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HIGHLIGHT
1. Detecting landmarks in MRI images has proven to be a valuable approach that helps neurologists save time when diagnosing

Alzheimer’s disease.
2. YOLOv5 is a suitable deep-learning model for detecting the hippocampal region in three views and categories and assisting

neurologists in diagnosing Alzheimer’s disease.
3. The sagittal view has been identified as the most dependable view for detecting the hippocampal region.
4. Diagnosis of Alzheimer’s disease using MRI requires three distinct views accurately to visualize brain shrinkage.

ABSTRACT The hippocampal region is one of the most affected brain areas observed as a landmark
in Magnetic Resonance Imaging (MRI) images for Alzheimer’s disease (AD) diagnosis. The diminished
alterations in the hippocampal and degeneration of cholinergic circuits have been conclusively correlated
with a decline in memory and cognitive function. However, the hippocampal region may not appear as
clearly defined as other brain regions, making it difficult for neurologists and researchers to identify by visual
inspection. The application of deep learning models to pinpoint the hippocampal region was initially valued.
We assessed the ability of a deep learning model, You Only Live Once (YOLO), to detect hippocampal
regions in three MRI image views and categories. The Alzheimer’s Disease Neuroimaging Initiative-first
(ADNI−1) dataset was used with 220 subjects in three categories using the three YOLOmodels.We obtained
the YOLO performance for hippocampal region detection with accuracy in three views and categories. The
average mean Average Precision (mAP) performance accuracy for YOLOv3 was 0.87, YOLOv4 was 0.85,
and YOLOv5 was 0.96, respectively. The high accuracy of the detection of the hippocampal region was
remarkable. We found that the sagittal view was higher than the axial and coronal views. Simultaneously, the
Mild Cognitive Impairment (MCI) in the coronal viewwas lower among the threemodels. The results showed
that YOLOv5 is a suitable model for detecting the hippocampal region in MRI images, and the sagittal view
is the most reliable for detecting the hippocampal region in diagnosing AD. Our findings demonstrate the
importance of detecting the hippocampal region to diagnose AD and accurately analyzing the hippocampal
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area within the region. The YOLOv5 model substantially affected performance metrics and interpretability across
the three views and categories.

INDEX TERMS Landmark, hippocampal region, MRI image, YOLO, object detection.

I. INTRODUCTION
Dementia attributed to Alzheimer’s disease (AD) constitutes
the most common cause of cognitive impairment globally.
The global number of persons with AD dementia, prodro-
mal AD, and preclinical AD were estimated at 32, 69,
and 315 million, respectively [1]. Deterioration in the brain
regions is critical for observing and exploring early AD diag-
nosis before disease progression. Gradual loss of memory
and cognitive function progresses through a transient clinical
stage of AD [2]. Identifying AD-related brain changes is
paramount for optimizing clinical interventions and attenu-
ating disease progression and onset [3]. Patients with AD are
typically diagnosed by examining the hippocampal, which is
crucial for memory and cognitive function [4]. As there is no
cure for AD, previous studies have focused on exercise ther-
apy to prevent hippocampal volume reduction [5]. However,
symptoms of progressive AD can manifest as mild cognitive
impairment (MCI). Moreover, it is challenging to differenti-
ate and study the hippocampal in each category because the
transition from normal control (CN) to AD has one intermit-
tent stage, popularly known as MCI [6]. These categories are
beneficial for differentiating disease progression.

In addition, the hippocampal region is a wider area encom-
passes various structures involved in memory and cognitive
function. Dysfunction or damage in the hippocampal region
is associated with memory disorders, as is often observed in
patients with AD [7]. Structural alterations in the hippocam-
pal regions are significant markers of AD progression. To do
this, magnetic resonance imaging (MRI) is a valuable tool for
brain imaging and represents a reliable modality for diagnos-
ing AD [8]. MRI images have three standard views: axial,
coronal, and sagittal [9]. Three views of MRI images con-
tain valuable information regarding the hippocampal region,
which is beneficial for AD diagnosis [10], and each view
allows the neurologist to accurately identify and delineate the
hippocampal boundaries in MRI images [11].
Furthermore, deep learning systems are more effective in

many research areas. For instance, deep learning presents
a potent methodology for analyzing alterations in the hip-
pocampal associated with AD [12]. It also saves neurologists
time in diagnosing AD [13]. Various types of deep learning
models, namely, You Only Look Once (YOLO), are used in
medical images [14], and used YOLOv3 [15], YOLOv4 [16],
and YOLOv5 [17]. Other YOLO models, such as YOLOv6,
YOLOv7, and YOLOv8, offer advanced object detection
capabilities. However, these models are typically under-
utilized in medical imaging, where specialized algorithms
or detection frameworks are more commonly applied [18].
Thus, we proposed three YOLO models (i.e., YOLOv3,
YOLOv4, and YOLOv5), as recent studies have used these

models to detect brain tumors [19], [20], [21]. Using medical
image detection, These YOLO models showed an accuracy
in the range of 0.80 to 0.98. In this study, our novelty tries
to focus on the detection task of the hippocampal region that
was initially valued. This task may be used to analyze the
hippocampal area accurately to ascertain the initial alterations
in the three views and categories.

As delineated in the preceding statements, MRI images
contain three views; prior investigations solely utilized only
one view of MRI images for hippocampal region detec-
tion [22]. Moreover, the hippocampal region is a complex
area of several distinct structures, most of which are small
and have boundaries that are difficult to visualize in only one
view [23], [24]. However, this could result in occlusion or
ambiguous delineation of the hippocampal regions. However,
using three views ensures that the YOLOmodel better detects
the hippocampal region. Additionally, it is important in med-
ical applications, where precise delineation of structures can
affect diagnoses, surgical planning, and treatment outcomes
in the future. To our knowledge, no prior investigation has
explored the use of three views of MRI images to detect
the hippocampal region for better AD diagnosis and inter-
pretability. Our study makes the following contributions that
are summarized below:

• The three views of the MRI images may be used to
obtain more interpretability of the hippocampal in diag-
nosing AD.

• Three categories of AD may help differentiate the hip-
pocampal area for the disease progression.

• We used three YOLOmodels to determine which model
is suitable for detecting the hippocampal region.

We hypothesized that YOLO models could automatically
detect the hippocampal region and save neurologists time
diagnosing AD. It may improve the ability to visualize and
study the hippocampal, owing to its intricate anatomy and
variability among the three views and categories. In addition,
we compared the performance of the three YOLO models in
detecting the hippocampal region to determine which YOLO
model shows higher accuracy and is suitable for detecting the
hippocampal region. Thus, the results for the three views of
MRI images may indicate which view shows higher accuracy
in detecting the hippocampal region in diagnosing AD.

II. MATERIAL AND METHODS
A. DATA COLLECTION
Data used in this study were obtained from the pub-
licly available Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (https://adni.loni.usc.edu) during the first
phase (ADNI−1). We used the baseline ADNI−1 database
from a 1.5T Tesla scanner, preprocessed with Magnetization
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Prepared Rapid Gradient Echo (MP-RAGE) with a resolution
of 256 × 256 × 170 voxels. ADNI−1 holds a preemi-
nent position among researchers investigating AD due to
its widespread usage and popularity [10], [25]. ADNI−1
provides three categories: AD, MCI, and NC. These cat-
egories were used to compare which category had higher
accuracy. A total of 220 subjects were divided into three
classes (AD (75), MCI (72), and NC (73)), and each class
included 250 AD, 250 MCI, and 250 NC, with 750 with raw
ADNI imaging data (.nii extension). Similar to the previous
study that used more than 500 datasets and the raw ADNI
imaging data [22], [26]. Raw imaging data were used, and
specific details are available in the ADNI database [27].
In total, 2,250 raw ADNI imaging data were used. We then

split the raw ADNI imaging data into an 80:20 ratio for
training and validation. We used 1,800 raw ADNI imaging
data for the training set, and each category and view had
200 raw ADNI imaging data. Next, 450 raw ADNI imag-
ing data were used for the validation set; each category
and view had 50 raw ADNI imaging data. In addition, one
raw ADNI imaging data in each view and category has
160–170 MRI image slices [28], [29]. According to previ-
ous studies, using approximately five slices based on image
atrophy can reduce computational time and achieve higher
accuracy [30], [31]. Thus, the preprocessing data incorpo-
rates a select slices method for the hippocampal region
detection. We then selected five slices with clearer images
of the hippocampal region in three views (i.e., axial, coronal,
and sagittal) of the three categories (i.e., AD, MCI, and NC).
The slicing method ensures that the model is trained on
the most relevant region information, which helps achieve
better performance [31]. However, the annotation for training
deep learning is challenging, and interpreting decisions play
an important role, especially in MRI images, which may
improve the interpretability of the model by focusing on clini-
cally significant regions. Finally, we obtained, in total, 11,250
MRI slices from the three views of the three categories.
Detailed information on the separated datasets is presented
in Table 1.

TABLE 1. The balanced dataset in each view and category for training
and validation.

B. HIPPOCAMPAL REGION PROCEDURE
In the following step, we labeled the five slices using
the labelImg software (https://github.com/tzutalin/labelImg).

The procedure for selecting five slices ofMRI images in three
views and categories was used in our previous studies [31].
We used labeImg to label the landmarks of the MRI images,
namely the hippocampal region, in three views and cate-
gories. The labeling used a bounding box and annotations.
We used the same bounding box size for each view and
category based on the hippocampal region. For this reason,
the hippocampal region covers the hippocampal and other
nearby structures, such as the amygdala and parahippocam-
pal. In addition, landmarks in MRI images can be used to
identify significant regions among millions of voxels [32].
Besides, using the landmarks of MRI images as an input
image can simplify the network structure and facilitate train-
ing performance [33]. An example of the bounding box size
used to label the hippocampal region in the sagittal view,
including the marking sign of the hippocampal, is shown in
Figure 1.

FIGURE 1. The bounding box size of the hippocampal region and marking
the sign of the hippocampal by the region in sagittal view. AD,
Alzheimer’s Disease.

Furthermore, in the axial view, we labeled the hippocampal
region with the bounding box with the annotation in AD
(ADLeft, ADRight), MCI (MCILeft, MCIRight), and NC
(NCLeft, NCRight). In the coronal view, we labeled the hip-
pocampal regionwith the bounding boxwith the annotation in
AD (ADLeft, ADRight), MCI (MCILeft, MCIRight), and NC
(NCLeft, NCRight). In the sagittal view, we labeled the hip-
pocampal regionwith the bounding boxwith the annotation in
AD (ADSagittal), MCI (MCISagittal), and NC (NCSagittal).
Our labeled dataset was validated by a neurologist from the
China Medical University Hospital, a senior with experience
in neurology, to ensure that the slices were labeled correctly
with the hippocampal region. The detailed labeling images of
the three views and categories are shown in Figure 2.
According to Figure 2, the marking sign provided by the

advanced YOLOmodels improved the ability to visualize and
study hippocampal volume loss. Therefore, the hippocampal
is a complicated anatomy that is challenging to identify [34].
Furthermore, it can be used for quantitative analysis, simi-
lar to previous studies which found that the apparent water
exchange rate (AXRBBB) is significantly correlated with cog-
nitive dysfunction and increases in the hippocampal [35].
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FIGURE 2. The labeled images in the hippocampal region of MRI images
in axial, coronal, and sagittal views: (A) AD; (B) MCI; and (C) NC. AD,
Alzheimer’s Diseas; MCI, Mild Cognitive Impairment; and NC, Normal
Control.

C. YOLO ARCHITECTURE
Deep learning is more effective in many research areas that
associate hippocampal associated with AD [12]. You Only
LookOnce (YOLO), previously used inmedical images, such
as YOLOv3 [15], YOLOv4 [16], and YOLOv5 [17].
Finally, we used the labeled images from the proposed

YOLO models (i.e., YOLOv3, YOLOv4, and YOLOv5).
YOLO models have become popular owing to their high
speed and accuracy, and this model detects bounding boxes
from image pixels. The YOLO algorithm determines the
bounding boxes of images [36]. YOLO is a state-of-the-
art deep-learning framework for real-time object recogni-
tion [37]. The architecture employs 24 convolutional layers

to extract image features and two fully connected layers for
bounding box detection. The network was constructed using
the Darknet framework [38].

This study used Darknet53 as the backbone to extract fea-
tures from input images. Darknet53, a convolutional neural
network (CNN), is our deep learning model’s foundational
architecture for feature extraction. The backbone of a deep
neural network comprises a series of convolutional layers
designed to identify and capture essential features from the
input data. These layers perform critical functions such as
detecting edges, textures, shapes, and other relevant pat-
terns within the images, enabling robust feature extraction
that underpins the subsequent stages of object detection and
segmentation. It uses a feature pyramid network (FPN) as
a neck [39]. YOLOv4, as a modified version of YOLOv3,
used Cross Stage Partial Network (CSPNet) in Darknet,
creating a new feature extractor backbone called CSPDark-
net53. The convolution architecture was based on a modified
DenseNet [40]. The image is fed into CSPDarknet53 for
feature extraction. The neck component of the network intro-
duces additional layers between the backbone and the dense
prediction head. This section comprises a Spatial Pyramid
Pooling (SPP) module and a Path Aggregation Network
(PAN). The SPP module combines the max-pooling out-
puts from the low-resolution feature maps to identify the
most representative features. This configuration enhances
the model’s ability to capture critical information, thereby
improving object detection accuracy. This two-stage process
enhances the model’s ability to identify and merge pertinent
features from the input image accurately. However, YOLOv5
differs significantly from its predecessors. This architecture
leverages the strengths of CSPDarknet53 to enhance fea-
ture extraction, ensuring efficient processing and accurate
detection. The integration of CSPDarknet53 within YOLOv5
provides a robust foundation that supports the model’s supe-
rior performance in object detection tasks. Building upon
the foundation laid by YOLOv4, YOLOv5 incorporates an
adaptive anchor strategy and utilizes a refined architecture
featuring a CSP backbone. This combination allows for more
efficient processing and improved accuracy in object detec-
tion tasks [41]. The YOLOv5 network uses PANet as the neck
to enhance the information flow, thereby improving the local-
ization capabilities in the lower layers of the network. This
enhancement in information flow significantly contributes to
the accuracy of object localization, as it allows the model
to better capture and integrate fine-grained details from var-
ious feature maps, leading to more precise detection and
classification of objects within the images. Each detection
head consists of convolutional layers, followed by two fully
connected layers that output the final detections.

The model was implemented using Windows 10 with
Python 3.7.6 on a machine with the following specifications:
Core i7-11700 CPU, 32 GB RAM, and an NVIDIA GeForce
RTX 3090 GPU with 24 GB of GDDR6X memory. The
workflow process for detecting the hippocampal region in
MRI images is shown in Figure 3.
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FIGURE 3. The workflow process for detecting the hippocampal region in
MRI images. YOLO, You only look once; SPP, Spatial Pyramid Pooling;
PAN, Path Aggregation Networ; E-RPN, Euler-Region Proposal Network;
CSP, and Cross-Stage-Partial.

III. RESULTS
This study compared the performance of the YOLOv3,
YOLOv4, and YOLOv5models in detecting the hippocampal
region inMRI images. In addition, we compared the accuracy
of the three views based on the results, which demonstrated
higher accuracy. In addition, comparisons between the three
YOLO models were used to determine which model showed
the highest accuracy in detecting the hippocampal region. The
average mean Average Precision (mAP) value performance
accuracy for YOLOv5 was 0.96, which was higher than those
of the other YOLOmodels. While YOLOv3 showed 0.87 and
YOLOv4 were 0.85 accuracies.

In addition, comparisons between the three views were
used to determine which view showed the highest accuracy
in detecting the hippocampal region using the three YOLO
models. According to Table 2, the sagittal view showed
0.95 accuracies, higher than the axial view (0.93) and coronal
views (0.81). The axial showed 0.93, and the coronal view
showed 0.81 accuracies. In addition, we make comparisons
in three categories among three views and categories.

TABLE 2. The mAP performance of three YOLO models in three views of
MRI images.

Additionally, as shown in Table 3, we found that MCI in
the coronal view was lower among the three YOLO models.
YOLOv3 showed 0.50, YOLOv4 showed 0.56, and YOLOv5

TABLE 3. The mAP performance of three YOLO models in three views and
three categories of MRI images.

showed 0.78 accuracies. Moreover, in YOLOv3, the axial
view was higher in NC (0.97), the coronal view was higher
in AD (0.90), and the sagittal view was higher in MCI (0.97).
Then, in YOLOv4, the axial view was higher in AD (0.88),
the coronal view was higher in NC (0.92), and the sagittal
view was higher in MCI (0.99). In YOLOv5, the axial view
was higher among the three categories (0.99). The coronal
view was higher in NC (0.99). The sagittal view was higher
in AD and MCI (0.99).

IV. DISCUSSION
This research applied three YOLO models (i.e., YOLOv3,
YOLOv4, and YOLOv5) to detect the hippocampal region in
three views (i.e., axial, coronal, and sagittal) and categories
(Alzheimer’s disease (AD), Mild Cognitive Impairment
(MCI), and Normal Control (NC)) of MRI images. This
finding may support our hypothesis that using three YOLO
models could automatically detect the hippocampal region
and help medical experts save time in diagnosing AD. The
average mAP accuracy of YOLOv5 was higher than those of
YOLOv3 and YOLOv4. We also found that the sagittal view
had a higher averagemAP accuracy than the axial and coronal
views. In addition, we found thatMCI in the coronal viewwas
lower among the three YOLO models.

Our study proposed three YOLO models: YOLOv3,
YOLOv4, and YOLOv5. These three YOLO models are
widely used for object detection in MRI images [42], [43].
The performance of YOLO models used the mean average
precision (mAP), the current benchmark metric used by the
computer vision research community, to evaluate the robust-
ness and accuracy of object detection [44]. The average mAP
for the YOLOv5 model performed better than YOLOv3 and
YOLOv4 in detecting the hippocampal region in the MRI
images. Therefore, YOLOv5 was developed in the Ultralyt-
ics PyTorch framework, which makes inferences faster than
other YOLO models because it has a smaller structure [45].
Another advantage of YOLOv5 is mosaic augmentation in
training, which combines four images into four blocks of ran-
dom proportion. Mosaic augmentation is beneficial for object
detection, helping the model to learn to detect objects [46].
Thus, we may say that YOLOv5 demonstrates the feasibility
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and effectiveness of detecting the hippocampal region with a
higher average mAP performance.

Our results were similar to those of Arunachalam et
al. in that the YOLOv5 model has the benefit of finding
the hippocampal region quickly, even in noisy, blurry, and
foggy images [17]. Additionally, previous studies found that
using YOLOv5 achieved higher accuracies than YOLOv3
and YOLOv4 using MRI images; for instance, Chen et al.
in detecting stroke lesions [43], Arunachalam and Sethumath-
avan detect benign and malignant tumors [17]. Thus, we may
say that the YOLOv5 model may be capable of detecting the
hippocampal region in MRI images. In the future, it may be
possible to analyze medical images immediately.

This study used three views of MRI images to detect the
hippocampal regions. Considering that one view of an MRI
image leads to the loss of 3D information, using three views
of MRI images can obtain details from 2D images [47].
Thus, we may assume that three views of MRI images are
used to detect the hippocampal region and may facilitate the
interpretation of the diagnosis of AD. As shown in Table 2,
the sagittal view showed higher accuracy than the axial and
coronal views. The sagittal view shows clearer information
regarding the hippocampal and one of the source sites for
AD tangles and senile plaques, which is valuable for diag-
nosing AD [48].

Therefore, in a study by Cohen et al., the hippocampal
volume determinations were based onmanual outlining of the
sagittal view aided by axial and coronal views [49]. Further,
the sagittal view could expect to detect the hippocampal
region to see the volume changes with additional information
from the axial and coronal views. Thus, our funding may be
used for measuring the hippocampal volume changes through
the bounding box in the sagittal view and with additional
information regarding the hippocampal region through the
axial and coronal views.

The illustration simulations to analyze the hippocampal
volume changes through MRI consist of three phases. In the
first phase, a patient with a cognitive problem will undergo
an MRI, and the results fromMRI scans are 3D MRI images,
which are then converted to 2D images for further analy-
sis [50]. In the second phase, the patient visits a neurologist
to check the MRI images. Then, to save time, neurologists
may use YOLOv5 to detect the hippocampal region, as in
previous studies [51]. In the last phase, the neurologist will
use the hippocampal region to analyze the hippocampal vol-
ume changes [52]. Thus, our study can be an automatic
tracing tool that is useful in diagnosing AD. An illustration
of hippocampal volume changes in the MRI images is shown
in Figure 4.

In addition, we found that MCI in the coronal view was
lower among the three YOLO models. For this reason, the
bounding box size of the hippocampal region in the coro-
nal view was smaller than in the axial and sagittal views.
Moreover, the hippocampal region in the coronal view is
unreliable for observing other brain regions affecting AD,

FIGURE 4. The illustration analyzes the hippocampal volume changes in
MRI images; (A) MRI scans converted to 2D image; (B) YOLOv5 to detect
the hippocampal region; and (C) Analyze the hippocampal volume
changes. 2D, Two Dimensional; 3D, Three Dimensiona; YOLO, You Only
Look Once; MRI, Magnetic Resonance Imaging.

such as the hippocampal, amygdala, and other regions within
the landmark. This may have affected the detection result.
Furthermore, we found that the MCI accuracy was lower than
that of AD and NC among the three views and categories.
MCI has a high probability of misdiagnosing AD, and the
structural changes in MCI are relatively subtle [53]. Thus,
these studies may provide evidence that MCI in the coronal
view is more challenging in detecting the hippocampal region
in MRI images to diagnose AD.

The current study had some limitations. First, we lim-
ited our study to detect the landmarks in MRI images,
namely the hippocampal region and did not apply the
multiple-class classification. Further studies may detect the
biomarker of MRI images, allowing for a less invasive
and more accurate AD diagnosis [54]. Biomarkers or bio-
logical markers refer to a broad subcategory of medical
signs [55]. For instance, hippocampal volume has become the
best-established imaging biomarker for AD diagnosis [56].
However, previous studies have shown the use of multi-
ple class classification to distinguish among various stages
for the early diagnosis of AD [57]. In further studies,
we may use the multiple-class classification in detecting the
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hippocampal region. Second, we used only object detection
to detect the hippocampal region in three views of the MRI
images. Further, we may use instance segmentation based on
the hippocampal region labeled to segment AD biomarkers,
such as hippocampal volume changes. Instance segmentation
combines these classical computer vision tasks (detection
and semantic segmentation), such as Mask R-CNN [58]. The
benefit of using instance segmentation is that it saves time for
delineation and reduces reproducibility, which is called into
question [59]. Third, we may use various data augmentation
methods to increase accuracy, similar to a recent study [60].

V. CONCLUSION
In conclusion, we demonstrated three YOLO models
(i.e., YOLOv3, YOLOv4, and YOLOv5) and three views
(i.e., axial, coronal, and sagittal) of MRI images to detect
the hippocampal region. This study supports our hypothesis
that using YOLO models would automatically detect the hip-
pocampal region in MRI images and help neurologists save
time.We found that YOLOv5 is a suitablemodel for detecting
the hippocampal region. At the same time, we found that the
sagittal view showed higher average mAP accuracy than the
axial and coronal view among the three models. In addition,
we found that MCI in the coronal view was lower among
the three models. In conclusion, our study findings demon-
strate the importance of detecting the hippocampal region to
diagnose AD and accurately analyze changes in hippocampal
volume loss using themarking sign. TheYOLOv5model sub-
stantially affects the performance metrics and interpretability
across the MRI views and the three categories.
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