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ABSTRACT Humans communicate and interact through natural languages, such as American English (AE),
Taiwanese, Italian, and numerous variants of Spanish. Through automatic speech analysis and recognition
technologies, human–machine interaction systems (HMISs) can be used for language learning in query
systems, smart devices, and healthcare applications, emphasizing the need to enhance user interaction across
different sectors. Because people differ in their basic attributes (e.g., gender, age group, and spoken dialect),
an HMIS must be able to identify the speaker’s gender, age group, and regional dialect on the basis of their
speech signals. To achieve automatic speech recognition, we analyzed and distinguished feature patterns
using a feature extraction method and identified gender and region using a convolutional neural network
(CNN)-based classifier. Mel-frequency cepstral coefficients were used to extract Mel-scale frequencies
(MSF) from dialect-sentence speech signals for conversion into specific feature patterns. Subsequently,
a one-dimensional CNN-based classifier was used to identify these features patterns by gender and regional
dialect. The proposed speech classifier was rigorously trained, tested, and validated using dialect-sentence
speech corpora from AE, Italian (IT), and Spanish (SP) acoustic–phonetic continuous speech database.
The experimental results indicate that the proposed model with MSF features can perform accurate gender
and region recognition. The classifier was evaluated in metrics of precision (%), recall (%), F1 score, and
accuracy (%).

INDEX TERMS Automatic speech recognition (ASR), Mel-scale frequency, one-dimensional convolutional
neural network (CNN), dialect-sentence speech signal, acoustic-phonetic continuous speech.

I. INTRODUCTION
Human natural languages (NLs), such as Taiwanese, Amer-
ican English (AE), Latin, Japanese, and Chinese, are the
primary means for humans to communicate during social
activities. They are also communication tools that can trans-
mit, express, describe, preserve, and exchange information
and knowledge, experiences, and culture. Distinct dialectal
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variations have been developed for these languages across
different countries, geographical environments, and regions.
Even within the same country, distinct honorifics or special
vocabulary may be used in communication between speakers
of different genders, age groups and social classes. For
example, TIMIT (Texas Instruments/Massachusetts Institute
of Technology) APCSD (DARPA TIMIT Acoustic-Phonetic
Continuous Speech Corpus [USA]) contains 6,300 dialect
sentences (630 speakers) from eight major dialect regions
(North, South, and West regions of the United States (#1-#7)
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FIGURE 1. Architecture of natural language user interface system for natural language processing, understanding, and generation/translation.

and covers multiple dialects from the United States (#8))
[1], [2]. In speech recognition tasks, these dialect sentences
can be used to identify the gender, age group, and regional
dialect of a speaker; they can also be used to verify the
performance of automatic speech recognition (ASR) systems.
ASR systems and human– machine interaction systems
(HMISs) [3], [4], [5], [6] have two operation modes, namely
the reactive communication mode (RCM) and interactive
communication mode (ICM) [4], [5], [6]. In the ICM, users
can issue commands through the microphone units. The
HMIS then preprocesses the input speech signals, analyzes
the grammatical components (syntax analysis) and meaning
of words (semantic analysis), issues the user’s speech com-
mands, and synthesizes an audio response through speech
synthesis; alternatively, the machine translation function can
automatically translate words or texts from one language
to another [7]. Through NL generation (NLG) and NL
translation (NLT), users can receive feedback messages, and
the responses can be generated in subsequent interactions
between any user and an HMIS; for example, the ICM-based
system depicted in Figure 1 has been used in smartphone
speech assistants [8] and Internet of Vehicles (IoV) language
applications for speech navigation [9].
In an NL user interface (as seen in Figure 1), the HMIS

interacts with a user by first identifying the user’s gender,
age group, and regional dialect. Subsequently, through NL
understanding (NLU), ASR is applied for distinguishing
the user’s personal features from acoustic speech signals.
An NLUmodule is employed to perform syntax and semantic
analysis and subsequently decipher the sentence structure
and meaning [7]. An ASR system is used to perform
sentence classification for identifying a user’s gender, age
group, and regional dialect; thereafter, the input sentences
are converted into texts or words, and an NLG module
automatically produces the appropriate responses to the user
on the basis of a speech corpus (Knowledge) [10], such
responses include automated reports, product descriptions,

and speech navigation information [4], [5], [6], [7]. Over
several conversations with users, the reaction time of an
HMIS is gradually shortened, making human–computer
interactions more efficient. Consequently, the needs of
different users across regions with high linguistic diversity
can be met, paving the pathway to global applications.
Moreover, both user satisfaction and HMIS performance can
be improved.

To provide a customized and intelligent HMIS for meeting
the user request, the feature extraction must be performed
on incoming speech signals. Feature extraction tools and
techniques include the digital filters, Mel- frequency cepstral
coefficients (MFCC), YIN (name based on the Oriental
concept of yin and yang), and Yet Another Algorithm for
Pitch Tracking (YAAPT) [1], [11], [12], [13]. Classifier
methods based on artificial intelligence (AI), deep learning
(DL), and machine learning (ML) have been employed in
ASR applications, such as multilayer perceptrons, support
vector machine (SVM), WAV2VEC2 model (self-supervised
learning [SSL]), fully convolutional network (FCN), deep
neural network with hidden Markov model (DNN-HMM),
recurrent neural network (RNN), and one-dimensional (1D)
and two-dimensional (2D) convolutional neural networks
(CNNs) [1], [4], [5], [6], [14], [15], [16], [17], [18],
[19], [20]. These AI based methods are used to train a
classifier on a large number of dialect–sentence speech
datasets, thereby enabling the correct identification and
interpretation of incoming speech signals. These methods [1],
[4], [5], [6], [14], [15], [16], [17], [18], [19], [20] were
trained on speech corpora from TIMIT [2], Hillenbrand [12],
[13], the Ryerson Audio–Visual Database of Emotional
Speech and Song (RAVDESS), and BGC (Bangladesh)
[21].

In the present study, we applied ASR to dialect-speech
signals to identify the gender, age group, and regional dialect
of a user; this process involves digital signal preprocessing,
feature extraction, and signal classification tasks. For digital
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FIGURE 2. Speech signals are preprocessed during natural language processing through digital filter and endpoint detection to segment interesting
content (the sentence ‘‘She had your dark suit in greasy wash water all year’’ was obtained from the TIMIT Speech Corpus).

signal preprocessing, digital filters (100–1100 Hz bandpass
Butterworth filter) or Chebyshev filters [22], [23] were
used to remove redundant data, such as unwanted artifacts
and environmental noise. Furthermore, endpoint detection
(EPD) algorithms [24], [25] were used for signal activity
detection (SAD) and weighted operations, which facilitate
speech signal segmentation and the determination of the
beginning and end points of speech activities in signal
amplitude variations, as shown in Figure 2; for a given
specific threshold value, significant signal variations can be
used to directly distinguish speech signals from nonspeech
parts for signal denoising and segmentation processing,
allowing for substantive content to be extracted from dialect-
sentence speech. For the signal segmentation processing,
EPD was performed to identify the boundaries between
sentences in a piece of text for real-time NL processing
(as seen in Figure 2). During feature extraction, MFCC-
based methods [1], [11], [12], [26] were used to extract
the frequency-based parameters of speech signals, such as
audio signal frequency and amplitude. MFCCs serve as
an extractor that converts time-domain signals into Mel
spectrograms in visualizations. Hence, in speech signal
preprocessing, filtering and segmentation are performed to
remove background noise and extract interesting fragments
from the incoming speech-signal stream. To extract features
from interesting fragments, we must consider that a native
AE subject and a non-native AE subject have different speech
acoustic features depending on their country, gender, and
regional dialect. This also applies to other languages and is
useful in applications where linguistic diversity matters, as is
the case in Taiwanese, LatinAmerican Spanish, Japanese, and
Chinese.

In speech classification, a cascaded 1D CNN [1], [11],
[12], [14], [26], [27] is used to train a speech classifier,
such that its recognition scheme can identify users by
gender and regional dialect. The proposed 1D-CNN-based
classifier comprises a feature extraction layer (MFCC-based
extractor), two cascaded 1D convolutional–pooling layers
with multikernel windows and maximum-pooling (Max-
pooling) windows, a flattening layer, and a fully connected
layer (two dense layers). Two dropout layers are inserted
into two dense layers, and 10% of the neurons are randomly
deactivated to overcome the overfitting problem during the
training stage. When a Mel spectrogram is produced as an
input feature pattern, a 1D CNN is used to extract the feature
patterns for training classifier. Subsequently, the Gaussian
error linear unit (GeLU) activation function [28], [29] is used
to activate neural nodes and to identify the possible classes
from incoming speech signals. Finally, the final output is
obtained using the Softmax activation function in the output
layer. In the training stage, the adaptive moment estimation
(ADAM) algorithm [28], [29], [30] is used to refine optimal
connected weighted parameters and bias parameters through
iteration computations, thereby minimizing the loss function
(LF) value with the specific threshold value. In this study, a
2D-CNN model [30] with two cascaded 2D convolutional–
pooling layers is also used to implement the speech
classifier. Three dialect speech databases, namely the TIMIT
APCSD [2], Corpora e Lessici dell’ Italiano Parlato e Scritto
(CLDPS) [31], and Sound-board-Learn Spanish (SLS) [32]
speech corpus, are used. The content from these databases,
which have AE, Italian (IT), and Spanish (SP)-language
speech content, is divided into training datasets for training
the classifier and testing datasets for validating the classifier’s
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effectiveness for performing gender and region recognition.
Four indices, namely precision (%), recall (%), accuracy (%),
and F1 score [12], [30], are used to evaluate the classifier’s
performance.

II. METHODOLOGY AND MATERIALS
A. SPEECH SIGNALS PREPROCESSING
The Butterworth filter is used for speech signal preprocess-
ing, which is designed as a band-pass filter by using the
MATLAB syntax ‘‘butter (•)’’ with the fifth-order filter [33];
its voltage gain is 60 dB and stable; and the cutoff frequency
range is set between 100 Hz and 1100 Hz for human
voice (fundamental frequency ranges of 85-255 Hz for
female and male speakers [12], [13]); this range is used to
exclude unwanted frequencies, such as the 60/50-Hz power-
grid frequency and environment noises. For segmentation
processing, the EPD is performed to extract interesting
content from speech sentences, which can be expressed as
follows:

E[n] =

Nk∑
k=1

(xn(k))2 ≥ θ, n = 1, 2, 3, . . . ,

N − Nk , k = 1, 2, 3, . . . ,Nk (1)

In a speech-signal stream, as seen in Figure 2, major
fluctuations in amplitude changes are more pronounced
in violent-activity segments than in stationary segments.
Therefore, at sampling point n, where a specific threshold
value is applied, as θ = max(E[n]) × 0.1 for all n; which
indicates amplitude changes within a short period to identify
obvious signal activities and to determine the interesting
content; and the length is (N−Nk ), where E[n] denotes short-
term amplitude variations at the nth sampling point, xn(i)
denotes the time-domain raw speech signal, and Nk is the
length of the frame processing. Thus, interesting content can
be extracted from spoken dialect sentences.

B. MFCC-BASED FEATURE EXTRACTOR
An MFCC-based feature extractor is a short-term power
spectrum transformation tool that can perform fast compu-
tations for directly extracting speech features from speech
signals [1], [11], [20]. During this process, a discrete cosine
transform (DCT) uses a finite sequence of sampling data
to compute a sum of sinusoids with varying magnitudes
and frequencies, and this sum is implemented on a power
spectrum with a nonlinear Mel scale to enable key feature
selection for pattern recognition [34]. For feature extraction
processing, speech signals are analyzed frame-by-frame
(framing process) by using a window function [35], [36],
[37], such as Hamming, Hanning, Kaiser, Blackman, and
Gaussian window functions. Each analyzed frame is seg-
mented into overlapping segments (such as a 15–25 ms
window length with a 10–15 ms overlap). The windowing
process is performed to smoothen the power spectrum, for
example, the function shapes of Hamming and Hanning
windows and their responses are shown in Figures 3(a)

FIGURE 3. Hamming and Hanning window functions and their
frequency-domain responses. (a) Function shape for Hamming and
Hanning windows, (b) Windows’ frequency-domain responses.

and 3(b), respectively. This study uses the Hamming window,
which can enhance the speech signal continuities at the
beginning and ending of a frame [37] and enable the retention
of characteristic frequencies. Subsequently, each analysis
window is subjected to fast Fourier transform (FFT) operation
to obtain a power spectrum that converts each framing signal
from the time domain to the frequency domain, as expressed
in Eq. (2) [11], [20], [26], [35], [36]:

Xs [k] = FFT (x ′
f ), (2)

where xf ’ denotes the interesting content from speech signals
in the sth timing frame, Xf [k] denotes the power spectrum
after FFT operation, k = 1, 2, 3, . . . , Nk ; and Nk denotes the
number of output frequency parameters. Then, multiplication
operations are performed using a triangular-shaped bandpass
filter (TBF) with a Mel-scale distribution, as expressed in
Eqs. (3) and (4) [1], [11], [12], [26], [35], [36]:

Y [m] = log

 fm+1∑
k=fm−1

|Xs[k]|2Bm[k]

 , (3)

Bm [k] =


0, for k < fm−1andk > fm+1
k − fm−1

fm − fm−1
, for fm−1 ≤ k ≤ fm

fm+1 − k
fm+1 − fm

, for fm ≤ k ≤ fm+1

(4)
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FIGURE 4. Mel spectrogram with digital filtering and MFCC processes for American English (AE), Italian (IT), and Spanish (SP) languages in female
and male subjects, respectively.

where Y [m] is the log-value parameter that is obtained by
mapping the power spectrum to theMel scale; Bm[k] is a TBF
function, whose frequency is linearly distributed below 1 kHz
and increases logarithmically above 1 kHz.

The Mel frequency spectrum is obtained by applying the
DCT to Y[m], as follows [11], [20], [34], [35], and [36]:

Cx [n] =
1
M

M∑
m=1

Y [m] cos(
πn(m− 0.5)

M
), (5)

m = 2595 log10(1 +
f

700
) (6)

f = 700(10m/2595
− 1) (7)

whereM is the number of sampling points, which is generally
half or one-third of Nn; f is the speech-signal frequency;
and m is the Mel frequency. Typically, the frequency
ranges of the speech signals of female and male adults
are 85–180 Hz and 165–255 Hz, respectively. After DCT
operation, the MFCC-based parameters are obtained when
n ≥ 2 and are used to exclude direct-current (DC) and
low-frequency components. Twelve parameters (n = 2–14)
related to the amplitude of the frequency provide enough
obvious feature parameters for speech recognition tasks. The
advantage of DCT operation can directly operate on real-part
components, thereby reducing the computational complexity
for frequency-domain transformation.

For example, after MFCC processes, the visualization
feature patterns can be extracted from AE, IT, and SP speech
signals in female and male speakers, as seen in Figure 4.
To remove DC components (n = 1), 2D feature patterns
can be produced using 12 frames with 12 feature parameters.

Each visualization pattern is a 12 × 12 image in the colorful
mode. In this format, a visualization pattern displays the
differences in visual patterns across different genders and
dialect-regional languages (as seen in Figure 4). Therefore,
the MFCC-based extractor can be used to distinguish the
differences in incoming speech signals for gender and region
recognition.

C. CASCADED CONVOLUTIONAL NEURAL NETWORK
(CNN)
A 1D CNN model can be trained as a speech classifier that
combines automatic feature extraction, feature enhancement,
and classification or pattern recognition [1], [12], [13], [14],
[30] (as seen the multilayer structure in Figure 5). The 1D
CNN has a multilayer network structure; at the convolutional
operation layer, 1D convolutional operations are performed
using different convolutional kernels windows with different
weights for each layer. Differently weighted combinations of
convolutional kernels can be used to strengthen and extract
features that can increase the depth, width, dimensionality,
and nonlinearity of feature patterns, thereby increasing the
complexity level of feature patterns and enhancing the
classifier’s ability to recognize complex feature patterns.
At the pooling operation layer, multi-Max-pooling processes
are performed to select key feature parameters, reduce the
number of feature parameters to one-fourth of the original
quantity, and retain the distinctive features of incoming
patterns. Thus, at the classification layer, dense networks
are usually trained using the back-propagation algorithm to
distinguish different feature patterns through the MFCC-
based extractor (designed by Python Library).
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FIGURE 5. Structure of the proposed 1D-CNN classifier (two convolutional-pooling layers, one flattening layer, and two dense layers).

The present study uses the high-level API Keras devel-
opment platform (an easy-to use free and open-source
Python library available on Google’s Cloud Services) to
construct and train the DL-based classifier models (as seen
the design human–machine interface in Figure 6). The 1D
CNN is designed as an ASR classifier for dialect-sentence
classification. The proposed classifier has multiple cascade
layers: two convolutional layers (1 × 169 × 32 and1 ×

84 × 64), two Max-pooling layers (1 × 84 × 32 and 1 ×

42 × 64), a flattening process layer (1 × 2,688), and a fully
connected layer. The fully connected layer (classification
layer) comprises an input layer (2,688 nodes), two dense
layers (128 and 32 nodes), and an output layer (2 nodes
for gender recognition and 3 nodes for region recognition).
The 2D CNN is also designed as a classifier for gender and
region recognition; it consists of four convolutional layers
(13 × 13 × 16, 6 × 6 × 16, and 6 × 6 × 32), a maximum
pooling layer (6 × 6 × 16 and 3 × 3 × 32), a flattening
process layer (1 × 288), and a fully connected layer (as seen
in Figure 7). The GeLU-type and Softmax- type activation
functions [30] are used in the hidden and output layers,
respectively, and the implemented training scheme uses the
categorical cross-entropy loss function [30] to evaluate the
classifier performance for multiclass classification.

In this study, two dense layers are set (as seen in Figure 5),
and the ADAM algorithm [28], [30] is used to adjust the
network’s bias and connecting weighted parameters. After
iteration computations are completed, the values of loss
function reach the predetermined convergence conditions,
or the iteration computations reach the maximum iteration
number, the training of the classifier is terminated. In the
testing stage, the classifier outputs confusionmatrices. On the

FIGURE 6. The 1D CNN based classifier design for gender and region
recognition.

basis of the actual and predicted classes, four index values
are obtained: true positives (TPs), true negatives (TNs), false
positives (FPs), and false negatives (FNs). On the basis of
these four indices and through k-fold cross- validation, the
feasibility of the classifier for gender and region recognition
is verified by assessing its precision (%), recall (%), F1 score,
and accuracy (%) [12], [30].
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FIGURE 7. The 2D CNN based classifier design for gender and region
recognition.

D. SPEECH CORPUS DESCRIPTION
Various child and adult speech databases containing AE and
British English (BE) speech content (acquired from various
media such as movies, news broadcasts, and audiobooks)
can be used to train ASR models to identify child, female,
and male speakers. These databases include the child
speech datasets of Carnegie Mellon University (CMU)-KIDS
(24 boys and 52 girls) and PF-STAR corpora (158 children
aged 4–14 years) [38], [39] and the adult speech datasets of
Librispeech (1,000 h), LibriLight (60,000 h), and LJSpeech
(24 h) [16], [38], [40]. These two sets of corpora differ
inherently in terms of child and adult speech signals, such
as high fundamental frequencies (232.17 ± 2.03 Hz for
male individuals, 234.07± 1.48 Hz for female individuals)
and short vocal tract lengths [12], [16]. Through pretraining
and inference processes, we can use these publicly available
custom datasets to improve automatic annotations for the
identification of children and adult speech in ASR and text-
to-speech (TTS) research [41], [42]. In the present study,
we verify the proposed speech classifier using the APCSD
corpus, which comprises the TIMIT [2], Hillenbrand [12],
[13], [43], CLDPS [31], and SLS [32] databases. Specifically,
the TIMIT and Hillenbrand databases are used for gender
recognition, and the TIMIT, CLDPS, and SLS corpora are
used to identify dialect-sentence speech signals for regional
dialect recognition.

For example, the TIMIT speech corpus, jointly collated
by the Texas Instruments (TI), Massachusetts Institute
of Technology (MIT), and Stanford Research Institute
International [2], [44], contains 16-bit and 16-kHz speech

signals produced by 630 speakers (438 male and 192 female
individuals) and encompassing eight major dialects of AE
for ASR, gender, and region classification. Each enrolled
participant read ten dialect sentences, such as ‘‘She had
your dark suit in greasy wash water all year’’ (as seen
in Figure 2) or ‘‘Don’t ask me to carry an oily rag like
that’’. Thus, the TIMIT speech corpus contains 6,300 dialect
sentences for training and validating ASR classifiers. The
Hillenbrand corpus [12], [13] comprises AE vowel (AEV)
sounds collected from 45 adult men, 48 adult women, and
46 children (27 boys and 19 girls). These AEV sounds
can be categorized into 12 classes, which are used to
distinguish between the speech signals of speakers from
different genders and age groups. The CLIPS corpus contains
100 h of diverse spoken IT content [31], including dialogs,
read speeches, television programs, telephone conversations,
and special corpora, collected from 15 cities in Italy. The IT
language is characterized by both linguistic and demographic
diversity. The speech corpus (8 bit and 8 kHz, A-law
Coding) was collected from 100 IT speakers (30 female
and 70 male individuals) aged between 23 and 50 years.
The SLS is a speech corpus database for autodidacts to
learn basic SP phrases. It contains more than 70 short
phrases [32], [34], including conversations related to the
following scenarios: dining and food, shopping, getting
around, making reservations at high-end hotels, and making
plans for a summer beach holiday.

III. EXPERIMENTAL RESULTS
The present study used the TIMIT, Hillenbrand, CLDPS, and
SLS speech corpora to train and test the ASR classifiers
for gender and region recognition with respect to AE, IT,
and SP. We used a multicore personal computer (Intel
Q370, Intel Core i7 8700, DDR4 2400 MHz 8G∗3) as the
base development platform for implementing the proposed
classifier (as seen in Figure 5). The TensorFlow Inception
V3 platform (Keras) was used to establish various classifier
models with a graphics processing unit (GPU) (NVIDIA
GeForce RTX 2080 Ti, 1755 MHz, 11 GB GDDR6), thereby
reducing the execution time and accelerating speech signal
recognition. Hence, we applied the 12 AEV classes and used
the speech corpora to test and validate gender and regional-
dialect recognition; subsequently, precision (%), recall (%),
F1 score, and accuracy (%) [12], [30] were used to quantify
the proposed classifier performance, and the experimental
results are as follows.

A. GENDER IDENTIFICATION WITH TIMIT AND
HILLENBRAND SPEECH CORPUSES
We used the TIMIT and Hillenbrand speech corpora to
train the proposed classifier; the training and testing datasets
comprised 1,668 AEV sounds [12], [13] and 6,300 AE dialect
sentences [2], respectively. In speech signal preprocessing,
the Butterworth filter was designed as a band-pass filter by
using MATLAB syntax ‘‘butter (•),’’ maintaining a reason-
able balance between attenuation and phase response [45].
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FIGURE 8. Vowel speech signal and feature patterns. (a) Speech signal for the vowel ‘‘eh’’ in time domain, and (b)–(d) Mel spectrogram of (b) adult
male, (c) adult female, and (d) children.

FIGURE 9. Training and validation history curves for cascaded CNN-based classifier training with TIMIT datasets. (a) Accuracy versus
training epoch number for training classifier, (b) Loss function values versus training epoch number for validating classifier.

The MFCC-based extractor was used to extract the feature
patterns of vowel sounds, as depicted in theMel spectrograms
for female adults, male adults, and children (as seen the vowel
speech signal and feature patterns in Figures 8(a)–8(d)). For
each fold cross- validation, 50% of these datasets were
randomly used to train the classifier, and the remaining 50%
were used for test the classifier; this is indicated by the
training history curves and converging curves for training the
proposed 1D classifier, which was subjected to 100 epochs
of iteration computations (as seen in Figures 9(a) and 9(b),
which depict ‘‘accuracy vs. number of training epochs’’
and ‘‘loss function values vs. number of training epochs,’’
respectively). Average precision (%), average recall (%), and
average F1 scores were estimated to assess the experimental
results (as seen in Table 1) pertaining to the AEV sounds
identified across different genders and age groups within
vowel speeches; these values were estimated using the four
indices, TP, TN, FP, and FN. Notably, the average values
were greater than 90% for identified TPs (e.g., 98.8% for
male adults, 93.8% for female adults, and 94.2% for children
in terms of average F1 scores), and the overall average
accuracy (%) of 95.6% was greater than 90%. That is, the
experimental results indicate the feasibility of the proposed
ASR model.

In addition, the TIMIT speech corpora [2] were used to
train the proposed 1D classifier, including its signal prepro-
cessing, feature extraction, interesting content detection, and
gender identification, and the same classifier structure was
implemented (as seen in Figure 5). After Mel spectrogram
extraction was performed, the 50 × 50 feature patterns
of eight dialect regions for the same sentence (‘‘She had
your dark suit in greasy wash water all year.’’), as spoken
by female and male adults, were obtained (as seen Mel
spectrograms in Figure 10). For pattern recognition, each
feature pattern was resized from 50 × 50 to 13 × 13
(1 × 169) and then fed into the 1D CNN. In the present
study, the data contributed by the enrolled participants to
the TIMIT speech corpora were subdivided into training and
testing datasets, with approximately 70%–80% being used
for training and the remaining 20%–30% being used for
testing. Specifically, we randomly selected 4,620 sentences
(3,260 and 1,360 sentences spoken by male and female
individuals, respectively) for the training datasets and 1,680
sentences (1,120 and 560 sentences spoken by male and
female individuals, respectively) for the testing datasets,
which were used to train and validate the proposed classifier.
The criteria for gender identification during AE dialect-
sentence classification were the estimated results for average
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FIGURE 10. The 50 × 50 Mel spectrograms of 8 major regions for Female and Male subjects (obtained from TIMIT Speech Corpuses) with the sentence
‘‘She had your dark suit in greasy wash water all year.’’

precision (%), average recall (%), and average F1 score (as
seen in Table 1) For example, the average F1 score was 98.0%
for male adults and 96.0% for female adults, with an average
accuracy of 95.6% (>95.0%) for distinguishing genders in
AE dialect sentences.

B. DIALECT-REGION RECOGNITION WITH TIMIT, CLDPS,
AND SLS SPEECH CORPUSES
The CLIPS speech corpus contains approximately 100 h of
diverse spoken IT audio files [31], [46], including dialogues,
read speeches, radio and television programs, telephone con-
versations, and special corpora, all of which were collected
from 15 cities in Italy. The content includes map tasks, read
sentences, broadcasts, talk shows, and commercials. This
speech corpus (8 bit and 8 kHz, A-law Coding) was collected
from 100 IT speakers (30 female and 70 male individuals)
aged between 23 and 50 years. The SLS speech corpus [32]
is a database for autodidacts for learning basic SP phrases;
it contains more than 70 short phrases, with conversations
related to situations such as dining and food, shopping,
getting around, making reservations at luxurious hotels, and
making plans for a summer beach holiday. We employed
three databases (TIMIT, CLIPS, and SLS speech corpora)
for dialect-speech classification involving gender and region
recognition. We randomly selected 144 AE (72 female
individuals [code: 0]; 72 male individuals [code: 1]), 144 IT
(72 female and 72 male individuals), and 36 SP (24 female
and 12 male individuals) sentences for training the gender
classifier; 96 AE (48 female and 48 male individuals), 96 IT
(48 female and 48 male individuals), and 24 SP (12 female
and 12 male individuals) sentences were used to validate
the classifier. With 200 iteration computations, the training
history curves and converging curves for training and vali-
dating the 1D CNN classifier are presented in Figures 11(a)
and 11(b), respectively (Figures 11(a), ‘‘accuracy vs. number

of training epochs’’; Figures 11(b), ‘‘loss values vs. number
of training epochs’’). The experimental results for gender
recognition based on the 3 speech corpora are presented in
Table 1. For example, the average F1 scores were 90.4% for
male adults and 91.1% for female adults, and the average
accuracy was 90.7%. For region recognition, we randomly
used 144 AE (code: 0), 144 IT (code: 1), and 36 SP
(code: 2) sentences to train the region classifier with the
1D CNN model and 300 iteration computations (as seen the
training history curves and converging curves in Figures 11(c)
and 11(d), respectively). We used 96 AE, 96 IT, and 24 SP
sentences to validate the classifier; the experimental results
are presented in Table 1. Therefore, for the TIMIT, CLDPS,
and SLS speech corpora, the average F1 score and accuracy
were more than 90% (98.5% for AE, 98.4% for IT, and
100.0% for SP), and the average accuracy was 99.1%; these
results were used to quantify the classifier’s performances.

The 2D CNN model (as seen in Figure 7) was also used
to train an ASR classifier for identifying AE, IT, and SP.
We randomly selected 120 AE (56 female and 64 male
individuals), 120 IT (64 females and 56 male individuals),
and 120 SP (60 female and 60 male individuals) sentences
for training the gender and region classifier; 80 AE (38
female and 42 male individuals), 80 IT (42 female and
38 male individuals), and 80 SP (40 female and 40 male
individuals) sentenceswere used to validate the classifier. The
experimental results for region recognition are presented in
Table 1. The average F1 score was 87.8% for male individuals
and 85.1% for female individuals, and the overall average
accuracy was 86.6%. Among the languages, the average
F1 score was 98.7% for AE, 97.9% for IT, and 100.0%
for SP, and the overall average accuracy was 98.1%. These
experimental results highlight the promising performance of
the 1D CNN and its superiority over the 2D CNN model for
gender and region recognition.
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TABLE 1. The proposed classifier for gender and region recognition in different speech corpuses (databases) and purposes.

FIGURE 11. The training history curves and converging curves for training and validating 1D CNN classifier with TIMIT, CLDPS, and SLS
speech corpus. (a) and (b) The training history curves and converging curves for gender identification; (c) and (d) The training history
curves and converging curves for region identification.
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TABLE 2. Comparisons of DL-based classifiers for ASR in gender and region recognition with different speech corpuses, methods, and purposes.

C. COMPARISON AND DISCUSSION
Comparisons presented in Table 2 indicate that differ-
ent feature extraction methods and AI-based classifiers
have been used in ASR applications [1], [12], [13],
[18], [20], [21]. For gender and regional dialect iden-
tification, previous studies [1], [13], [18], [20] have
proposed DL- and ML-based methods, including the

‘‘MFCC+SVM [20]’’, ‘‘YAAPT/YIN [12], [13]+FCN /
Novel PD-based HDM [18]’’, and ‘‘MFCC+linear predictive
coding (LPC)+1D-CNN [1]’’. These methods have been
used to train various models of gender classifiers using the
TIMIT [2], Hillenbrand [12], [13], RAVDESS, and BGC [1],
[21] speech corpora. For example, multiple filtering methods
andmultilayer 1DCNNwere combined [1] to perform gender

102972 VOLUME 12, 2024



H.-Y. Lai et al.: Mel-Scale Frequency Extraction and Classification of Dialect-Speech Signals

and region detection, and the experimental results were as
follows: recall = 0.93, precision = 0.94, and F1 = 0.93 for
male individuals; recall = 0.93, precision = 0.92, and F1 =

0.93 for female individuals; recall = 0.95, precision = 0.93,
and F1= 0.95 for AE; recall= 0.99, precision= 0.99, and F1
= 0.99 for North America (NA); and recall = 0.90, precision
= 0.94, and F1 = 0.92 for BGC. Unwanted sound noise
and distortion were removed using a high-pass filter with a
cut-off frequency threshold near the audible range of speech
signals [1]. TheMFCC and LPCmethods were used to extract
feature datasets for training a 1D CNN classifier (1,433 audio
files used for training), which was combined with the 3-
layer feature extraction method for detecting gender-based
and regional differences in dialect-speech signals (615 audio
files) from the TIMIT (16 male and 16 female individuals)
[2], RAVDESS (NA; 12 male and 12 female individuals), and
BGC (3 male and 3 female individuals) speech corpora [21].
In the present study, data on fundamental frequency,

spectral entropy, spectral flatness, and mode frequency were
used as feature datasets. These frequency features were
preprocessed before training of the multilayer 1D-CNN
classifier. Because of the different characteristics of human
speech from different geographical regions, a study [1]
extracted a sufficient number of features by using three
layers (frequency features+MFCC+LPC) during feature
extraction, and a 1D-CNN with multiple convolution layers
was used (filter sizes: 64, 128, 512, and 128; kernel
sizes: 2 and 3). In addition, multiconvolution layers, batch
normalization, Max-pooling, and dropout layers (10% – 30%
rate) were used in the study to mitigate overfitting problems.
This model employed the ADAM optimizer and the mean-
squared-error (MSE) loss function to establish a classifier
for both gender- and region-based classification of human
speech. However, this multi- output based 1D CNN had
a complex structure and an excessive number of feature
datasets, which necessitated more CPU time for training its
ASR classifier.

A study [16] employed the WAV2VEC2 model, compris-
ing a feature encoder, context network, and quantization
module, to extract representations from raw speech signals
in an SSL scheme for child and adult ASR. These representa-
tions were used to train numerous unlabeled speech datasets
in a pretraining step, and notable amounts of unlabeled child
speech datasets were obtained by finetuning labeled datasets
with connectionist temporal classification (CTC) during the
second training step of the study. For child [16], [39], [40],
[47] and adult [16], [38], [40] speech datasets (custom
datasets), the experimental results for child speech recogni-
tion (CSR) were as follows: word error rate (WER) = 7.42%
for MyST (My Science Tutor), 2.91% for PF-STAR, and
12.77% for CMU_KIDS. However, the WAV2VEC2 model
can only separate child speech signals from adult speech
signals. Therefore, in the present study, the proposed mul-
tilayer classifier was combined with the signal preprocessing
(digital filtering process), an MFCC extractor, and 1D-CNN/
2D-CNN models; the classifier could distinguish speech

signals by gender, age group, and regional dialect for the
AE, IT, and SP languages. Compared with conventional DL-
based classifiers, the established small-scale training models
could reduce the number of network layers (two cascaded
convolutional–pooling layers) and the computational load
in pattern recognition tasks. In addition, the dimensionality
of the feature patterns could also be effectively reduced,
thus lowering the large number of training datasets used to
mitigate overfitting during training. For native AE (AE and
BE) and non-native AE (IT and SP) dialect-speech signals,
the EPD method could easily detect the obvious signal
activities with filtering and segmentation; subsequently, the
MFCC method extracted the distinguishable feature patterns
to separate the native and non-native AE individuals by their
gender and country. In feature extraction, the DCT operation
enabled the extraction of the real part of speech signals
while discarding the imaginary part, which reduced the
computational load in feature extraction tasks. The proposed
classifier performed well and promisingly for its intended
purpose.

IV. CONCLUSION
This study developed a combined MFCC-based fea-
ture extractor and CNN-based classifier for classify-
ing dialect-speech signals by gender and region. The
MFCC extractor extracted key feature parameters from
dialect-speech signals and transformed them into 1D or
2D visual patterns in the frequency domain; subsequently,
the 1D- or 2D-CNN-based classifier could identify dialect-
sentence features. Time-domain speech signals were pre-
processed using the Butterworth filter and EPD algorithm
to detect signal activities for obtaining interesting content
from raw speech sentences. The Mel frequency reflected
the ability of the human ear to perceive various frequency
changes. Thus,MFCC features with 1D or 2D feature patterns
in visualization representations were used to enhance the
speech recognition accuracy of the proposed classifiers.
Several speech corpora (TIMIT, Hillenbrand, CLDPS, and
SLS databases) were used to train, test, and validate the
proposed 1D-CNN and 2D-CNN classifiers for effectively
distinguishing speech signals by gender, age group, and
regional dialect. The developed classifiers achieved favorable
precision (%), recall (%), and F1 score values of >90% for
gender and regional dialect recognition. The ASR classifiers
developed in the present study can be used in an HMIS to
accurately identify speech-associated characteristics, such as
the speaker’s gender, age group, and regional dialect. Sub-
sequently, the HMIS can output correct information to users
to continue human–computer interactions and conversations
through NLG and NLT functions. In the future, the developed
classifiers can be used in daily applications, such as language
learning, smart-home activities, healthcare services, hearing
impairment-related assistance, smart healthcare services,
smart assistants, and smart transportation. In addition, for
applications involving high linguistic diversity, corpuses on
other languages, such as Chinese, Japanese [48], Arabic [49],
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BGC [1], [21], and Uzbek [19], can also be used to establish
a multilingual speech classifier in gender and region (dialect
and accents) recognition, which could mitigate identification
errors and improve the linguistic diversity of HMIS in global
applications.
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ABBREVIATIONS
AE American English.
IT Italian.
SP Spanish.
BE British English.
AEV American English Vowel.
HMIS Human-Machine Interaction System.
ASR Automatic Speech Recognition.
CNN Convolutional Neural Network.
1D CNN One-Dimensional CNN.
2D CNN Two-Dimensional CNN.
MFCC Mel-Frequency Cepstral Coefficients.
APCSD Acoustic-Phonetic Continuous Speech

Database.
NL Natural Language.
TIMIT Texas Instruments / Massachusetts Insti-

tute of Technology.
RCM Reactive Communication Mode.
ICM Interactive Communication Mode.
NLG Natural Language Generation.
IoV Internet of Vehicles.
NLU NL Understanding.
NLT NL Translation.
DL Deep Learning (.
ML Machine Learning.
MT Machine Translation.
AI Artificial Intelligence.
RNN Recurrent Neural Network.
EPD Endpoint Detection.
SAD Signal Activity Detection.
Max-Pooling Maximum-Pooling.
GeLU Gaussian Error Linear Unit.
ADAM Adaptive Moment Estimation.
CLDPS Corpora e Lessici dell’ Italiano Parlato e

Scritto.
SLS Sound-board-Learn Spanish.
DCT Discrete Cosine Transform.
HAS Human Auditory System.
FFT Fast Fourier Transform.
CCE Categorical Cross-Entropy.
CMU-KIDS Carnegie Mellon University-KIDS.
TTS Text-to-Speech.
GPU Graphics Processing Unit.
YAAPT Yet Another Algorithm for Pitch

Tracking.

SSL Self-Supervised Learning.
SVM Support Vector Machine.
FCN Fully-Convolutional Network.
DNN-HMM Deep Neural Network with the Hidden

Markov Model.
LPC Linear Predictive Coding.
RAVDESS Ryerson Audio- Visual Database of

Emotional Speech and Song.
BGC Bangladesh.
NA North America.

CTC Connectionist Temporal Classification.
CSR Child Speech Recognition.
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