristics (B(.), see (18) and Average time to cross
(TTC) for different policies/heuristics averaged over 100 random streams (Figures (a), (b), (c) and (d) for Sim-1, Sim-2, Sim-3 and Sim-4 respectively). See
Figure 9 for legend.

FIGURE 8. Percentage improvement in average performance of CML trained policies (average E(.), see (17)) over that of various heuristics averaged
over 100 random streams ((a) for Sim-6 and (c) for Sim-7). Comparison of weighted average time to cross (TTC) against CML for various heuristics
(average B(.), see (18)) ((b) for Sim-6 and (d) for Sim-7). See Figure 9 for legend.

FIGURE 9. Legend for Figures 6, 7, 8, 17a and 17b.

on tracking errors, communication delays and computation
times made during the formulation in Section II. In the fol-
lowing, we describe how we have relaxed these assumptions
to make the framework fit for practical implementation.

We limit the scope of this paper by assuming that a
low level trajectory tracking controller is available on each
robot which tracks the given reference trajectory faithfully

with bounded errors. We also assume that the per-robot
communication delay and computation times are bounded.
Handling tracking errors:
Suppose that the bound on position tracking errors is b

units. The tracking errors are handled by considering L̂j =
Lj + 2b as the length of robot j ∈ V for all computations
in the algorithm. Notice that this affects both rear-end and
intersection safety constraints.
Handling communication and computation delays:
Suppose that the bound on communication delay is δ

units, bounds on computation time per robot are 1p units
and 1c units for provisional phase and coordinated phase,
respectively. Computation time and communication delays
are handled by pre-computing the trajectories. That is if a

VOLUME 12, 2024 104065

Nishchal Hoysal G, P. Tallapragada: Reinforcement Learning Aided Sequential Optimization

FIGURE 10. Percentage improvement in average performance of CML trained policies over that of different heuristics (E(.), see (17))
averaged over 100 random streams for various heuristics and average arrival rates (Figures (a), (b) and (c) for Sim-5, Sim-8 and Sim-9
respectively).

FIGURE 11. Comparison of weighted average time to cross (TTC) against CML for various heuristics (average B(.), see (18)) (Figures
(a), (b) and (c) for Sim-5, Sim-8 and Sim-9 respectively).

FIGURE 12. Comparison of computation times required to get precedence
indices (crossing order) for different policies/heuristics.

robot i is about to enter the RoI at time tAi , we estimate its
velocity of entry and initiate its provisional phase trajectory
computations at time tAi −1p − δ. Similarly, we initiate the
computations for k th coordinated phase at kTc−Np1c−δ for
the robots in Vp at that time, where Np is an appropriate upper
bound on the number of robots in Vp. The computations are
made assuming perfect prediction of positions and velocities
of robots at kTc.
If the communication delays are small enough, the errors

due to such delays can be merged with tracking errors by
adding the maximum possible distance a robot i ∈ V can
cover during the communication delay period which is v̄iδ.
In this case, trajectory pre-computation timesmay not involve
the communication delay term δ. Since the communication
delays are small in our experiments, we follow this method.

FIGURE 13. Average computation time per robot taken to solve
provisional and coordinated phase optimization problems for various
average arrival rates. Figures (a) and (b) are with simulation parameters
corresponding to Sim-1 and Sim-2 respectively. See Figure 9 for legend.

Note that the policy is trained offline in an ideal scenario
without these adaptations. These adaptations to the algorithm
are made only during implementation.

A. SIMULATION STUDY ON EFFECT OF ADAPTATIONS
Since we train the policies in an ideal scenario and the
adaptations are incorporated in the implementation, it is
natural to expect some degradation in the performance of the
policy in the adapted framework setting. In this regard we
compare the performance with and without adaptations for
setting in Sim-1 and Sim-2.

Recall that delays due to communication and computation
times are handled by pre-computations. Notice that, evenwith
pre-computations, the coordinated phase occurs periodically
in the adapted framework with the same period as the ideal

104066 VOLUME 12, 2024

Nishchal Hoysal G, P. Tallapragada: Reinforcement Learning Aided Sequential Optimization

FIGURE 14. Percentage reduction in throughput (number of robots
crossed per unit time) for various average arrival rates and various values
of buffer b when compared against b = 0. Figures (a) and (b) are with
simulation parameters corresponding to Sim-1 and Sim-2 respectively.
L denotes the length of a robot.

framework. Hence, we choose to ignore the computation
and communication delays in the following numerical study.
Instead, we model any error in prediction of robot state for
pre-computations as tracking error.

As noted earlier, tracking errors are addressed by adding
buffer 2b units to the length of the robot in the constraints.
In Figure 14 we study the effect of tracking errors on the
average throughput (number of robots crossed per unit time
averaged over 10 policies and 10 simulations per policy)
by comparing the ideal scenario (b = 0) against various
values of b for Sim-1 and Sim-2. In all these simulations,
we use the CML policies trained on the ideal scenario with
b = 0. In order to reduce the randomness in the comparisons,
we fix the number of robots and the lower bound on their
arrival time for all simulations. The actual stream may be
different for different values of b due to the effect of the buffer
value. In Figure 14, we observe that the average throughput
consistently reduces with increase in the buffer value. Also,
it is interesting to note that for small buffer values, the
reduction in throughput is reasonably small.

VII. IMPLEMENTATION IN A LAB SETTING
We implemented the proposed algorithm on a collection of
line following robots, specifically 3pi+ 32U4 Turtle edition
robotsmanufactured by Pololu Robotics and Electronics [65].
Due to the lack of significant computational and communi-
cation capabilities on these robots, we run the algorithm on
a computer, store the computed trajectories and use XBee
S6B WiFi modules to communicate the trajectories to the
robots at each time-step. We use OptiTrack motion capture
system [66] to track these robots. We use a 4-way intersection
layout as in Figure 15 printed on a flex-sheet. The black lines
represent the lanes for the robots. The robots follow the lines
to cross the intersection and loop around on the perimeter
square and re-enter the RoI on a randomly chosen lane. This
process continues repeatedly so that we have a continual robot
streams.

A. PARAMETERS FOR EXPERIMENTS
The approach length for each lane in the RoI, d(l) = 0.8m
(depicted as a in Figure 15) ∀l ∈ {1, 2, 3, 4} and the width

FIGURE 15. A schematic of the layout used for implementation on robots.
The black lines represent the paths for the robots to follow. The union of
red and blue shaded regions is the RoI and the blue shaded region is the
intersection. The robots flow in the direction of the arrows depicted along
with lane numbers. a = 0.8m and c = 0.53m.

FIGURE 16. Setup for hardware implementation in our lab. The
bottom-left picture is a close-up of a robot used, the top-left picture is
one of the cameras of OptiTrack motion capture system. The picture on
the right depicts an ongoing experiment.

of the intersection in 0.53m (depicted as c in Figure 15).
The length of each robot is 0.1m. The bound on inherent
tracking errors and tracking errors due to communication
delay was measured to be, b = 0.075m. To allow for better
trajectory tracking performance, we set v̄i = 0.25m/s ∀i ∈ V ,
even though the robots are capable of speeds up to 0.4m/s.
Given these bounds, we chose L̂j = 0.15m for buffer to
address communication delays and tracking errors. We set
Tc = 3s and Th = 20s. We measured 1p = 0.1s and
1c = 0.2s after repeated experiments. We use a PID position
tracking controller for low-level trajectory tracking, which
faithfully tracks the trajectory with bounded error. Figure 16
shows a picture of the actual lab setup where we ran these
experiments.

B. INDICATIVE RESULTS FROM EXPERIMENTS
We deployed a policy that was learnt offline in ideal
simulations (without tracking errors, communication and
computation delays and restricting parameters only to the
RoI) using CML approach. We trained a set of 10 policies
each with different network parameter initialization on the set
of average arrival rates {0.11, 0.12, . . . , 0.2} robots/lane/s.
We tested these 10 learnt policies in ideal simulation
environment and chose the policy with the highest sum of
average objective function value over the average arrival rates
in the set {0.01, 0.02, . . . , 0.2} robots/lane/s, over 10 test
simulations for each average arrival rate and compare its

VOLUME 12, 2024 104067

Nishchal Hoysal G, P. Tallapragada: Reinforcement Learning Aided Sequential Optimization

FIGURE 17. Figure (a): Percentage improvement in average performance of CML trained policy over that of different policies and Figure (b): Average
time to cross (TTC) for different policies. Both the plots are under ideal simulation environment for parameters used in experiments. See Figure 9 for
legend. Figure (c): Box plot of TTC values for 3 runs of 3 different initial positions each for different policies. The box represent the range of values
between 1st and 3rd quartile, whiskers represent range of values between 10th and 90th percentile and bold black line represents the mean of the TTC
values for each policy.

performance against the heuristics. The plots indicating the
results of these simulations is presented in Figures 17a
and 17b. We observe that, for the parameters considered
in the experiments, the CML policies start to outperform
the other heuristics only after an average arrival rate of
0.1 robots/lane/s.

However, due to the limitations imposed in our lab setting
(e.g., number of robots, approach length for each lane,
velocity bounds on the robots etc.), it is hard to achieve
such high average arrival rates consistently. For this reason,
we choose to present some indicative experimental results for
snapshots (sets Vp and Vs).

In this regard, we consider the following 3 different robot
initializations on the outer ring (part of the path outside the
RoI in Figure 15):
(i) 2 robots to enter each lane.
(ii) 3 robots to enter two conflicting lanes and 1 robot each

to enter the other two lanes.
(iii) 2 robots to enter two conflicting lanes, 3 robots to enter

one of the other and 1 robot to enter the other.
The performance of the learnt policy is compared in the

real-world set-up with the algorithmic adaptations proposed
in the previous subsections against other heuristics by
comparing the time to cross values such that each of the
involved robots got through coordinated phase exactly once.
The value of Tc = 5s is chosen so that more robots participate
in a coordinated phase. Note that the FCFS heuristic has an
undue advantage in such a comparison since the trajectories
are computed for a robot as and when it enters the RoI and
does not have to wait till the next coordinated phase. Hence,
to be fair for the heuristics, here we propose to compare
with an alternate heuristic which we call C-FIFO, where the
robots go through provisional phase and the crossing order
(and hence the order in coordinated phase) follows the first-in
first-out rule.

We conduct 3 runs for each initialization for each policy
(each run with same initial position of the robots) and present
the average TTC obtained for different policies in Figure 17c.

In Figure 17c we observe that the CML policy produces
low TTC values compared to other heuristics. We also
observe that most of the TTC values for CML policy lie in
a small region (e.g. range of values inside the box i.e., which
fall within 1st and 3rd quartile) compared to other heuristics,
thus promoting fairness in TTC among the involved robots in
various scenarios. This is indicative of the performance of the
CML policy deployed under real-time constraints.

As mentioned earlier, due to restrictions imposed in the
lab-setting, we do not present results from our experiments
with longer continual streams of robots. A short video
of our lab implementation with continual streams nego-
tiating the intersection safely can be seen using the link
https://youtu.be/Io4DxmpJPaI. This stands as a proof of con-
cept for real-time implementability of the methods proposed
in this work. We leave the larger scale implementation for
future work.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we have combined learning with opti-
mization methods to obtain a near-optimal solution for
multi-robot unsignalized intersection management, which
can be implemented in real-time. The proposed solution
gives a policy that is shared by all the robots and can be
deployed in a distributed manner. With extensive simulations,
we have established that such a policy outperforms the
major heuristics proposed in the literature, over a range
of average traffic arrival rates. We also illustrate the vast
improvement in computation time of the proposed solution
compared to that of naive optimization methods for the
intersection management problem. We have also proposed
some adaptations to the solution framework to address real-
world challenges like tracking errors, communication and
computation delays and have implemented the learnt policies
on robots in a lab setting with the proposed adaptations.
The proposed method is flexible so that, with fresh training,
policies for different kinds of intersections can be learnt.
As already seen, such a training will need some basic

104068 VOLUME 12, 2024

Nishchal Hoysal G, P. Tallapragada: Reinforcement Learning Aided Sequential Optimization

information about the new intersection setting and no expert
knowledge is necessary (as in the case of some heuristics
and analytical methods). One future research direction is to
use transfer learning methods to reduce training time when a
policy learnt for one intersection setting is to be adapted to
another setting. It is also interesting to see if a single policy
can be learnt to work for a set of intersections and robots
with different parameters like lane and RoI dimensions, robot
velocity and acceleration limits etc. Other future directions
include implementation fine-tuning, extensions to allow lane
changes, to handle disturbances, dynamic obstacles and for a
network of intersections.

ACKNOWLEDGMENT
The authors would like to thank Ayush Das, RithvikMahajan,
and Soumyodipta Nath for their help in setting up and
implementing the algorithm on robots in the lab setting.

REFERENCES
[1] L. Chen and C. Englund, ‘‘Cooperative intersection management: A

survey,’’ IEEE Trans. Intell. Transp. Syst., vol. 17, no. 2, pp. 570–586,
Feb. 2016.

[2] M. Khayatian, M. Mehrabian, E. Andert, R. Dedinsky, S. Choudhary,
Y. Lou, and A. Shirvastava, ‘‘A survey on intersection management of
connected autonomous vehicles,’’ ACM Trans. Cyber-Phys. Syst., vol. 4,
no. 4, pp. 1–27, Oct. 2020.

[3] R. Hult, M. Zanon, S. Gros, and P. Falcone, ‘‘Optimal coordination of
automated vehicles at intersections: Theory and experiments,’’ IEEETrans.
Control Syst. Technol., vol. 27, no. 6, pp. 2510–2525, Nov. 2019.

[4] X. Qian, J. Gregoire, A. de La Fortelle, and F. Moutarde, ‘‘Decen-
tralized model predictive control for smooth coordination of automated
vehicles at intersection,’’ in Proc. Eur. Control Conf. (ECC), Jul. 2015,
pp. 3452–3458.

[5] J. Lee and B. Park, ‘‘Development and evaluation of a cooperative vehicle
intersection control algorithm under the connected vehicles environment,’’
IEEE Trans. Intell. Transp. Syst., vol. 13, no. 1, pp. 81–90, Mar. 2012.

[6] J. Lee, B. Park, K. Malakorn, and J. So, ‘‘Sustainability assessments of
cooperative vehicle intersection control at an urban corridor,’’ Transp.
Res. C, Emerg. Technol., vol. 32, pp. 193–206, Jul. 2013.

[7] A. Hadjigeorgiou and S. Timotheou, ‘‘Real-time optimization of fuel-
consumption and travel-time of CAVs for cooperative intersection
crossing,’’ IEEE Trans. Intell. Vehicles, vol. 8, no. 1, pp. 313–329,
Jan. 2023.

[8] Z. Deng, K. Yang, W. Shen, and Y. Shi, ‘‘Cooperative platoon formation
of connected and autonomous vehicles: Toward efficient merging coor-
dination at unsignalized intersections,’’ IEEE Trans. Intell. Transp. Syst.,
vol. 24, no. 5, pp. 5625–5639, May 2023.

[9] K. Dresner and P. Stone, ‘‘A multiagent approach to autonomous
intersection management,’’ J. Artif. Intell. Res., vol. 31, pp. 591–656,
Mar. 2008.

[10] J. Rios-Torres and A. A. Malikopoulos, ‘‘A survey on the coordination of
connected and automated vehicles at intersections and merging at highway
on-ramps,’’ IEEE Trans. Intell. Transp. Syst., vol. 18, no. 5, pp. 1066–1077,
May 2017.

[11] A. Gholamhosseinian and J. Seitz, ‘‘A comprehensive survey on coop-
erative intersection management for heterogeneous connected vehicles,’’
IEEE Access, vol. 10, pp. 7937–7972, 2022.

[12] Z. Qin, A. Ji, Z. Sun, G.Wu, P. Hao, and X. Liao, ‘‘Game theoretic applica-
tion to intersection management: A literature review,’’ IEEE Trans. Intell.
Vehicles, early access, Mar. 21, 2024, doi: 10.1109/TIV.2024.3379986.

[13] S. A. Fayazi and A. Vahidi, ‘‘Mixed-integer linear programming for
optimal scheduling of autonomous vehicle intersection crossing,’’ IEEE
Trans. Intell. Vehicles, vol. 3, no. 3, pp. 287–299, Sep. 2018.

[14] G. R. de Campos, P. Falcone, R. Hult, H. Wymeersch, and J. Sjöberg,
‘‘Traffic coordination at road intersections: Autonomous decision-making
algorithms using model-based heuristics,’’ IEEE Intell. Transp. Syst. Mag.,
vol. 9, no. 1, pp. 8–21, Spring 2017.

[15] S. A. Fayazi, A. Vahidi, and A. Luckow, ‘‘Optimal scheduling of
autonomous vehicle arrivals at intelligent intersections viaMILP,’’ in Proc.
Amer. Control Conf. (ACC), May 2017, pp. 4920–4925.

[16] A. A. Malikopoulos, C. G. Cassandras, and Y. J. Zhang, ‘‘A decentralized
energy-optimal control framework for connected automated vehicles at
signal-free intersections,’’ Automatica, vol. 93, pp. 244–256, Jul. 2018.

[17] A. A. Malikopoulos, L. Beaver, and I. V. Chremos, ‘‘Optimal time
trajectory and coordination for connected and automated vehicles,’’
Automatica, vol. 125, Mar. 2021, Art. no. 109469.

[18] D. Gadginmath and P. Tallapragada, ‘‘Data-guided distributed intersection
management for connected and automated vehicles,’’ in Proc. Amer.
Control Conf. (ACC), Jun. 2022, pp. 767–774.

[19] M. Hausknecht, T. C. Au, and P. Stone, ‘‘Autonomous intersection
management: Multi-intersection optimization,’’ in Proc. RSJ Int. Intell.
Robots Syst., 2011, pp. 4581–4586.

[20] P. Tallapragada and J. Cortés, ‘‘Hierarchical-distributed optimized coordi-
nation of intersection traffic,’’ IEEE Trans. Intell. Transp. Syst., vol. 21,
no. 5, pp. 2100–2113, May 2020.

[21] S. D. Kumaravel, A. A. Malikopoulos, and R. Ayyagari, ‘‘Optimal
coordination of platoons of connected and automated vehicles at signal-
free intersections,’’ IEEE Trans. Intell. Vehicles, vol. 7, no. 2, pp. 186–197,
Jun. 2022.

[22] B. Chalaki and A. A. Malikopoulos, ‘‘A priority-aware replanning and
resequencing framework for coordination of connected and automated
vehicles,’’ IEEE Control Syst. Lett., vol. 6, pp. 1772–1777, 2022.

[23] M. Cáp, P. Novák, A. Kleiner, and M. Selecký, ‘‘Prioritized planning
algorithms for trajectory coordination of multiple mobile robots,’’ IEEE
Trans. Autom. Sci. Eng., vol. 12, no. 3, pp. 835–849, Jul. 2015.

[24] G. R. de Campos, P. Falcone, and J. Sjöberg, ‘‘Autonomous cooperative
driving: A velocity-based negotiation approach for intersection crossing,’’
in Proc. 16th Int. IEEE Conf. Intell. Transp. Syst. (ITSC), Oct. 2013,
pp. 1456–1461.

[25] N. Suriyarachchi, F. M. Tariq, C. Mavridis, and J. S. Baras, ‘‘Real-
time priority-based cooperative highway merging for heterogeneous
autonomous traffic,’’ in Proc. IEEE Int. Intell. Transp. Syst. Conf. (ITSC),
Sep. 2021, pp. 2019–2026.

[26] H. Xu, W. Xiao, C. G. Cassandras, Y. Zhang, and L. Li, ‘‘A general
framework for decentralized safe optimal control of connected and
automated vehicles in multi-lane signal-free intersections,’’ IEEE Trans.
Intell. Transp. Syst., vol. 23, no. 10, pp. 17382–17396, Oct. 2022.

[27] S. Chamideh, W. Tärneberg, and M. Kihl, ‘‘A safe and robust autonomous
intersection management system using a hierarchical control strategy
and V2I communication,’’ IEEE Syst. J., vol. 17, no. 1, pp. 50–61,
Mar. 2023.

[28] X. Pan, B. Chen, S. Timotheou, and S. A. Evangelou, ‘‘A convex optimal
control framework for autonomous vehicle intersection crossing,’’ IEEE
Trans. Intell. Transp. Syst., vol. 24, no. 1, pp. 163–177, Jan. 2023.

[29] X. Pan, B. Chen, L. Dai, S. Timotheou, and S. A. Evangelou, ‘‘A
hierarchical robust control strategy for decentralized signal-free intersec-
tion management,’’ IEEE Trans. Control Syst. Technol., vol. 31, no. 5,
pp. 2011–2026, Sep. 2023.

[30] Z. Yao, H. Jiang, Y. Jiang, and B. Ran, ‘‘A two-stage optimization method
for schedule and trajectory of CAVs at an isolated autonomous intersec-
tion,’’ IEEE Trans. Intell. Transp. Syst., vol. 24, no. 3, pp. 3263–3281,
Mar. 2023.

[31] C. Vitale, P. Kolios, and G. Ellinas, ‘‘Autonomous intersection crossing
with vehicle location uncertainty,’’ IEEE Trans. Intell. Transp. Syst.,
vol. 23, no. 10, pp. 17546–17561, Oct. 2022.

[32] D. Carlino, S. D. Boyles, and P. Stone, ‘‘Auction-based autonomous
intersection management,’’ in Proc. 16th Int. IEEE Conf. Intell. Transp.
Syst. (ITSC), Oct. 2013, pp. 529–534.

[33] N. Suriyarachchi, R. Chandra, J. S. Baras, and D. Manocha, ‘‘GAMEOPT:
Optimal real-time multi-agent planning and control for dynamic intersec-
tions,’’ in Proc. IEEE 25th Int. Conf. Intell. Transp. Syst. (ITSC), Oct. 2022,
pp. 2599–2606.

[34] C. Liu, C.-W. Lin, S. Shiraishi, and M. Tomizuka, ‘‘Distributed conflict
resolution for connected autonomous vehicles,’’ IEEE Trans. Intell.
Vehicles, vol. 3, no. 1, pp. 18–29, Mar. 2018.

[35] X. Chen, M. Hu, B. Xu, Y. Bian, and H. Qin, ‘‘Improved reservation-based
method with controllable gap strategy for vehicle coordination at non-
signalized intersections,’’ Phys. A, Stat. Mech. Appl., vol. 604, Oct. 2022,
Art. no. 127953.

VOLUME 12, 2024 104069

http://dx.doi.org/10.1109/TIV.2024.3379986

Nishchal Hoysal G, P. Tallapragada: Reinforcement Learning Aided Sequential Optimization

[36] T. Regev and V. Indelman, ‘‘Multi-robot decentralized belief space
planning in unknown environments via efficient re-evaluation of impacted
paths,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2016,
pp. 5591–5598.

[37] J. Cheng, Y. Chen, Q. Zhang, L. Gan, C. Liu, and M. Liu, ‘‘Real-
time trajectory planning for autonomous driving with Gaussian process
and incremental refinement,’’ in Proc. Int. Conf. Robot. Autom. (ICRA),
May 2022, pp. 8999–9005.

[38] B. Chalaki and A. A. Malikopoulos, ‘‘Robust learning-based trajectory
planning for emerging mobility systems,’’ in Proc. Amer. Control Conf.
(ACC), Jun. 2022, pp. 2154–2159.

[39] C. Hubmann, M. Becker, D. Althoff, D. Lenz, and C. Stiller, ‘‘Decision
making for autonomous driving considering interaction and uncertain
prediction of surrounding vehicles,’’ in Proc. IEEE Intell. Vehicles Symp.
(IV), Jun. 2017, pp. 1671–1678.

[40] L. Zhao, S. Han, and Y. Lin, ‘‘Collision-aware multi-robot motion
coordination deep-RL with dynamic priority strategy,’’ in Proc. IEEE 33rd
Int. Conf. Tools Artif. Intell. (ICTAI), Nov. 2021, pp. 65–72.

[41] J. Cui, W. Macke, H. Yedidsion, A. Goyal, D. Urieli, and P. Stone,
‘‘Scalable multiagent driving policies for reducing traffic congestion,’’
in Proc. 20th Int. Conf. Auto. Agents Multi Agent Syst. (AAMAS), 2021,
pp. 386–394.

[42] Y. Wu, H. Chen, and F. Zhu, ‘‘DCL-AIM: Decentralized coordination
learning of autonomous intersection management for connected and auto-
mated vehicles,’’ Transp. Res. C, Emerg. Technol., vol. 103, pp. 246–260,
Jun. 2019.

[43] T. Wu, M. Jiang, and L. Zhang, ‘‘Cooperative multiagent deep determinis-
tic policy gradient (CoMADDPG) for intelligent connected transportation
with unsignalized intersection,’’Math. Problems Eng., vol. 2020, pp. 1–12,
Jul. 2020.

[44] U. Gunarathna, S. Karunasekera, R. Borovica-Gajic, and E. Tanin, ‘‘Real-
time intelligent autonomous intersection management using reinforcement
learning,’’ in Proc. IEEE Intell. Vehicles Symp. (IV), Jun. 2022,
pp. 135–144.

[45] G.-P. Antonio and C. Maria-Dolores, ‘‘Multi-agent deep reinforcement
learning to manage connected autonomous vehicles at tomorrow’s
intersections,’’ IEEE Trans. Veh. Technol., vol. 71, no. 7, pp. 7033–7043,
Jul. 2022.

[46] A. Guillen-Perez and M.-D. Cano, ‘‘Learning from oracle
demonstrations—A new approach to develop autonomous intersection
management control algorithms based on multiagent deep reinforcement
learning,’’ IEEE Access, vol. 10, pp. 53601–53613, 2022.

[47] J. Xue, B. Li, and R. Zhang, ‘‘Multi-agent reinforcement learning-
based autonomous intersection management protocol with attention
mechanism,’’ in Proc. IEEE 25th Int. Conf. Comput. Supported Cooperat.
Work Design (CSCWD), May 2022, pp. 1132–1137.

[48] D. Li, F. Zhu, T. Chen, Y. D. Wong, C. Zhu, and J. Wu, ‘‘COOR-
PLT: A hierarchical control model for coordinating adaptive platoons of
connected and autonomous vehicles at signal-free intersections based on
deep reinforcement learning,’’ Transp. Res. C, Emerg. Technol., vol. 146,
Jan. 2023, Art. no. 103933.

[49] M. Damani, Z. Luo, E. Wenzel, and G. Sartoretti, ‘‘PRIMAL2: Pathfinding
via reinforcement and imitation multi-agent learning–lifelong,’’ IEEE
Robot. Autom. Lett., vol. 6, no. 2, pp. 2666–2673, Apr. 2021.

[50] J. S. Park, B. Tsang, H. Yedidsion, G. Warnell, D. Kyoung, and P. Stone,
‘‘Learning to improve multi-robot hallway navigation,’’ in Proc. Conf.
Robot Learn., in Proceedings of Machine Learning Research, 2021,
pp. 1883–1895.

[51] P. Long, T. Fan, X. Liao,W. Liu, H. Zhang, and J. Pan, ‘‘Towards optimally
decentralized multi-robot collision avoidance via deep reinforcement
learning,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2018,
pp. 6252–6259.

[52] N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev, ‘‘Reinforcement
learning for combinatorial optimization: A survey,’’ Comput. Oper. Res.,
vol. 134, Oct. 2021, Art. no. 105400.

[53] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, ‘‘Neural combina-
torial optimization with reinforcement learning,’’ 2016, arXiv:1611.09940.

[54] M. Nazari, A. Oroojlooy, L. Snyder, and M. Takác, ‘‘Reinforcement
learning for solving the vehicle routing problem,’’ in Proc. Adv. Neural
Inf. Process. Syst., vol. 31, 2018, pp. 9839–9849.

[55] D. Bertsimas and B. Stellato, ‘‘Online mixed-integer optimization in
milliseconds,’’ INFORMS J. Comput., vol. 34, no. 4, pp. 2229–2248,
Jul. 2022.

[56] V. Digani, L. Sabattini, C. Secchi, and C. Fantuzzi, ‘‘Ensemble coordina-
tion approach in multi-AGV systems applied to industrial warehouses,’’
IEEE Trans. Autom. Sci. Eng., vol. 12, no. 3, pp. 922–934, Jul. 2015.

[57] I. Draganjac, D. Miklic, Z. Kovacic, G. Vasiljevic, and S. Bogdan,
‘‘Decentralized control ofmulti-AGV systems in autonomouswarehousing
applications,’’ IEEE Trans. Autom. Sci. Eng., vol. 13, no. 4, pp. 1433–1447,
Oct. 2016.

[58] X. Chen, Z. Xing, L. Feng, T. Zhang, W. Wu, and R. Hu, ‘‘An ETCEN-
based motion coordination strategy avoiding active and passive deadlocks
for multi-AGV system,’’ IEEE Trans. Autom. Sci. Eng., vol. 20, no. 2,
pp. 1364–1377, Apr. 2023.

[59] S. Dergachev and K. Yakovlev, ‘‘Distributed multi-agent navigation
based on reciprocal collision avoidance and locally confined multi-agent
path finding,’’ in Proc. IEEE 17th Int. Conf. Autom. Sci. Eng. (CASE),
Aug. 2021, pp. 1489–1494.

[60] F. Pratissoli, R. Brugioni, N. Battilani, and L. Sabattini, ‘‘Hierarchical
traffic management of multi-AGV systems with deadlock prevention
applied to industrial environments,’’ IEEE Trans. Autom. Sci. Eng., early
access, May 24, 2023, doi: 10.1109/TASE.2023.3276233.

[61] J. P. van den Berg and M. H. Overmars, ‘‘Prioritized motion planning
for multiple robots,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Aug. 2005, pp. 430–435.

[62] P. Tallapragada and J. Cortés, ‘‘Distributed control of vehicle strings under
finite-time and safety specifications,’’ IEEE Trans. Control Netw. Syst.,
vol. 5, no. 3, pp. 1399–1411, Sep. 2018.

[63] X. Chu and H. Ye, ‘‘Parameter sharing deep deterministic policy
gradient for cooperative multi-agent reinforcement learning,’’ 2017,
arXiv:1710.00336.

[64] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, ‘‘Continuous control with deep reinforcement learning,’’
2015, arXiv:1509.02971.

[65] 3pi+ 32U4 Robot—Turtle Edition (75:1 LP Motors), Assembled.
Accessed: Aug. 12, 2023. [Online]. Available: https://www.pololu.
com/product/3738

[66] NaturalPoint. Motion Capture Systems-OptiTrack Webpage. Accessed:
Aug. 12, 2023. [Online]. Available: https://optitrack.com

NISHCHAL HOYSAL G (Student Member, IEEE)
received the B.E. degree in mechanical engi-
neering from the B.M.S. College of Engineering,
Bengaluru, India, in 2016. He is currently pursuing
the Ph.D. degree with the Robert Bosch Centre
for Cyber Physical Systems, Indian Institute of
Science at Bengaluru.

His research interests include learning methods
for multi-agent planning and coordination.

PAVANKUMAR TALLAPRAGADA (Member,
IEEE) received the B.E. degree in instrumentation
engineering from the SGGS Institute of Engi-
neering and Technology, Nanded, India, in 2005,
the M.Sc. (Engg.) degree in instrumentation
from Indian Institute of Science at Bengaluru,
in 2007, and the Ph.D. degree in mechanical
engineering from The University of Maryland,
College Park, in 2013. He was a Postdoctoral
Scholar with the Department of Mechanical and

Aerospace Engineering, University of California at San Diego, San Diego,
from 2014 to 2017. He is currently an Associate Professor with the
Department of Electrical Engineering and the Robert Bosch Centre for Cyber
Physical Systems, Indian Institute of Science at Bengaluru. His research
interests include networked control systems, distributed control, multi-agent
systems, and dynamics in social networks.

104070 VOLUME 12, 2024

http://dx.doi.org/10.1109/TASE.2023.3276233

