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ABSTRACT The urbanisation of the last century has created a significant demand for urban areas to
deliver public services that are efficient, sustainable, and adaptable. This demand is further amplified
by the anticipated impacts of climate change and the complexities introduced by rapidly expanding
urban populations. In this scenario, smart city initiatives have emerged as a pivotal strategy to address
these challenges, leveraging innovative technologies and paradigms such as Internet of Things, Artificial
Intelligence, and Data Science to improve the quality of urban life in a more sustainable way. Recently,
research efforts in these domains have focused on creating systems that can adapt and respond to changing
conditions, enabling greater adaptivity and responsiveness to the needs of urban landscapes. Therefore, this
article provides a comprehensive survey of adaptive urban services within a smart city context. Through
analyses of recent literature, we investigate the technological foundations that enable the adaptivity of urban
services and explore their applications in various urban scenarios, including energy, mobility, emergency
management, public safety, and waste management. This article also highlights the benefits of adopting
adaptive urban services, such as improved traffic management, resilient emergency management, and
enhanced citizen engagement, bringing an important contribution to this broad research area. Finally,
we provide a discussion on current technology enablers and challenges and present an overview for future
research directions on adaptive urban systems at the forefront of transforming cities into more intelligent
ecosystems.

INDEX TERMS Smart cities, Internet of Things, artificial intelligence, data science, adaptivity.

I. INTRODUCTION

The concept of smart cities has rapidly evolved from a
futuristic vision to a central strategy for urban develop-
ment. By leveraging multiple technologies, these disruptive
cities aim to enhance the quality of life, operational
efficiency, and competitiveness while meeting the economic,
social, and environmental needs of present and future
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generations [1], [2]. At the core of this transformation
are smart urban services — technology-enabled solutions
designed to manage and improve basic urban services and
infrastructure [3]. Although promising, the variability of such
smart services pushes us to better comprehend their main
advantages and drawbacks when pursuing more sustainable
and efficient urban spaces.

In recent years, the development of new technological
resources has been crucial in the evolution of smart cities,
transforming urban areas into more dependable, efficient,

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

102826

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024


https://orcid.org/0000-0002-4540-512X
https://orcid.org/0000-0003-3988-8476
https://orcid.org/0000-0002-6386-9753
https://orcid.org/0000-0003-3115-0901
https://orcid.org/0000-0002-2418-4460

J. C. N. Bittencourt et al.: Survey on Adaptive Smart Urban Systems

IEEE Access

and intelligent ecosystems [4], [5]. Cornerstone technological
paradigms such as the Internet of Things (IoT), Artificial
Intelligence (Al), Data Science, Big Data analytics, and cloud
and edge computing underpin a current development trend
toward smart urban services [6]. Overall, these technologies
equip cities with the means to monitor and manage urban ser-
vices more effectively, anticipate future needs, and respond
proactively to eventual failures and inconsistencies.

As urban populations grow, conventional ‘“‘static’ services
are becoming increasingly restricted, even when smart city
solutions are considered. Therefore, there is a need for
adaptive solutions that can meet the changing needs of urban
environments, with “adaptive” referring to the ability to
dynamically adjust to new temporal, spatial, and/or environ-
mental urban settings. Since dynamic systems improve the
efficiency of urban services by adjusting operations based on
real-time data [7], they may lead to more efficient resource
utilisation, reduced operational costs, and improved service
delivery. However, the implementation of adaptive urban
systems is not straightforward since they require continuous
adaptation to changes and disruptions in urban scenarios,
usually respecting short deadlines and within well-defined
hardware and network constraints [8].

Smart urban systems may collect and analyse data from
IoT sensors and devices throughout an urban landscape [9].
The ability to process these data in real-time allows for the
identification of problems and opportunities, enabling rapid
responses to dynamic urban conditions. Beyond this general
approach, adaptive systems will typically leverage vast
amounts of data to optimise city operations [8], regardless of
their sources. As a result, such systems can provide tailored
solutions based on data-driven decision-making processes,
focusing on seamless configuration and the ability to learn
and evolve in response to new contexts. In order to ensure
that, the following characteristics are usually sought in
adaptive smart urban systems:

o Self-configuration and self-healing: Adaptive systems
are expected to be designed to automatically configure
themselves based on predefined rules and learned
patterns, reducing the need for manual intervention.

o Flexibility: These urban systems must be designed
to allow for easy integration of new technologies
and sensing capabilities as the city evolves or new
requirements emerge.

o Interoperability: The ability to seamlessly integrate
and operate across multiple platforms and devices is
a distinguishing feature of adaptive urban systems,
enabling effective communication and collaboration
with other services.

« Predictive analytics: By using advanced analytics and
machine learning algorithms, adaptive urban systems
can proactively predict future trends and potential
problems based on historical and current data.

o Context-aware: Through a localised understanding of
the environment, these systems can customise services
to meet specific requirements.
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It should be noted that not every adaptive system must fulfil
all of these characteristics, but this list is crucial to under-
standing how they differ from traditional solutions. Actually,
these elements have been present in recent proposals in
multiple ways, giving important clues about the current sce-
nario in this area. For example, adaptive traffic management
systems can reduce travel times and fuel consumption by
learning and adapting to transit flow [10]. Similarly, adaptive
lighting systems decrease energy usage while improving
public safety [11]. Moreover, waste management services
can optimise garbage collection to conserve resources [12],
while adaptive mobility systems adjust to real-time demand to
improve efficiency and passenger satisfaction [13]. Actually,
these services are just a glimpse of the potential of adaptive
urban systems when promoting smart cities.

This article aims to review the application of new tech-
nologies and paradigms in enhancing the adaptivity of smart
urban services and to identify the benefits and challenges of
their implementation, highlighting the importance of adaptive
systems for the sustainable development of smart cities.
To the best of our knowledge, this article is the first compre-
hensive review that specifically focuses on exploring adaptive
applications within smart city services. In fact, recent survey
works have reviewed existing smart urban services, trying to
identify their evolution patterns, but adaptive urban services
have been transversal in their discussion. For example, the
authors of [14] mostly examined smart cities from a multi-
system perspective, while the work in [8] highlighted the
importance of understanding urbanisation trends and their
implications for sustainable urban development. Similarly,
the systematic review conducted in [15] addressed the
significance of active context-aware systems in developing
future smart city applications. As another prominent example,
authors of [16] covered spatiotemporal characteristics of
sensor data and the importance of interoperability of urban
information.

Furthermore, a study conducted in [17] examines the
challenges associated with the development of adaptive
systems for smart city applications, identifying applications
and adaptation aspects. Finally, the authors of [18] explore
the challenges of understanding how resilience spreads across
urban systems over time, emphasising the necessity for cities
to adjust to rapid changes. Nevertheless, unlike previous
survey works, this article distinguishes itself by cataloguing
and synthesising a wide range of recent studies and presenting
recent technological advances in implementing adaptive
systems in key urban service domains, including mobility,
energy, public safety, and waste management. Particularly,
we identify current and future challenges in the field that
have not been extensively discussed before, filling a crucial
research gap. Furthermore, the literature review introduces
a novel perspective on such urban systems by integrating
predictive analytics with context-aware technologies, thereby
contributing to a holistic approach to urban management.

In order to accomplish our expected goals in this survey,
the following three research questions were defined:
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« RQl — What are the key state-of-the-art adaptive
urban systems applications supported by smart cities’
infrastructures?

« RQ2 - How do different urban systems incorporate
adaptivity?

« RQ3 — Which technological innovations and infrastruc-
tural adaptations are essential for adaptive smart urban
systems development?

Therefore, the conducted literature review is intended to
extract, organise, and discuss fundamental characteristics
of adaptive urban services and supporting technologies,
enabling us to properly answer these questions. By carefully
evaluating the aforementioned research questions, this article
contributes to a detailed examination and synthesis of
adaptive technologies within smart urban services. The
conducted survey categorises and analyses key applications
in energy management, mobility, public safety, emergency
management, and solid waste management. It also identifies
the technological and infrastructural innovations which are
essential for developing adaptive smart urban systems.
Finally, this article also highlights the research gaps serving
as a starting point for future research efforts, suggesting
potential directions that could lead to significant advances in
the development and implementation of adaptive smart urban
services.

The remainder of the article is organised as follows.
Section II introduces the fundamental attributes of adaptive
urban services. Section III presents a survey of recent appli-
cations towards the identification of enabling technologies
within urban services, focusing on answering RQ1 and RQ2.
Section IV examines the technological foundation that leads
to these adaptive urban applications. The article concludes
by answering the RQ3 in Section V with a further discussion,
which summarises the open challenges and future research
directions.

Il. FUNDAMENTALS AND BACKGROUND

Smart cities are constantly evolving to integrate innova-
tive control, information, and communication technologies,
aiming to better manage urban resources when promoting
dependability and sustainability [19]. In this context, the
most promising future vision of the smart city concept
emerges from the fact that a city is a complex ‘“‘system of
systems”’ with numerous participants and actors operating
in an uncertain environment [14], [20]. Therefore, smart
urban systems should be treated as complex adaptive entities
that self-organise and evolve in multiple ways, continuously
gaining new services-oriented knowledge [21].

Aligned with the evolution of the smart city concept,
the development of adaptive smart urban systems involves
different formalisms and methodologies. It is then essential
to have a comprehensive understanding of the fundamental
concepts that underlie this emerging field of study. This
section examines such concepts, which were carefully
considered according to the performed literature review to
ensure that the findings were relevant and impactful. As such,
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we highlight the key attributes of adaptive urban services,
providing a framework for interpreting the development and
potential of these applications.

A. SMART URBAN SERVICES
The emergence of smart cities presents a new concept
of urban life in which the integration of technology and
urban services plays a central role in improving the quality
of life for citizens. Smart urban services are at the heart
of this transformation, harnessing advanced technologies
to create more efficient, sustainable, and liveable urban
environments [1], [22]. In fact, these services are not just
technological showcases but are expected to be deeply
integrated into the daily lives of urban residents, directly
contributing to their convenience, safety, and accessibility.
Urban services cover an extensive domain, including
healthcare and public safety, as well as the development
and management of transportation networks and energy
systems [11], [23], [24]. Additionally, the pursuit for sus-
tainability includes ecological preservation, the enrichment
of green spaces and proactive environmental protection
efforts [25]. Meanwhile, smart cities strengthen security
and safety by deploying intelligent surveillance systems and
robust emergency response frameworks [26], [27]. These
examples illustrate the multifaceted nature of urban services
in smart cities, emphasising their crucial role in shaping the
future of urban living and governance. By utilising these
diverse applications, smart cities can engage in evidence-
based planning, informed decision-making, and transparent
governance, setting new standards for urban development.
Smart services utilise data and connectivity to perform
some urban functionality, tackling some of the most signif-
icant challenges that urban areas face nowadays [28]. For
example, intelligent transportation systems optimise traffic
flow and public transport schedules [10], thus reducing
commute times and pollution levels. These services directly
benefit citizens by offering more sustainable travel options.
Smart energy [29] and waste management systems [30]
also contribute to sustainability efforts by efficiently dis-
tributing energy based on real-time demand and employing
sensor-equipped bins and data-driven collection routes.
Consequently, citizens benefit from uninterrupted access to
electricity and improved urban cleanliness and public health.
In recent years, the integration of new technologies such
as Machine Learning (ML) and Geographic Information
Systems (GIS), coupled with the proliferation of data col-
lected by electronic sensors and contributed by government
agencies, private sector initiatives and the academic research
community, has driven urban services into a new era of
responsiveness and contextual awareness [31]. This synergy
of technology and information is reshaping the landscape of
urban management and leading to an era of adaptive services,
in which cities respond to the needs of their residents,
dynamically adapting services to the complexities of urban
life. In doing so, these urban services are becoming equipped
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to anticipate and respond to city residents’ diverse and ever-
changing demands.

B. THE URBAN ADAPTIVE PARADIGM

Urban landscapes are similar to living organisms, constantly
evolving and adapting to meet the needs of their inhabitants.
This perpetual state of change, driven by demographic shifts,
technological advances, and environmental pressures, has
highlighted the need for a dynamic approach to urban
planning and management [8]. As discussed, urban services
can assist in tackling current urban challenges and preparing
for future changes, making cities more resilient, efficient,
and conducive to a higher quality of life [21]. But by
going beyond that and embracing the dynamic nature of the
urban environment, smart cities can become truly responsive
entities capable of evolving with their landscapes.

Adaptive urban services are essentially characterised by
their ability to respond and adapt to continuous change and
disruption within a smart city [8], encompassing concurrent
systems, resources, and citizens as well. This concept
should not be confused with dynamic systems, which focus
on understanding the dynamic problems of smart cities
and handling them within a System of Systems (SoS)
perspective [14]. The key difference lies in the fact that
adaptive systems not only understand the dynamic nature of
cities but also can actively adapt to them. In contrast, dynamic
systems may focus primarily on understanding the dynamics
without necessarily having the built-in ability to adjust their
operation.

In the context of adaptive systems, the term ‘““adaptivity’ is
used to describe the system’s ability to autonomously adjust
its operations in response to changing conditions without
human intervention [32]. An example of this is an adaptive
traffic management system, which is able to modify traffic
light sequences based on traffic flow data. Additionally,
the term “adaptability” is used to describe the capacity
of a system to be adjusted to meet specific needs. This
could be illustrated by a flood detection system that can
be adjusted according to weather forecasting [33]. These
principles inform the development of adaptive urban systems,
ensuring that they can respond to environmental changes and
citizens’ needs.

To better delineate our focus, this study examines the
questions of “when to adapt” [32], “what to adapt”,
and “according to what to adapt” [33], by providing a
comprehensive framework for understanding adaptivity and
adaptability within smart urban systems as follows:

« When to adapt: Adaptation should occur in response
to significant changes in the urban environment, such
as traffic congestion, energy demand fluctuations,
or critical events. These triggers are identified through
continuous monitoring and data analysis, enabling
adjustments to the system’s operation.

« What to adapt: The components of the system
that require adaptation include algorithms, configura-
tions, and operational parameters. For example, energy
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management systems can adjust power distribution
based on real-time consumption data.

o According to what to adapt: Adaptation decisions
are based on a range of contextual factors, including
environmental conditions, user behaviour, and system
performance metrics.

In general, the architecture of urban services is concep-
tualised as a multi-layered framework consisting of several
key components that work together to deliver efficient
services [1]. However, to ensure that urban services are
adaptable, scalable, and capable of evolving in response
to real-time data, that architecture must encapsulate the
essential elements that enable urban services to dynamically
adjust to the changing needs of the urban environment and
its inhabitants. After a detailed analysis of the literature,
we could design a reference architecture that combines
previous contributions, as depicted in Figure 1. This archi-
tecture integrates advanced technologies and data-driven
decision-making processes consisting of four stages: sensing,
storage, data management (processing and analytics), and
service management (actionable insights). Wrapping all
stages provides a continuous feedback mechanism that allows
for the constant refinement and evolution of urban services.

Concerning Figure 1, a typical process flow will start
with adaptive sensing. Sensor nodes are usually deployed
throughout a city to collect data streams on urban dynamics,
such as traffic flow, environmental parameters, or utility
usage. These sensors are designed to be flexible and adapt
their monitoring procedures to the current needs of the target
city. In fact, these sensor nodes exemplify the essence of
modularity and adaptability by serving as multifunctional
units that can be configured to meet the city’s shifting
demands [16]. The adaptivity of these nodes is further
underscored by their ability to receive updates, enabling
them to incorporate new algorithms or parameters without
necessitating physical intervention [34], [35]. This flexibility
ensures that the employed network of sensors remains agile
and responsive, aligning seamlessly with urban developments
and policy changes.

The data collected are then transmitted to a secure
data storage system for further processing. At this stage,
raw sensor data are aggregated and may undergo initial
filtering to remove noise and irrelevant information or data
cleaning to correct errors or fill gaps [36]. Additionally,
data reduction techniques are applied to distil the data
into a more manageable size while preserving its essential
characteristics, ensuring efficient and effective processing
in the next step [37]. This pre-processing is essential for
refining the data, setting the stage for sophisticated analytics
and the derivation of meaningful interpretations that will
inform smart city services. Adaptive systems may also
leverage spatial and temporal data to aid in providing
context-aware data analytics [38].

After being stored, the data are processed using various
computational techniques to transform them into meaningful
information. These processes include data analytics, pattern
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FIGURE 1. The end-to-end process for the paradigm of adaptive urban system.

recognition, and machine learning algorithms that interpret
the data. In fact, extracting valuable knowledge from
urban data is crucial for many real-world applications.
However, the diversity of application scenarios and data
types leads to different data analysis tasks and thus requires
different learning models [38]. For example, Convolutional
Neural Network (CNN) is designed to process image-
like data [39], while Recurrent Neural Network (RNN)
is typically used to process sequential data [40], [41].
Meanwhile, clustering techniques can be used to identify
standard distribution among events in different application
domains [42], [43], [44].

The anticipated result is the processing and analysis of
data to produce actionable insights. These insights inform
decision-making processes, such as adjusting traffic signal
timings [45], allocating city resources [29], or issuing public
alerts [46]. They are intended to be actionable, meaning they
can directly influence the operation of urban services. These
insights allow city officials to move beyond static, one-size-
fits-all solutions towards more flexible, data-driven strategies
that reflect the actual conditions and needs of the urban
environment. Additionally, these insights improve predictive
decision-making. By examining real-time and historical
data, city planners can forecast future trends and patterns,
such as predicting peak waste generation times [47] or
identifying potential crime risk hotspots [41]. This predictive
capability enables city managers to allocate resources,
schedule maintenance, and implement preventative measures
before issues escalate proactively.

Finally, the retrieved and processed insights are useful for
adjusting urban services through dynamic service orchestra-
tion. This procedure may involve modifying the intensity
or distribution of street lighting based on pedestrian traffic,
adjusting waste collection routes in response to fill-level
data from smart bins, and altering public transport schedules
to accommodate varying passenger numbers, among other
responsive services. This process aims to create an urban
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service ecosystem that dynamically adapts to the real-time
conditions and demands of a city, thereby improving overall
service delivery and sustainability. Therefore, in order to
achieve such adaptability, it is crucial to gain an understand-
ing of the supporting technologies and paradigms.

C. SUPPORTING TECHNOLOGIES AND PARADIGMS

As technology integration has redefined urban liveability,
the specific methodologies, frameworks, and innovations
behind these services are critical to transforming cities into
responsive, adaptive ecosystems. Smart services rely on a
technological backbone that spans the Internet of Things,
Artificial Intelligence, and Big Data analytics to the cloud and
edge computing [9]. The integration of these technologies has
been adopted in the literature, leading to the novel concept of
adaptive services that are not only reactive to current urban
demands but also predictive and adjustable. This section
presents a comprehensive overview of some of the most
impacting technological advances and driving mechanisms
that have empowered adaptive urban services.

1) ELECTRONIC SENSORS AND WIRELESS NETWORKS
The evolution of sensor network infrastructures marks a
transformative journey towards the realisation of smart cities.
Initially, sensor networks were primarily deployed for spe-
cific, isolated tasks, ranging from environmental monitoring
to basic urban operations [48]. These networks comprised
simple, often uni-functional sensors that collected data
passively. However, as the technological landscape advanced,
these rudimentary systems evolved into the intelligent
sensing ecosystems we see today [49]. This transformation
was driven by the integration of advanced computing capa-
bilities, real-time data analytics, and machine-to-machine
communications into sensor nodes, enabling them to not only
gather data but also interpret and act upon it autonomously.
Wireless Sensor Network (WSN) infrastructures represent
a complex mesh of interconnected devices that communicate
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over wireless networks, offering unprecedented levels of
control and automation across various domains of smart
cities [1]. In general, WSNs in urban systems harness
historical and real-time data to make the city more efficient,
sustainable, and reliable [2], [9]. This evolution from simple
sensor networks to intricate multi-purpose infrastructures
and IoT underscores a pivotal shift towards leveraging
digital intelligence to address the multifaceted challenges of
urbanisation.

The foundation of smart city operations consists of a
vast sensor infrastructure designed to monitor, collect and
analyse environmental and urban data in real-time [5].
These sensor units — commonly known as sensor nodes —
are equipped with essential monitor, communication, and
computation capabilities, thus serving as the “eyes and
ears” of a smart city by providing granular insights into its
environment. This complex infrastructure is pivotal for data
collection and comprises the initial data interpretation and
decision-making stages in urban settings [16]. The sensors’
capabilities also facilitate scalable and adaptable monitoring
networks that can adjust to the changing needs of the urban
environment as needed. For example, a sensor node can
monitor traffic flow by calculating the average vehicle speed
and density over intervals. If these measurements exceed
predefined thresholds, it indicates a potential congestion [50].
In an adaptive setting, the node can then immediately
adapt its operation to the current scenario by adjusting the
signal timing accordingly. This real-time, targeted insight is
essential for taking action in urban scenarios.

A sensor node must reliably and accurately monitor and
process urban elements. Therefore, to ensure the accuracy and
relevance of the collected data, sensors are placed as close as
possible to the target monitored area. Local processing can
include data filtering, aggregation, and preliminary analysis,
enabling sensor nodes to detect and respond to changes in
real-time [51]. In addition to data collection, sensor nodes can
incorporate communication capabilities that allow them to
transmit information to a centralised system or network. This
capability bridges the gap between local sensing and broader
IoT multi-layered ecosystems [52]. Such decentralised data
results in the need for advanced data analysis methods that
produces valuable information for decision-making.

2) MACHINE LEARNING AND DATA ANALYTICS
The evolution of machine learning has led to a paradigm shift
in urban systems, equipping them with the ability to learn
from and respond to complex and fluid urban environments.
Essentially, machine learning uses computational algorithms
to analyse large data sets, identify patterns, and make deci-
sions with minimal human intervention [53]. This capability
is crucial for adaptive urban systems that require continuous
evolution in response to changing urban patterns.

Machine learning applications are driven by the concept
of learning from experience, similar to the human ability to
gain expertise [54]. In the context of smart cities, this means
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using algorithms to predict various urban situations, optimise
resource use, and enhance the quality of life by learning
from historical and real-time urban data. The fundamental
principles of machine learning, such as supervised learning
for prediction, unsupervised learning for data segmentation,
and reinforcement learning for strategic decision-making,
form the foundation upon which adaptive urban systems are
built [55]. By integrating these principles, urban systems can
react to present conditions and anticipate future develop-
ments, ensuring that cities remain dependable.

The core machine learning techniques, such as regres-
sion, classification, and clustering, are the key enablers of
adaptive urban systems technologies. They usually operate
over the knowledge acquired through large data sets to
provide efficient decision-making. Regression models are
used to predict continuous outcomes, allowing urban systems
to forecast variables such as energy demand or traffic
patterns [56]. Classification algorithms are used to categorise
data into discrete groups, which can be useful in identifying
different types of urban activities or incidents [57]. Clustering
is an unsupervised learning technique that detects natural
groupings in data [58], being useful for segmenting data
from urban areas based on usage patterns or demographic
characteristics. All these techniques have an important role
in the defined scope of adaptive urban services.

Data analytics comes as another step to extracting valuable
insights from large urban data sets [31], allowing urban
systems to better understand patterns, trends, and causal
relationships. For example, techniques such as time-series
analysis can reveal how variables within public transport
demand change over time, enabling predictive adjustments
to schedule and routing [59]. Spatial analytics can be used
to identify geographic patterns in urban growth or service
needs, which can guide infrastructure development and
resource deployment [60]. Furthermore, by moving beyond
predictive models, prescriptive analytics enables city systems
to anticipate future scenarios and adjust their strategies
proactively. For example, if data analysis indicates an
imminent spike in utility demand, an adaptive urban system
can self-adjust to implement energy-saving measures [61]
or reroute transportation services to balance the load [62].
Therefore, by leveraging data analytics, urban systems
acquire a powerful resource to enhance adaptivity.

Ill. ADAPTIVE URBAN SYSTEMS IN SMART CITIES

The realm of adaptive urban systems uncovers innovative
solutions through the utilisation of sensors and machine
learning to address the complexities of modern urban life.
This section discusses how adaptivity has been applied across
various urban services to improve efficiency, resilience,
and sustainability, adopting a thorough survey methodology.
Each analysed service provides a distinct perspective on the
integration of technologies and infrastructure adaptations,
demonstrating the wide range of opportunities that adaptive
systems offer when pursuing smart cities.
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A. ADOPTED SURVEY METHODOLOGY

This article provides a comprehensive overview of recent
technological advances in the implementation of adaptive
systems within key urban service domains. Therefore,
it explores state-of-the-art technologies and their applica-
tions in enhancing urban services’ efficiency, sustainability,
and responsiveness to dynamic conditions. By doing so,
it addresses the critical need for cities to adapt to rapid
changes in urban environments and the growing citizens’
expectations.

The primary source of literature for this survey was the
Scopus indexing database because of its broad spectrum
of scientific and technical research articles and its highly
recognised relevance as a primary indexing database [63].
Following a collection of words and Boolean connectors to
access the most accurate information, the following descrip-
tors were considered: Dynamic System, Adaptive System,
Reactive System, Adaptable System, Adaptive System, with
“AND”, “OR” and “PRE\n”’. The literature search focused
on studies published between 2019 and 2024 to capture recent
developments in adaptive systems for smart cities, reflecting
the latest technological innovations and application trends.

The papers selected were published in peer-reviewed
journals or conference proceedings and addressed the
application of adaptive systems in urban services. Research
papers that included empirical data, case studies, or details
on the implementation of adaptive systems were selected.
Conversely, papers that did not provide sufficient detail on the
methodology, technologies or results and those that were not
directly related to adaptive urban systems were excluded. The
selected papers were then subjected to a review to assess their
relevance and quality. Finally, key information was extracted,
including the application objectives, employed technologies,
main adaptive characteristics, and which components to
adapt.

To systematically explore the vast domain of adaptive
smart city services, we categorised the literature into the
following areas:

o Energy Management: Studies focusing on technologies
and systems designed to optimise energy use within
urban environments.

e Mobility: Research on innovations to improve urban
transportation systems, including traffic management,
public transit, and pedestrian flow.

o Public Safety: Articles addressing the deployment of
adaptive systems for enhancing safety measures.

o Emergency Management: Studies focusing on efficient
context-aware monitoring, emergency response, and
disaster prevention.

o Solid Waste Management: Literature on applying smart
technologies to improve waste collection, recycling, and
management processes.

This categorisation facilitated a structured literature anal-
ysis, allowing the identification of enabling technologies,
applications, challenges, and opportunities within each
domain.
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Conducting such a survey presents significant challenges.
The extensive amount of research available across multiple
domains made it difficult to thoroughly cover all relevant
studies. Additionally, ensuring consistency and quality of
data across different applications was challenging due to
significant variations in methodologies and data reporting
standards. This diversity across studies also impacted the
unification of findings into a single coherent framework.
Furthermore, the application and impact of adaptive systems
vary considerably depending on the specific urban context,
which affects the generalisation of findings and applicable
recommendations. In light of these challenges, the method-
ology employed in this study focuses on understanding how
technology is enabling the development of adaptive urban
systems. This comprehensive examination offers valuable
insights for future research and practical implementations.

Overall, our survey methodology explores the nuances
of technological innovations, infrastructural adaptations and
their applications in smart cities, building on the thematic
exploration of recent advances in adaptive urban systems.
We discuss the incorporation of adaptivity in urban systems,
illustrating the methodologies and approaches employed to
ensure cities can respond dynamically to changing conditions
and demands. As a result, this study provides a holistic
understanding of the role and impact of technology in
promoting resilient and truly intelligent urban ecosystems.
Furthermore, this comprehensive literature review reveals
promising technological breakthroughs that will significantly
enhance the capabilities of adaptive systems.

B. SMART ENERGY MANAGEMENT

As city infrastructures grow and evolve, there is a pressing
need for energy-efficient solutions that can keep pace with
the changing demands of urban life. Within this scenario,
intelligent energy management systems are essential to cre-
ating sustainable cities. These systems manage and distribute
energy resources, reducing the environmental impact of urban
areas [64]. Nevertheless, in order to ensure sustainability, the
adoption of more adaptive systems is rather fundamental.
By anticipating and responding to energy demands and
potential disturbances, these systems can improve the overall
efficiency of the energy supply infrastructure.

Energy distribution has substantially evolved in recent
years, driven by the widespread adoption of different energy
sources. In order to highlight the potential of adaptive urban
systems, authors in [29] propose an optimisation model for
energy reserves in urban environments. The study focuses
on a forward-looking approach that anticipates and adapts
to the varying demands and supply conditions. Additionally,
by exploring effective policies and dynamic management
through data-driven approaches, cities can achieve more
resilient and citizen-aware energy services [64].

As cities strive to meet their sustainability goals, they
are turning to integrating and managing renewable energy
sources to ensure a reliable supply chain [65]. By taking
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advantage of deep reinforcement learning, the authors
of [61] leverage an edge and cloud infrastructure to actively
update the learning models and improve the efficiency of
multi-source energy distribution according to user demand.
Aiming to enforce the reliability of renewable energy sources,
[66] introduces a data-driven approach that optimises the
maintenance of solar photovoltaic systems. The framework
establishes a continuous feedback loop where real-time
fault detection triggers responses, ensuring efficient anomaly
maintenance and system updates. Furthermore, the work
in [67] proposed an adaptive system for predicting solar radi-
ation, enabling more accurate forecasts of energy production.
Driven by the development of electric vehicles, the
charging infrastructure has become crucial for incorporating
them into the energy matrix [68]. Due to varying demand
patterns and the natural dynamics of urban areas, this
emerging trend underlines the importance of systems that
can adapt to this changing scenario. In [69], authors
introduce a framework for the charging stations, ensuring
that the infrastructure can adapt to the varying demands
of connected vehicles. Progressing further into efficiency
and sustainability, [70] examines the strategic integration of
dynamic wireless charging systems within urban settings.
This approach facilitates on-demand energy distribution
through the power tracks, emphasising the role of adaptation
towards balancing energy demands. Moreover, the technical
nuances of optimising wireless charging systems are explored
in [71], highlighting the need for learning and adapting to
road power parameter variations for maximised efficiency.
Adaptive energy systems are also emphasised by intelli-
gent street lighting services, which aim to improve energy
efficiency and public safety. A large body of literature
has investigated the efficient management of urban lighting
systems, promoting the adoption of systems able to adjust
illumination based on environmental conditions and human
occupancy [11], [72], [73]. These studies demonstrate the
potential for significant energy savings, improved safety, and
scalability in urban settings. However, lightning management
systems might explore the potential of Al and machine
learning algorithms to achieve high efficiency. For example,
a fuzzy control mechanism is used in [74] to optimise
energy usage in streetlights, emphasising the integration of
adaptive algorithms to enhance smart lighting. Additionally,
the integration of sensors to enable more responsive solutions
is emphasised in [75]. That study utilises adjustable delay
sensing and adaptive control agents based on traffic condi-
tions to enhance the efficiency of the system as a whole.
Table 1 presents a summary of the adaptive systems
used in smart energy management and their associated
adaptation strategies. Furthermore, Figure 2 reveals that
context-awareness and predictive analysis are the most preva-
lent features in adaptive energy systems. These characteris-
tics facilitate adaptation and forecasting future conditions,
thereby optimising performance and efficiency. Moreover,
self-configuration allows autonomous system adjustments,
which is of significant importance in improving reliability
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FIGURE 2. Frequency of adaptivity characteristics in smart energy
management systems.

and collaborating towards the sustainability of energy distri-
bution. Finally, the analysis also demonstrates that interoper-
ability and self-healing, while crucial for ensuring seamless
integration and reliability, are still less frequently explored
in the recent literature. The overall applications’ perspective
highlights the emphasis on real-time data utilization and
autonomous decision-making to enhance the resilience and
efficiency of smart energy management services.

C. SMART MOBILITY

Adaptive smart mobility marks an innovative era in urban
transport services, characterised by rapid technological inno-
vation that fosters more dynamic, effective, and user-centric
services. These advancements span various applications,
including sophisticated traffic management and comprehen-
sive mobility solutions [76]. Through the strategic integration
of technology, these systems not only cater to the immediate
requirements of city residents but also possess the foresight
to adapt to emerging needs.

A significant part of this progress lies in the development of
Adaptive Traffic Signal Control (ATSC) systems, as they are
essential for optimising traffic flow and reducing congestion.
These systems employ several techniques to adjust signal
timing based on real-time traffic conditions. For example,
the authors in [77] use WSN to implement an adaptive
traffic light synchronisation algorithm in regions composed
of several consecutive junctions. This technique improved
traffic flow by reducing the start-stop effect. However, such
general solutions can easily lead to starvation in main lanes
during peak hours. This problem is addressed in [78] by
adjusting the traffic lights’ priorities according to the current
flow. Moreover, the work of [79] demonstrates the potential
of CNN for enhancing adaptive congestion controllers by
using visual information to adjust their timing parameters.

Real-time traffic data and machine learning optimisation
can also significantly reduce delays by adjusting signal
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TABLE 1. Adaptive systems in smart energy management.

Work Application Technologies

Characteristic

Adaptation strategy

[29] Energy reserve optimisation Data analytics

Predictive analysis
Context-aware

Adaptive forecast energy reserve dispatch and
balancing regulation.

[11] Adaptive street lighting control Wireless sensors integration

Edge computing

Interoperability
Context-aware

Regulate the street light intensity based on traffic
presence and integrate lighting poles to increase
their amplitude continuously.

[75] Remote street lighting control Wireless sensors integration

Cloud computing

Flexibility
Context-aware

Automatic regulation of lightning control delay
sensing based on environment light intensity.

[61] Scheduling energy distribution Wireless sensors integration
Cloud computing
Edge computing

Machine learning

Flexibility
Self-configuration
Predictive analysis

Dynamic energy distribution based on
consumption and user demand.

[66] Fault detection in energy
production

Sensor integration
Cloud computing
Data analytics

Flexibility
Self-healing
Predictive analysis

Adapting operation to changing environments,
while identifying and learning from anomalies
that indicate degradation.

[67] Forecast solar energy generation ~ Machine learning

Geographic Information System

Predictive analysis

Predict energy production in short-term periods
based on spatiotemporal geolocated data.

[70] Electric vehicles wireless
charging

Data analytics

Flexibility
Predictive analysis

Dynamic scheduling of electrical vehicles
wireless charging based on traffic information.

timings preemptively [80]. Such intelligent traffic control
systems are evaluated in [81], [82], and [83], leveraging a
combination of edge computing and reinforcement learning
to adjust signal timings to the actual traffic condition.
These ATSC systems demonstrate the potential for sig-
nificant improvements in urban traffic management by
self-configuring parameters according to the urban dynamics.
Similarly, the authors of [84] proposed a simulation-based
traffic signal control strategy to optimise traffic flow by
adjusting signals in response to real-time conditions. This
adaptive method demonstrated high efficiency in reducing
congestion and improving traffic.

Traffic light management is essential for developing effi-
cient mobility services in large cities. However, there are still
amultitude of concerns when it comes to traffic management.
The current scenario is boosted by the urgent need to achieve
sustainability goals. Hence, reducing congestion, improving
safety, and increasing efficiency in the traffic network has
gained more attention in the last years [85]. In this context,
adaptive systems have demonstrated their ability to leverage
traffic infrastructure to provide residents with context-aware
and highly efficient mobility systems. This potential is
illustrated in [86] through an adaptive model that leverages
data collected from connected vehicles to enhance decision-
making flexibility, enabling the system to respond to varying
circumstances, such as congestion, emergencies, and other
dynamic factors influencing traffic flow.

The evolution of vehicle communication infrastructure is
closely related to advancements in adaptive urban systems by
providing reliable means to collect environmental and road
conditions data seamlessly [87]. Focusing on utilising fog
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computing and vehicle-to-infrastructure networks, authors
of [88] detect and classify street pavement anomalies in
real-time, exploiting machine learning techniques. This
approach enhances decision-making by mapping street
quality and identifying significant anomalies, providing a
means to address such issues dynamically according to
needs. Additionally, ubiquitous cloud resources and smart
driving advances improve the potential of car-to-cloud
communication [89]. Overall, studies in this field emphasise
the role of this technology in supporting the integration of
dynamic learning of urban infrastructure information within
city services.

Incorporating data collected from electronic sensors and
cameras is still paramount in processing traffic information.
Such integration allows an adaptive system that predicts
travel time based on real-time and historical data, leading to
routes with minimal travel time [7], [57]. Furthermore, the
data collected from distributed sensors allows the detection
of anomalies in the traffic system, such as accidents and
congestion [10]. This predictive capability is crucial for
preemptive traffic management and to mitigate potential
issues before they occur, highlighting the adaptive nature
of traffic control systems that learn and evolve. Finally,
authors in [90] demonstrate how regression models and
spatiotemporal data processing mechanisms can predict
traffic conditions by focusing on the importance of modelling
complex spatial dependencies and temporal dynamics.

Intelligent parking solutions can also benefit from spa-
tiotemporal data, making the city more responsive and
citizen-centric. In [91], the authors present a parking
information system that uses sensors and cameras to monitor
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parking space occupancy, adopting a Petri Net model for
dynamic adaptivity to sensor changes and failures, illustrating
a proactive approach to efficient management of urban
parking spaces. Meanwhile, the work in [92] proposes an
agent-oriented smart parking recommendation system that
prioritises driver preferences such as parking type, cost,
and proximity to destination to achieve an adaptive parking
reservation process. This perspective is further extended
in [93] using WSN and machine learning to predict parking
occupancy using traffic cameras and weather forecasting
services. That approach demonstrates the potential of such
technologies in predicting and managing availability, reduc-
ing the time a driver spends looking for an available parking
spot.

From a different perspective of mobility planning, effective
public transport systems and carpooling can also achieve
higher efficiency through adaptive urban systems. The
demands of citizens and the natural dynamic of cities raise
the need for dynamic public transportation routing systems.
The authors in [62] address this issue by comparing the
efficiency of adaptive and static bus routes, emphasising
the importance of flexible public transportation services.
Similarly, the work in [94] proposes a predictive monitoring
framework for bike-sharing systems, employing neural net-
works to classify and preemptively address service violations.
In the context of carpooling, authors in [13] focus on
dynamic ride-sourcing, presenting a model that improves
vehicle-passenger matching and repositioning to minimise
waiting times and optimise network flow. In a different
approach, learning through the demand to improve service
rates and efficiency without increasing fleet sizes can balance
taxi distribution in ride-sharing services, as addressed in [95].

Table 2 summarises the surveyed works that implemented
some level of adaptivity by exploiting different technologies.
The characteristics of the surveyed adaptive mobility appli-
cations are further emphasised in Figure 3, which shows that
context-awareness, self-configuration, and predictive analy-
sis are the most common. Context-awareness enables systems
to optimise traffic flow and safety by adapting mobility
services based on real-time traffic data. This adaptivity has
been commonly applied to traffic light systems and efficient
traffic re-routing. Furthermore, self-configuration allows for
autonomous adjustments to maintain optimal performance in
response to variations in urban settings. Finally, predictive
analysis facilitates the forecasting of traffic patterns and the
enhancement of system reliability. Collectively, the studies
underscore the significance of autonomous decision-making
based on real-time data in enabling adaptivity in smart
mobility applications.

D. SMART EMERGENCY MANAGEMENT

Emergency management systems are a crucial urban service
that plays a vital role in protecting urban populations and
infrastructure from the impacts of unexpected events and
disasters. These systems enable cities to respond quickly
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FIGURE 3. Frequency of adaptivity characteristics in adaptive smart
mobility systems.

and effectively to emergencies, minimising potential damage
and disruptions. However, to enhance their reliability and
enable adjustments in response to the dynamic nature of
emerging threats, it is crucial to incorporate adaptivity into
these systems. This capability improves the accuracy of
response efforts and ensures that cities can maintain resilience
and continuity in the face of diverse and evolving challenges.

Several studies have explored the frontiers of emergency
detection and focused on improving the adaptivity of sensor
networks in smart cities. The authors in [46] propose
a configurable wireless sensor network aimed at precise
and energy-efficient urban emergency management. That
framework consists of emergency detection units that can
play different roles in the emergency management process,
from sensor-based to Al-based detection. In a similar way,
the work in [96] tackles the challenge of energy efficiency
in disaster management systems using WSN by introducing
a modified metaheuristic algorithm that incorporates an
adjustable sensing range mechanism in order to avoid
overlapping coverage.

In an effort to address the complexities of smart city
ecosystems, researchers have adopted holistic methodologies
for emergency management. Emphasising this need, authors
in [97] use a probabilistic model check to represent the
dynamics and uncertainties in the emergency services of
smart cities. The system captures the varying severity
of emergencies and dynamically dispatches the required
emergency response units to the event location. Following a
similar approach, the authors in [98] focus on the targeted
deployment of emergency vehicles based on sensor-generated
alarms. The method dispatches the most suitable vehicles
based on their location, using the type of alarm. Furthermore,
[99] presents a novel terrain-adaptive unmanned ground
vehicle designed for underground space emergencies. The
vehicle integrates obstacle detection and a terrain-adaptive
mechanical module for several search and rescue operations.
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TABLE 2. Adaptive systems in smart mobility.

‘Work Application

Technologies

Characteristic

Adaptation strategy

[77] Traffic congestion reduction

Wireless sensors integration

Self-configuration
Context-aware

Synchronising traffic lights controlling
consecutive junctions by creating a delay
dynamically updated based on the number
of vehicles waiting.

[78] Priority-based traffic signals control

Wireless sensors integration
Edge computing

Self-configuration
Context-aware

Adjust traffic signal timing based on
vehicle priorities and road lane pressure.

[79] Traffic signals management

Wireless sensors integration
Machine learning

Self-configurable
Context-aware

Adapt the traffic light control based on the
traffic flow in junctions.

[82] Traffic congestion management

Wireless sensors integration
Machine learning
Data analytics

Predictive analysis
Interoperability
Context-aware

Adjust traffic signal timings by learning the
characteristics of traffic data.

[83] Road traffic congestion control

Machine learning
Data analytics

Predictive-analysis

Analyse traffic congestion and environmental
variables to predict traffic congestion.

[81] Road traffic congestion control

Wireless sensors integration
Machine learning
Data analytics

Context-aware

Adjust traffic lights in real-time based on
vehicle density present at the traffic post.

[86] Traffic monitoring

Wireless sensor integration
Machine learning
Data analytics

Interoperability
Context-aware

Considers multiple features of the in-range
traffic management vehicles providing
reliable routing.

[7] Traffic route management

Wireless sensor integration
Data analytics

Predictive analysis
Context-aware

Identify minimal travel time path based on
streamlined traffic information.

[88] Road management

Wireless sensor integration
Edge/Fog computing

Context-aware

Targeted road anomaly identification

[89] Mobility infrastructure

Wireless sensor integration
Cloud computing

Self-configuration

Adaptive car-to-car communication

[10] Parking management

Wireless sensor integration

Self-configuration
Self-healing

Adjust parking information

[90] Traffic management

Data analytics
Machine learning

Predictive-analysis

Spatiotemporal traffic prediction

[91] Traffic management

Data analytics
Machine learning

Predictive-analysis

Spatiotemporal traffic prediction

[92] Parking management

Wireless sensor integration
Cloud computing

Context-aware

Parking spot reservation

[93] Parking management Wireless sensor integration Predictive analysis ~ Predictive park occupancy
Cloud computing
Machine learning

[94] Bike-sharing management Wireless sensor integration Predictive analysis ~ Optimise bike-sharing systems

Machine learning

Context-aware

[84] Simulation-based traffic signal control

Wireless sensor integration
Machine learning
Data analysis

Predictive analysis
Context-awareness
Self-configuration

Adjust traffic light parameters based on
traffic conditions.

[95] Carpooling services

Data analytics

Predictive analysis

Balance taxi distribution

During emergency rescue operations, exploring debris
along affected buildings remains a significant challenge.
To address this issue, the integration of adaptive technologies
into Building Information Modelling (BIM) and Structural
Health Monitoring (SHM) has emerged as a promising
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solution for ensuring urban safety [100]. These techniques
enable the identification and monitoring of structural health
indicators, facilitating the early detection of potential hazards.
In fact, dynamic BIM systems can improve the safety
and efficiency of public buildings by enabling real-time
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visualisation and dynamic SHM, as demonstrated in [101].
Complementing these efforts, the authors of [102] highlight
the necessity of dynamic emergency evacuation planning
in large public buildings. They address the limitations of
static evacuation plans with an intelligent building approach
to deliver an effective evacuation system under various
emergency scenarios.

Life-threatening emergencies require immediate attention.
In such situations, every second counts, and prompt medical
intervention can make all the difference between life and
death. Therefore, the prioritisation of emergency vehicles is
crucial, as it ensures that these vehicles reach their destination
as quickly as possible. Within this context, the work in [103]
presents a framework that dynamically adjusts traffic lights
to facilitate the passage of emergency vehicles. This system
utilises sensors and a localisation system, alongside machine
learning, to prioritise emergency vehicles while adapting
traffic light patterns based on vehicle density. Furthermore,
intelligent signal scheduling for emergency vehicles using
WSN enables ambulances to dynamically control traffic
signals based on their location and traffic density [59].

Still considering traffic management during emergencies,
[104] proposed an integrated adaptive control system that
uses fuzzy logic to ensure emergency vehicle prioritisation
while allowing for pedestrian flow. Finally, [105] introduced
a software-defined traffic light preemption mechanism that
uses vehicle communications and applies an adaptive algo-
rithm for redefining emergency medical services routes based
on traffic conditions.

Table 3 summarises the discussed works. In addition,
Figure 4 illustrates the pivotal role of context-awareness in
enabling systems to adjust based on environmental data,
thereby enhancing the effectiveness and responsiveness of
emergency responses. Furthermore, self-configuration has
demonstrated the potential to autonomously adjust systems’
settings in response to changing urban conditions, which
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FIGURE 4. Frequency of adaptivity characteristics in adaptive emergency
management systems.
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is vital for maintaining reliability without manual interven-
tion. Similarly, predictive analytics is crucial to emergency
management systems since it enables the forecasting of
critical scenarios and preparing accordingly, thus improving
response times and decision-making. Finally, although less
frequently explored, interoperability has been utilised to
provide seamless integration and communication among
various emergency management technologies.

E. SMART PUBLIC SECURITY

Integrating advanced technologies into urban security sys-
tems is crucial to improve safety in smart cities. Recent
research has made important advances in this area, focusing
on the development of adaptive systems to create safer and
more responsive environments. Although security incidents
are inherently urban emergencies, their impact on daily
activities makes them a special case that demands proper
treatment. This results in a particular group of urban services
that can also strongly benefit from the adaptive paradigm.

Through the development of an adaptive, age-invariant
facial recognition system, the work in [106] proposes an
integrated approach to surveillance in urban environments.
That system incorporates CNN into cameras to autonomously
update databases and ensure effective detection and identifi-
cation. Emphasising the need for adaptive decision support
models tailored to different contexts of city surveillance
highlights the potential of urban technology integration and
adaptivity to address crime prevention [107]. This synergy
also illustrates the interoperability of spatial-temporal data
collected from surveillance systems in the cities’ evolution.

Custom surveillance systems are provided by a thorough
assessment of spatial features and temporal patterns. The
authors in [108] highlight the significance of spatiotemporal
data analysis in public safety strategies through a smart city
digital twin method that dynamically places license plate
reader sensors to optimise public safety. The study of [109]
contributes to the field of crime prevention to predict crime
locations and simulate suspect vehicle movements. Their
method focuses on the application of region-based video
surveillance, using deep learning to efficiently adjust and
transmit high-quality and lightweight visual data.

Due to the acceleration of urbanisation, the need for
efficient urban security mechanisms has increased signifi-
cantly, particularly in crime prediction efforts. This reflects
a shift towards harnessing data-driven insights to ensure the
adaptivity and effectiveness of security measures. The study
presented in [110] explores crime prediction through the
lens of social media, employing a Support Vector Machine
(SVM) to analyse extracted features from posts. Their
approach allows for the learning and prediction of criminal
acts in specific spatial and temporal windows. Concurrently,
authors of [41] focus on capturing the spatiotemporal
dynamics of crime records. Their solution enables efficient
allocation of police resources based on understanding crime
dynamics.

102837



IEEE Access

J. C. N. Bittencourt et al.: Survey on Adaptive Smart Urban Systems

TABLE 3. Adaptive systems in smart emergency management.

Work Application Technologies Characteristic Adaptation strategy
[46] Distribute emergency detection Wireless sensor integration  Self-configuration Dynamically distribute tasks
processing Artificial Intelligence Context-aware among a set of heterogeneous
Sensor units
[96] Improve sensors’ energy efficiency ~ Wireless sensor integration  Self-configuration Adjust sensing range based on
Artificial Intelligence overlapping coverage
[97] Severity-based emergency response  Wireless sensor integration ~ Context-aware Dynamic dispatch emergency
Data analytics Predictive analytics  response units according to
event severity.
[98] Emergency-based vehicle dispatch Wireless sensor integration ~ Context-aware Targeted assignment of
emergence vehicles according
to the hazards.
[99] Unmanned search and rescue Sensor integration Self-configuration Adapt an unmanned vehicle
Context-aware according to the obstacles and terrain.
[101]  Structural health monitoring Wireless sensor integration ~ Predictive analytics ~ Early detection of potential
Data analytics hazards based on real-time
visualisation.
[102]  Emergency evacuating planning Wireless sensor integration ~ Context-aware Adapt evacuation plans based on
Data analytics Predictive analytics ~ current emergency scenario.
[103]  Prioritise emergency vehicles Wireless sensor integration  Self-configuration Dynamically adjust traffic
Machine learning Context-aware lights to facilitate emergency
vehicles passage.
[59] Remote traffic lights control Wireless sensor integration  Self-configuration Control traffic lights signals based
on the location of emergency vehicles.
[104]  Multi-purpose traffic light control Sensor integration Self-configuration Optimise traffic light prioritisation
Data analytics Context-aware for emergency vehicle and pedestrian
Interoperability crossing.
[105]  Preemptive traffic lights control Wireless sensor integration  Self-configuration Redefining emergency services routes

Context-aware based on traffic real-time conditions.

However, predicting crime across different departments
requires sorting through a large amount of informa-
tion from multiple sources, often characterised by vary-
ing degrees of structural inconsistency and unlabelled
data [111]. The study in [112] addresses this challenge
through unsupervised domain adaptation. They propose
to construct auxiliary contexts for target cities based on
similar source city grids, thereby resolving inconsistencies in
context data between cities while facilitating adaptation and
interoperability.

After the performed discussions, Table 4 summarises the
surveyed works in this area. As illustrated in Figure 5,
predictive analytics represents the most prevalent feature
in smart public security systems, thereby underscoring its
pivotal role in anticipating and mitigating security risks.
Systems that utilise predictive analytics are able to predict
criminal activities and adjust their operations accordingly,
thereby improving the effectiveness of urban surveillance
and crime prevention strategies. Another prominent feature
is self-configuration, which ensures optimal performance
without the need for manual intervention. For example,
urban surveillance systems can autonomously adjust image
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safety systems.

quality based on specific regions of interest. Finally, context-
awareness allows these systems to adapt to the spatial and
temporal context of urban environments.
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TABLE 4. Adaptive systems in smart public security.

Work Application Technologies Characteristic Adaptation strategy
[106]  Urban surveillance Machine learning Self-configuration Autonomous updates face-recognition databases
Data analytics Flexibility
[108]  License plate reader ~ Sensor integration ~ Predictive analytics ~ Spatiotemporal data analysis that dynamically places license plate
sensor positioning Machine learning reader sensors.
Data analytics
[109]  Urban surveillance Machine learning  Self-configuration Dynamically adjust the image quality based on specific regions

of interest.

[110]  Crime prediction Machine learning

Data analytics Context-aware

Predictive analytics

Predict criminal acts in specific spatial and temporal windows
based on learning standards.

[41] Crime prediction Machine learning

Predictive analytics

Capture the spatial and temporal dynamics to improve crime
forecast analysis.

[112] Context-aware

Interoperability

Crime prediction Machine learning

Contextualise the information domain of different cities to improve
crime prediction.

F. SMART SOLID WASTE MANAGEMENT

As urban populations swell and the quest for sustainable
living intensifies, the management of urban waste emerges
as a critical challenge demanding innovative solutions [113].
Adaptive technologies in waste management are pivotal
in transforming urban systems into smarter, more efficient
entities. The integration of machine learning into solid waste
management systems and electronic waste (E-Waste) man-
agement illustrates the forefront of this transformation [114].
This scenario leads to smart cities leveraging remote sensing
technologies and data-driven approaches to support opera-
tional adaptivity and environmental sustainability in waste
management systems [115].

Recent research on smart bins has shown promising
advancements in addressing the increasing complexities and
demands of urban waste management. In particular, waste
collection optimisation based on predictive modelling and
machine learning can help to streamline the collection
routes [44], [116]. These methods underscore the necessity
of dynamic routing and the significant impact of real-time
data on operational efficiencies. Similarly, authors in [117]
and [118] investigate smart waste collection through a
dynamic multi-compartment vehicle routing problem and a
sensor-based intelligent system. Their emphasis on real-time
data analytics and energy-efficient route optimisation demon-
strate the adaptivity of waste management systems to varying
urban conditions and waste generation patterns.

Still considering this trend, the work in [12] highlights the
importance of predictive analytics and real-time monitoring
in waste management. By leveraging WSN to monitor waste
levels and applying cognitive frameworks for route selection,
these studies present solutions that improve operational effi-
ciency and contribute to environmental sustainability. Sup-
plementing these studies, [119], [120] assess the economic
and environmental benefits of smart bin implementations
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and propose real-time waste management algorithms that
dynamically adjust collection planning.

This current shift towards leveraging real-time data to
improve the responsiveness and efficiency of waste manage-
ment systems has also led to innovative approaches that opti-
mise waste collection planning processes. Authors in [121]
propose a dynamic waste collection model that uses smart
bin sensors to facilitate real-time waste management and
optimise the collection. Similarly, [122] improve unplanned
waste collection using sensors for dynamic route planning to
efficiently manage occasional waste types.

Finally, [47], [123] explore dynamic data-driven models
emphasising route scheduling optimisation for waste collec-
tion vehicles. Authors in [123] propose a model considering
the socioeconomic characteristics of customers, integrating
fill-level sensor data in smart bins toward an efficient
collection schedule, whereas the work in [47] introduces a
novel cost function that incorporates sensors and real-time
road traffic information to optimise routes, demonstrating
significant reductions service delays. A summary of the
surveyed articles is presented in Table 5.

Figure 6 demonstrates the prevalence of adaptivity char-
acteristics identified in the surveyed works on smart waste
management systems. The prevalence of context-aware
approaches underscores the importance of adjusting based
on data regarding current waste levels, with the objective
of enhancing the efficiency of collection routes. Moreover,
predictive analysis enables forecasting waste generation
patterns and optimising operational strategies. This technique
enables the prediction of when bins will be full, thus allowing
the self-adjustment of collection schedules. This capability
has been demonstrated to have potential applications in
smart waste bin management, where the anticipation of
future states can significantly enhance system reliability and
efficiency.

102839



IEEE Access

J. C. N. Bittencourt et al.: Survey on Adaptive Smart Urban Systems

TABLE 5. Adaptive systems in smart solid waste management.

Work Application Technologies

Characteristic Adaptation strategy

[116]  Waste collection vehicle routing ~ Wireless sensor integration

Context-aware

Create an optimal waste collection route by using
up-to-date data on waste bin levels.

[44] Waste collection vehicle routing ~ Wireless sensor integration

Machine learning

Context-aware

Define dynamic optimal routes by grouping waste
bins into clusters to reduce the subset that a vehicle
will visit.

[117]  Waste collection vehicle routing ~ Wireless sensor integration

Data analytics

Context-aware

Define dynamic routes to minimise transportation
and penalty costs incurred from exceeding bin
capacity.

[118]  Smart waste bin management Wireless sensor integration
Machine learning

Cloud computing

Context-aware
Predictive analysis

Conserve energy in waste bins, generate missing data
values from sensors, and select the optimal routing
path for garbage trucks.

[12] Waste collection vehicle routing ~ Wireless sensor integration
Machine learning

Cloud computing

Predictive analytics

Learn and predict the upcoming wastage based on
waste generation patterns.

[119] Smart waste bin management Wireless sensor integration

Predictive analysis

Make predictions on smart bins residual capacity,
considering the changes in terms of frequency of
bins collected and dynamic vehicle routing.

[120]  Waste collection vehicle routing ~ Wireless sensor integration

Cloud computing

Context-aware

Prioritise smart bins by detecting when they are
significantly full and dynamically rerouting the waste
collection vehicle.

Wireless sensor integration
Cloud computing

[121] Waste collection scheduling

Context-aware

Integrating real-time weather, distance traffic, and
smart bins sensor data to improve the collection.

Frequency
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FIGURE 6. Frequency of adaptivity characteristics in adaptive waste
management systems.

IV. ACHIEVING ADAPTIVE SYSTEMS

Despite the demonstrated progress and capabilities of the
current urban systems landscape, the analysis of the literature
in this domain indicates that there are common factors
and potential innovations in adaptive systems that must be
highlighted. Central to these aspects is the optimisation
of data collection from urban sensing platforms and the
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integration of these data with powerful analytical methods.
Such enhancements demonstrated to be essential for develop-
ing more responsive, efficient, and intelligent city services,
which might proactively adapt to current conditions. This
forward-looking approach will be instrumental in addressing
the complexities of urban environments, where the dynamic
interplay of various factors demands advanced data-driven
solutions that are thoroughly integrated and seamlessly
functional.

The recent advances in urban services in the context of
sensing platforms have expanded the range of monitorable
features, turning every urban element into a potential
data source. This broad perspective, combined with the
accessibility and affordability of powerful electronic devices,
is transforming the development of smart cities. Indeed,
the monitoring infrastructure is currently evolving from
simply collecting data to contributing to the intelligent
orchestration of city services, enabling urban systems to adapt
to the ever-changing needs of their inhabitants. Nevertheless,
in order to achieve these goals, it is evident that tailored
sensing technologies and georeferenced data analysis are
fundamental. Therefore, to better understand how such
methods can help to develop practical systems (RQ3), this
discussion section explores the four main technological
aspects that foster a truly evolving urban ecosystem.

As illustrated in Figure 7, a typical adaptive framework
seamlessly integrates multi-target sensors, edge computing,
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FIGURE 7. Schematic of a smart city adaptive framework, highlighting the integration of multi-target sensors, edge/cloud computing, and GIS for

enhanced urban system interoperability.

and GIS technologies to enhance the operation of smart
urban systems. This schematic representation demonstrates
the synergy between these components, facilitating urban
data processing and comprehensive geospatial analysis. This
representation provides a foundation for a more detailed
examination of the potential for adaptive technologies to
be achieved across various domains, with the objective of
fostering more resilient and responsive urban environments.

A. MULTI-TARGET SENSOR UNITS

As the smart city landscape evolves, using multi-target sensor
units is a significant advance in the search for comprehensive
urban monitoring and management [16]. These units can
gather a wide array of parameters, optimising resource
allocation and streamlining data collection processes. Multi-
target platforms integrate various functionalities into a
single efficient unit, unlike traditional systems that require
separate data collection devices for each specific target
monitoring [124]. This integration reduces the physical and
economic burden of deploying numerous single-purpose
devices and mitigates the complexity of managing a diverse
sensor network. By embracing the versatility of such units,
smart cities can take a more cohesive and dynamic approach
to data collection, leading to a deeper understanding of urban
ecosystems.

VOLUME 12, 2024

Expanding on the infrastructure built by heterogeneous
sensor arrays, smart cities are now ready to further enhance
their monitoring capabilities by developing adjustable archi-
tectures [125], [126]. These innovative frameworks increase
the flexibility of sensor applications, allowing for the
monitoring of a wide range of urban elements while keeping
the pace of technology advances [124]. This adaptivity
is particularly important to address the real nature of
urban environments, where the demand for information
can shift rapidly due to population dynamics, infrastructure
development, or emergent environmental challenges.

Multi-target frameworks support the notion that a one-size-
fits-all approach is no longer viable in the complex ecosystem
of smart cities. These frameworks acknowledge the diversity
in urban environments, ranging from the spatial layout and
population density to the cultural and economic activities that
define each city [127]. Therefore, by enabling the deployment
of sensor units that can be adapted to monitor different urban
attributes as city priorities shift, these platforms can monitor
diverse urban parameters through a more cohesive system.

This progression towards adaptive sensor nodes represents
a natural evolution in smart city technologies, emphasising
not only the physical but also the functional versatil-
ity of sensor units and their ability to undergo tailored
adjustments [5], [125]. The core advantage of these units
lies in their capability to reduce deployment and upgrade
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costs. Traditionally, adapting a sensing infrastructure to new
requirements or integrating other technologies requires the
replacement or substantial modification of existing hardware
and software, a process that is both time-consuming and
costly [9]. Adaptive sensors reduce this need by streamlining
the upgrade process and extending the lifespan of the
sensor infrastructure, offering substantial cost savings over
time [128].

Adaptive sensor units dynamically adjust configuration
parameters such as calibration data or prioritisation rules to
meet the application requirements [129], [130]. By using
sensors that can adapt based on current urban demands or
geolocalised environmental conditions, cities can implement
a more nuanced and comprehensive monitoring strategy.
This higher level of adaptivity enables efficient resource
allocation, ensuring that sensing units can shift their attributes
in response to the city’s evolving needs.

The ability to adapt sensor nodes with minimal human
intervention leads to optimal performance and reduced
human effort in maintaining the infrastructure. For example,
a sensor unit initially deployed for traffic management can
be repurposed to monitor air quality during a pollution
spike [131] or to relate this information with noise levels
in streets infrastructure [132]. This flexibility maximises the
potential of each sensor node, enabling cities to respond more
swiftly and effectively to permanent or sporadic changes in
the environment. However, to evolve according to current
urban demands, these devices must incorporate the ability
to securely modify their functionalities, using, for example,
Over-the-Air (OTA) updates [133], [134]. Doing so, multi-
sensor units are allowed to dynamically initialise, configure,
and operate a wide array of sensors tailored to the specific
needs of the urban environment. This feature also allows for
seamless integration of additional sensors into the existing
infrastructure as new monitoring needs arise.

From the perspective of urban systems, the benefits of
adjustable sensor nodes are twofold. Firstly, they facilitate
easy customisation of sensing infrastructure to address urban
challenges such as environmental data collection or emer-
gency management. This capability allows city managers to
selectively deploy monitoring routines tailored to specific
purposes, streamlining the process of gaining actionable
insights and implementing responsive actions. Additionally,
the incorporation of modularity into this infrastructure allows
for the integration of new technologies or repurposing
existing assets to meet the ever-changing urban needs.
Therefore, as new sensor technologies emerge or urban
priorities shift, the nature of these platforms ensures that the
monitoring infrastructure can adapt without reengineering or
prohibitive costs.

Finally, the scalability offered by these units is also essen-
tial for the sustainable development of smart cities [135].
By leveraging modular adjustable units, cities can begin
with a basic sensor network and gradually expand by
incorporating new modules as required by their growth
strategies or as budget constraints allow. This incremental
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approach reduces the initial investment required to launch
smart city initiatives [136], making them more accessible and
feasible for municipalities of varying sizes and resources.
However, as systems expand in size, it becomes necessary to
provide mechanisms for their seamless operation, enabling
the sharing of information as required.

B. INTEROPERABILITY
Interoperability in smart cities refers to the ability of various
urban subsystems, such as energy, mobility, water, and
waste management, to exchange and use information in a
meaningful way [137]. At the application level, interoper-
ability enables the development of smart urban solutions
that can integrate data from multiple sources, process it, and
provide decision support for urban planners and managers.
As such, interoperability is the glue that holds urban systems
together, enabling them to be more than the sum of their
parts. Therefore, it enables these systems to provide efficient
and user-focused services within smart cities, facilitating
standardisation. Although it is considered a practical solution
to achieve sustainable smart cities, our literature review
reveals that this is still an underexplored domain.

Several classifications of interoperability exist [138];
however, it is important to consider the following two classes:

o Technical interoperability: ensures effective communi-
cation between different technology systems by adher-
ing to common standards.

« Semantic interoperability: Focuses on understanding
data across different systems by using shared vocabulary
and ontology.

Technical interoperability is the fundamental layer that
enables technological systems to communicate and operate
cohesively [138]. It is based on the adoption of universally
recognised standards and protocols, which ensure that
hardware and software from different manufacturers or
service providers can exchange data and share informa-
tion seamlessly. For example, technical standards such as
IEEE 1452, which supports smart transducer interfaces [139],
and IEEE 1547, which governs the grid interconnection of
distributed energy resources [140], facilitate the sensors’
interoperability. Nevertheless, adherence to these standards
is hindered by the high cost of compliance and the limited
availability of compatible sensors, which makes it unfeasible
to implement them on a large scale, such as in urban areas.

Additionally, technological interoperability can be achieved
through network communication protocols such as MQTT
(Message Queuing Telemetry Transport Technical) and
CoAP (Constrained Application Protocol) [34]. These
protocols are designed to support the low-power needs
of ToT devices, ensuring efficient and standardised data
transmission across the urban network. Moreover, the Open
Geospatial Consortium (OGC) establishes standards for
geospatial and location-based services [141]. In fact, the
integration of geospatial data into urban monitoring allows
adaptive urban systems to ensure that their components are
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not isolated, thereby fostering a synergistic environment in
which integrated application-level services can thrive.

Semantic interoperability goes beyond data exchange and
enters into the domain of meaning and context [137].
It guarantees that information shared between systems is
understandable and actionable, regardless of the system
that generated it. This level of interoperability relies on
shared vocabulary and ontology, which provide a structured
framework of terms and relationships that are crucial for data
interpretation and utilisation in adaptive urban systems.

To achieve semantic interoperability, systems must apply
the structure and syntax of information exchange by reusing
or extending standards from established bodies such as W3C,
OASIS, OMG, NIEM and HL7. It is also necessary to specify
the rules for information assembly and processing in an
unambiguous way. These rules should contain patterns for
the aggregation of data and conversion transformations to
shared agreement standards while also involving parsing
messages into their data elements. For example, systems
that use NGSI-LD (Next Generation Service Interfaces-
Linked Data) can interpret and act on the information they
receive [142]. This includes identifying that ‘“‘temperature”
in one system corresponds to the same entity in another.
This level of interoperability is critical to supporting adaptive
services, where data from different domains need to be
processed together. To that end, integrating efficient and
timely data processing mechanisms is crucial, leveraging
advanced technologies to ensure seamless and responsive
urban services.

C. CLOUD AND EDGE COMPUTING

In the rapidly evolving landscape of urban systems, cloud and
edge computing emerge as pivotal technologies for reshaping
the way cities are managed. Cloud computing, with its vast
computational resources and scalable storage capabilities,
provides a centralised platform for processing and managing
the information generated by urban systems. On the other
hand, edge computing brings data processing closer to the
source, enabling real-time analytics and decision-making.
Together, these technologies form the backbone of distributed
adaptive urban systems, offering enhanced efficiency and
reduced latency.

The role of cloud computing in improving the adaptivity
of urban systems cannot be underestimated. Its inherent scal-
ability and flexibility enable the efficient management and
analysis of vast amounts of urban information. By leveraging
cloud infrastructure, cities can scale their computing and
storage resources to meet fluctuating demand without the
need for significant investment in physical infrastructure.
Cloud platforms provide the resources needed to perform
advanced data analytics, notably supporting machine learning
operation and sensor platform integration, enabling cities to
adapt and manage the demands of urban life and deliver more
responsive services.

However, due to the large scale of sensor network
infrastructure, relying solely on cloud services is no longer
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practical. The amount of data that needs to be transmitted is
continually growing, which can lead to network overload and
compromise system reliability despite the scalability of cloud
platforms [143]. In this context, edge computing emerges
as a pivotal technology for enabling real-time adaptivity in
urban systems, addressing the necessity for immediate data
processing and response near the data source [144].

In smart cities, edge computing is materialised through
a variety of devices and architectures, from smart traffic
lights that adjust in real-time to optimise flow [78] to
surveillance cameras with built-in analytics for immediate
detection [145]. These devices possess the computational
power to process data on-site, making decisions and taking
actions without the need to constantly communicate with
a cloud server. Furthermore, edge devices can incorporate
machine learning applications, empowering them to learn and
adapt to changing urban conditions [146].

In fact, cloud and edge computing play complementary
roles, creating a seamless ‘“‘backbone” of data processing
capabilities that enhance the efficiency and adaptivity of
smart cities. This synergy enables smart cities to leverage
the strengths of both technologies: the edge for immediate
responsiveness and reduced latency and the cloud for
advanced analytics, broader context understanding, and
resource-intensive computing tasks.

D. GEOSPATIAL DATA-DRIVEN ANALYSIS

To implement adaptive urban systems in a broader sense,
new approaches to better understand a city need to be sought
and developed. Extracting information about urban dynamics
requires mechanisms that could be studied without collecting
information from the whole city, revealing a situation where
geospatial data-driven approaches are critical. By using data-
driven methods, however, computational urban models can
be developed to help understand this complex environment.
While central to the implementation of future urban systems,
advances in the integration of geospatial information with the
potential capabilities of adaptive urban systems remain an
open area of research. A central aspect of this transformation
is the role of GIS in facilitating the study of adaptive
requirements based on geographical urban assessments.

Due to their natural capability for retrieving, storing,
manipulating and analysing georeferenced data, GIS has
enabled a more comprehensive understanding and manage-
ment of urban environments [147]. These systems have the
ability to scale across a wide range of urban environments,
from rural villages and cities to entire metropolises. The
versatility of these systems extends to a wide range of
applications such as mobility [148] and emergency manage-
ment [149], [150]. Therefore, the integration of GIS with
real-time urban data analytics can potentially improve urban
situational awareness, demonstrating its ability to optimise
decision-making in dynamic scenarios [151].

GIS technologies are based on the principle of geo-
referencing, which allows all data to be associated with
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precise geographic coordinates (latitude and longitude) [152].
In addition, GIS can be used in smart city applications to
integrate data from public and private sources, which has
a direct impact on the way such data are used in practical
applications [153]. Moreover, the ability to calculate and
visualise patterns in city services plays a key role in urban
systems [60]. This function helps to identify trends and
assists city planners in crafting resource allocation strategies.
Moreover, when combined with sensor technologies, GIS
becomes even more powerful in assessing dynamic urban
environments [154].

It is worth mentioning that although the literature does
not directly relate GIS to the development of adaptive
urban systems, these tools are an integral part of their
sustainable implementation by providing spatial intelligence
and analytical tools. In fact, GIS can be used effectively
to overcome the obstacles that arise and provide essential
support for the development of adaptive solutions, given the
multifaceted nature of the data processed and the analysis
performed.

The integration of GIS with data analytics tools can
facilitate the monitoring and management of urban growth
and transformations. By continuously updating data layers
with information from sensors and other data sources,
GIS can provide a better dynamic assessment of urban
conditions, from traffic patterns to energy consumption
and environmental monitoring. This continuous flow of
geospatial data allows city planners and decision-makers
to anticipate changes rather than simply reacting to them,
thereby enhancing the proactive capabilities of smart city
systems. Furthermore, GIS can support the simulation and
visualisation of urban development scenarios, providing a
valuable tool for urban planners to foresee the impacts of
different planning decisions. This capability not only aids in
better resource management but also ensures that the adaptive
urban systems are aligned with the long-term sustainability
goals of the city.

Finally, the adoption of GIS tools can be further integrated
into the concept of Digital Twins (DT), a remarkable resource
when pursuing adaptive urban systems. Digital twins serve as
virtual replicas of physical entities and processes, providing a
dynamic platform for simulating, predicting, and optimising
urban operations [155]. By incorporating GIS data into DT,
urban planners can achieve a more granular understanding of
spatial relationships and dynamics across the cityscape [108].
This integration facilitates enhanced scenario planning and
decision-making by allowing city administrators to visualise
the impacts of various strategies in a controlled virtual
environment before implementation. Additionally, it can
drive more tailored, location-specific solutions in real-time,
adapting to changes as they occur in the urban fabric.

V. OPEN CHALLENGES AND FUTURE DIRECTIONS

The development of smart cities involves a complex
framework of technological innovations that support the
delivery of urban services. The integration of monitoring
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platforms, network infrastructure, and GIS data analytics
may enable these services to respond, adapt, and evolve in
accordance with the urban landscape. The significance of
these technologies lies not only in their individual capabilities
but also in how they converge to create a synergistic
effect that transforms static urban fabrics into responsive
entities. Consequently, it is imperative to comprehend the
interactions of these technologies with current applications to
identify how adaptive urban systems can transcend traditional
boundaries and offer a new paradigm of sustainable and
oriented living experiences. Nevertheless, although the litera-
ture demonstrates potential advancements associated with the
development of dynamic urban services, several challenges
remain to be considered.

The practical benefits of recent implementations of
adaptive urban systems have been demonstrated, thereby
reinforcing the theoretical insights discussed in this paper.
A study indicated that the implementation of an adaptive
traffic signal control system in a major urban area could
result in an 80% reduction in average waiting times [78].
Furthermore, the integration of real-time data analytics and
edge computing has resulted in energy savings of up to
80% through the utilisation of an adaptive street lamp
system [11]. Interoperability between emergency manage-
ment and mobility systems has also been beneficial for
emergency vehicles, with priority given to these vehicles in
certain instances [103]. In this case, the potential reduction
in waiting times for such vehicles at the traffic lights is
demonstrated. In the context of waste management, the
deployment of adaptive sensor-equipped bins has been shown
to reduce the energy consumption of smart waste bins by 34%
while simultaneously enhancing overall service delivery and
environmental sustainability [118]. These examples serve to
illustrate the tangible benefits of adaptive systems, validating
their potential to transform urban service delivery.

The analysis of adaptivity applications across vari-
ous domains of smart urban services reveals several
common themes and areas for future research. The
prevalence of context-awareness, predictive analytics, and
self-configuration underscores the critical role of real-time
data utilisation and autonomous decision-making in enhanc-
ing the resilience and efficiency of smart urban systems. The
analysis identified the lower preponderance of self-healing
mechanisms as a potential avenue for future research and
development across all surveyed domains. Incorporating
self-healing mechanisms could reinforce the resilience of
urban systems by enabling autonomous fault detection and
rectification, reducing downtime, and facilitating continuous
operation.

Our findings also indicate that the integration of IoT,
machine learning, and Big Data analytics has been paramount
for adaptive urban systems. These technologies facilitate data
processing and decision-making, which are indispensable
for adaptive services. The adaptivity strategies have been
successfully demonstrated in urban service domains such
as energy, mobility, and emergency management. However,
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despite the potential benefits, several challenges hinder the
widespread adoption of adaptive systems. These challenges
include data integration issues, real-time processing require-
ments, and the lack of interoperability.

The progression from adjustable entities towards adaptive
sensor nodes represents a natural evolution in urban systems
technologies, emphasising not only the physical but also
the functional versatility of sensor units and their ability to
undergo tailored adjustments. The core advantage of these
units lies in their capacity to significantly reduce deployment
and upgrade costs. Traditionally, as previously discussed,
adapting a sensor network to new requirements or integrating
other technologies requires the replacement or substantial
modification of existing hardware, a process that is both
time-consuming and financially burdensome. In parallel,
adaptive sensor units must reduce the necessity for physical
alterations or replacements, streamlining the upgrade process
and extending the lifespan of the sensor infrastructure. Doing
so could result in savings over time, not only in terms of
adjusting the monitoring capabilities but also in adapting its
operational characteristics dynamically.

Integrating such emerging technologies with GIS presents
significant challenges, yet it is crucial for advancing the adap-
tivity and responsiveness of smart city infrastructures. One
major challenge is ensuring interoperability among diverse
systems that handle different data formats and standards. GIS
systems, designed to manage and analyse spatial data, must
effectively synchronise with electronic devices that provide
data streams and machine learning algorithms that process
and predict urban dynamics. Moreover, maintaining data
integrity and accuracy across these platforms is critical since
the decision-making processes in smart cities heavily rely on
the precision of geospatial and monitoring (sensors-based)
data.

One of the most significant challenges in incorporating
adaptivity into urban systems relates to the dynamic nature of
urban fabric. Efficient systems must be able to accommodate
the continuous flux of urban conditions, analysing how
variables change across different areas of the city and
over time. This requires sophisticated data models that
can handle large volumes of information collected from
diverse sources, including sensors spread across an urban
landscape. Integrating these data to accurately reflect the
spatial distribution and temporal variation demands solutions
capable of predictive analytics and processing. Furthermore,
the systems must be scalable and flexible, capable of
adjusting to new configuration data inputs and shifting urban
monitoring and actuating patterns without compromising
performance. This challenge lies in the technical implemen-
tation of such systems and in ensuring that they can operate
efficiently under the constraints of existing and future urban
infrastructure.

Incorporating such a spatiotemporal analysis into urban
systems would allow cities to dynamically manage traffic,
optimise public safety responses, monitor environmental
conditions, allocate resources effectively, and guide urban
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development with greater precision. For example, traffic
management on a given street can be fine-tuned based on
vehicular flow and the information on the urban assets
during rush hours, leading to smoother commutes and
reduced congestion. Similarly, analysing crime or accident
data over time and space helps in preemptively deploying
emergency services to hotspots, thus improving public safety.
Furthermore, resource management, such as waste collection,
can be optimised by understanding usage patterns based
on population density across different city sectors and
time frames. Actually, it is expected that urban planning
will benefit from these analyses by facilitating data-driven
decisions that accommodate the changing needs and growth
patterns of urban populations.

While this technological movement towards more respon-
sive urban systems promises enhanced urban efficiency,
it also introduces significant ethical and social challenges.
Central among these is the pervasive monitoring required to
gather the data that fuels these systems, which raises concerns
about privacy and the potential for surveillance overreach.
This extensive data collection must be managed carefully
to respect individual privacy rights and adhere to ethical
standards, which necessitates robust regulatory frameworks
and transparent data handling practices. Furthermore, there is
a significant risk of exacerbating existing inequalities through
these technological enhancements. In fact, the benefits of
smarter urban services, such as improved mobility, enhanced
public safety, and more efficient resource management, may
not be equitably distributed across all urban populations.
This disparity could result in a scenario where access
to essential services, which are increasingly mediated by
digital technologies, would become a function of one’s
socioeconomic status.

Therefore, addressing these challenges requires a proactive
focus on inclusivity and fairness when deploying these
systems. Policies must be crafted to ensure these technologies
are accessible to all, regardless of economic status, and
efforts should be made to boost digital literacy across the
board. Furthermore, the development of adaptive urban
systems must include mechanisms to monitor and correct
any imbalances in service distribution, ensuring that all
residents can benefit from the advances in urban living.
These strategies are of paramount importance for the ethical
deployment of smart urban technologies and for fostering
public trust and acceptance, which are crucial for the
successful implementation of these systems.

To fill these and other research gaps, we have identified
potential future research opportunities that should guide new
developments in this area.

o Despite the progress in integrating GIS with sens-
ing infrastructure and machine learning methods,
there is a need for more advanced methodologies
that seamlessly blend these paradigms to provide
dynamic real-time urban management solutions. Future
research could focus on developing interoperable frame-
works that allow for smoother data exchange and
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processing across these platforms to allow holistic
system adaptation.

o With the increase in data-centric urban management
solutions, safeguarding privacy and enhancing data
security are paramount. In fact, adaptive systems will
rely on the exchange of sensitive information that
interferes with the overall operation of the service.
Therefore, studies that investigate new authentication
methods and robust security protocols specifically
tailored for interconnected networks of smart cities are
needed.

o Exploring the impacts of adaptive urban systems is
crucial, especially in light of global sustainability goals.
Future studies could focus on developing assessment
metrics that guide the adaptivity of those systems.
Encouraging interdisciplinary research that combines
urban planning, information technology, sociology,
environmental science, and public policy can lead to
more holistic and effective smart city solutions.

o As smart city technologies advance, it is crucial to
ensure that these innovations reach all segments of
the population. New research could explore strategies
for deploying urban tech solutions that bridge the
digital divide, ensuring disadvantaged and less digi-
tally literate communities benefit equally from urban
developments.

VI. CONCLUSION

The integration and evolution of adaptive urban systems
represent a significant step in positively transforming our
cities into better places to live. This survey article has
provided a review of the state-of-the-art technologies and
methodologies that underpin the adaptivity of urban services
across various domains, which is a promising concept for
improving our cities. By exploring these areas through a
lens of advanced technological frameworks, this paper has
highlighted the pivotal role that integrated systems play
in fostering adaptive and responsive urban environments.
Throughout this review, we have examined methods that
emphasise the convergence of geospatial analytics with
urban data processing technologies, which is crucial for
enhancing the operational adaptivity of city infrastructures to
the ever-changing urban conditions.

Overall, this article has showcased how urban systems
can become more efficient, proactive, and sensitive to the
needs of their diverse populations. However, while this article
has outlined a range of innovative applications and the
potential of adaptive urban systems, the journey towards
fully realising these capabilities is still ongoing. As a major
conclusion, it is reasonable to say that the future of urban
development lies in harnessing the power of technology
to create environments that are not only smart but also
sustainable, inclusive, and resilient, with the acquisition and
processing of heterogeneous spatiotemporal data at their
core.

102846

REFERENCES

[1] T. Singh, A. Solanki, S. K. Sharma, A. Nayyar, and A. Paul, “A decade
review on smart cities: Paradigms, challenges and opportunities,” IEEE
Access, vol. 10, pp. 68319-68364, 2022.

[2] A. Kirimtat, O. Krejcar, A. Kertesz, and M. F. Tasgetiren, ““Future trends
and current state of smart city concepts: A survey,” IEEE Access, vol. 8,
pp. 86448-86467, 2020.

[3] Z. Pourzolfaghar, V. Bastidas, and M. Helfert, “Standardisation of
enterprise architecture development for smart cities,” J. Knowl. Economy,
vol. 11, no. 4, pp. 1336-1357, Dec. 2020.

[4] S. A. R. Zaidi, A. M. Hayajneh, M. Hafeez, and Q. Z. Ahmed,

“Unlocking edge intelligence through tiny machine learning (TinyML),”

IEEE Access, vol. 10, pp. 100867-100877, 2022.

D. Enlund, K. Harrison, R. Ringdahl, A. Boriitecene, J. Lowgren, and

V. Angelakis, “The role of sensors in the production of smart city spaces,”

Big Data Soc., vol. 9, no. 2, pp. 27-48, Jul. 2022.

A. Arora, A. Jain, D. Yadav, V. Hassija, V. Chamola, and B. Sikdar, “‘Next

generation of multi-agent driven smart city applications and research

paradigms,” IEEE Open J. Commun. Soc., vol. 4, pp. 2104-2121, 2023.

A. Sharif, J. P. Li, and M. I. Sharif, “Internet of Things network cognition

and traffic management system,” Cluster Comput., vol. 22, no. S6,

pp. 13209-13217, Nov. 2019.

[8] A. Khan, S. Aslam, K. Aurangzeb, M. Alhussein, and N. Javaid,
“Multiscale modeling in smart cities: A survey on applications, current
trends, and challenges,” Sustain. Cities Soc., vol. 78, Mar. 2022,
Art. no. 103517.

[9] R. Du, P. Santi, M. Xiao, A. V. Vasilakos, and C. Fischione, “The
sensable city: A survey on the deployment and management for
smart city monitoring,” IEEE Commun. Surveys Tuts., vol. 21, no. 2,
pp. 1533-1560, 2nd Quart., 2019.

[10] U. K. Lilhore, A. L. Imoize, C.-T. Li, S. Simaiya, S. K. Pani, N. Goyal,
A. Kumar, and C.-C. Lee, “Design and implementation of an ML and
IoT based adaptive traffic-management system for smart cities,” Sensors,
vol. 22, no. 8, p. 2908, Apr. 2022.

[11] G. Gagliardi, M. Lupia, G. Cario, F. Tedesco, F. C. Gaccio, F. Lo Scudo,
and A. Casavola, “Advanced adaptive street lighting systems for smart
cities,” Smart Cities, vol. 3, no. 4, pp. 1495-1512, Dec. 2020.

[12] J. John, M. S. Varkey, R. S. Podder, N. Sensarma, M. Selvi,
S. V.N. S. Kumar, and A. Kannan, *“Smart prediction and monitoring of
waste disposal system using IoT and cloud for IoT based smart cities,”
Wireless Pers. Commun., vol. 122, no. 1, pp. 243-275, Jan. 2022.

[13] M. Ramezani and A. H. Valadkhani, “‘Dynamic ride-sourcing systems
for city-scale networks—Part I: Matching design and model formulation
and validation,” Transp. Res. C, Emerg. Technol., vol. 152, Jul. 2023,
Art. no. 104158.

[14] U. Ammara, K. Rasheed, A. Mansoor, A. Al-Fuqaha, and J. Qadir, ““Smart
cities from the perspective of systems,” Systems, vol. 10, no. 3, p. 77,
Jun. 2022.

[15] N. P. Rocha, A. Dias, G. Santinha, M. Rodrigues, C. Rodrigues,
A. Queirdés, R.Bastardo, and J. Pavao, ‘“Systematic literature
review of context-awareness applications supported by smart
cities’ infrastructures,” Social Netw. Appl. Sci., vol. 4, no. 4, p. 90,
Apr. 2022.

[16] F. Yang, Y. Hua, X. Li, Z. Yang, X. Yu, and T. Fei, “A survey
on multisource heterogeneous urban sensor access and data man-
agement technologies,” Measurement, Sensors, vol. 19, Feb. 2022,
Art. no. 100061.

[17] B. C. Nogueira, R. C. Motta, F. C. Delicato, and T. V. Batista, ““Self-
adaptation in IoT systems for smart cities,” in Proc. Symp. Internet Things
(SIoT), Oct. 2023, pp. 1-5.

[18] Y. Casali, N. Y. Aydin, and T. Comes, ‘A data-driven approach to analyse
the co-evolution of urban systems through a resilience lens: A Helsinki
case study,” Environ. Planning B, Urban Anal. City Sci., pp. 1-18,
Feb. 2024.

[19] S. Kozhevnikov and M. Svitek, “From smart city sustainable develop-
ment to resiliency by-design,” in Proc. Smart City Symp. Prague (SCSP),
May 2022, pp. 1-8.

[20] M. Postranecky and M. Svitek, “Conceptual model of complex multi-
agent system smart city 4.0,” in Industrial Applications of Holonic and
Multi-Agent Systems (Lecture Notes in Computer Science), V. Mafrik,
W. Wahlster, T. Strasser, and P. Kadera, Eds., Cham, Switzerland:
Springer, 2017, pp. 215-226.

[5

=

[6

—

[7

—

VOLUME 12, 2024



J. C. N. Bittencourt et al.: Survey on Adaptive Smart Urban Systems

IEEE Access

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39

[40]

M. Svitek, P. Skobelev, and S. Kozhevnikov, “Smart city 5.0 as an urban
ecosystem of smart services,” in Service Oriented, Holonic and Multi-
agent Manufacturing Systems for Industry of the Future, T. Borangiu,
D. Trentesaux, P. Leitdo, A. Giret Boggino, and V. Botti, Eds., Cham,
Switzerland: Springer, 2020, pp. 426-438.

A. Gharaibeh, M. A. Salahuddin, S. J. Hussini, A. Khreishah, I. Khalil,
M. Guizani, and A. Al-Fuqaha, “Smart cities: A survey on data
management, security, and enabling technologies,” IEEE Commun.
Surveys Tuts., vol. 19, no. 4, pp. 24562501, 4th Quart., 2017.

Z. Mohammadzadeh, H. R. Saeidnia, A. Lotfata, M. Hassanzadeh, and
N. Ghiasi, “Smart city healthcare delivery innovations: A systematic
review of essential technologies and indicators for developing nations,”
BMC Health Services Res., vol. 23, no. 1, p. 1180, Oct. 2023.

E. G. Avina-Bravo, F. A. S. F. de Sousa, C. Escriba, P. Acco, F. Giraud,
J.-Y. Fourniols, and G. Soto-Romero, “Design and validity of a smart
healthcare and control system for electric bikes,” Sensors, vol. 23, no. 8,
p. 4079, Apr. 2023.

S. Silva, T. Cardoso, P. Barros, H. Ribeiro, P. Carvalho, and S. R. Lima,
“A flexible system for optimising green spaces irrigation,” in Proc. 5th
Int. Conf. Smart Sustain. Technol. (SpliTech), Sep. 2020, pp. 1-6.

U. M. Butt, S. Letchmunan, F. H. Hassan, M. Ali, A. Baqir,
and H. H. R. Sherazi, “Spatio-temporal crime HotSpot detection and
prediction: A systematic literature review,” [EEE Access, vol. 8,
pp. 166553-166574, 2020.

D. G. Costa, J. P. J. Peixoto, T. C. Jesus, P. Portugal, F. Vasques,
E. Rangel, and M. Peixoto, “A survey of emergencies management
systems in smart cities,” IEEE Access, vol. 10, pp. 61843-61872, 2022.
R. A. Sharif and S. Pokharel, “Smart city dimensions and associated
risks: Review of literature,” Sustain. Cities Soc., vol. 77, Feb. 2022,
Art. no. 103542.

S. Chen, Z. Wei, G. Sun, K. W. Cheung, D. Wang, and H. Zang, ““Adaptive
robust day-ahead dispatch for urban energy systems,” IEEE Trans. Ind.
Electron., vol. 66, no. 2, pp. 1379-1390, Feb. 2019.

B. D. Carolis, F. Ladogana, and N. Macchiarulo, “YOLO TrashNet:
Garbage detection in video streams,” in Proc. IEEE Conf. Evolving
Adapt. Intell. Syst. (EAIS), May 2020, pp. 1-7.

D. G. Costa, J. C. N. Bittencourt, F. Oliveira, J. P. J. Peixoto, and
T. C. Jesus, “Achieving sustainable smart cities through geospatial data-
driven approaches,” Sustainability, vol. 16, no. 2, p. 640, Jan. 2024.

P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng,
“Composing adaptive software,” Computer, vol. 37, no. 7, pp. 56-64,
Jul. 2004.

V. G. Motti and J. Vanderdonckt, “A computational framework for
context-aware adaptation of user interfaces,” in Proc. IEEE 7th Int. Conf.
Res. Challenges Inf. Sci. (RCIS), May 2013, pp. 1-12.

G. F. P. Da Silva, D. G. Costa, and T. C. De Jesus, “A secure OTA
approach for flexible operation of emergency detection units in smart
cities,” in Proc. IEEE Int. Smart Cities Conf. (ISC2), Sep. 2023,
pp. 01-07.

K. Zandberg, K. Schleiser, F. Acosta, H. Tschofenig, and E. Baccelli,
“Secure firmware updates for constrained IoT devices using open
standards: A reality check,” IEEE Access, vol. 7, pp. 71907-71920,
2019.

A. F. Y. Mohammed, S. M. Sultan, J. Lee, and S. Lim, “Deep-
reinforcement-learning-based IoT sensor data cleaning framework
for enhanced data analytics,” Sensors, vol. 23, no. 4, p.1791,
Feb. 2023.

H. Wang, Z. Yemeni, W. M. Ismael, A. Hawbani, and S. H. Alsamhi,
“A reliable and energy efficient dual prediction data reduction approach
for WSNs based on Kalman filter,” IET Commun., vol. 15, no. 18,
pp. 2285-2299, Nov. 2021.

S. Wang, J. Cao, and P. S. Yu, “Deep learning for spatio-temporal
data mining: A survey,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 8,
pp. 3681-3700, Aug. 2022.

Y. Li and B. Shuai, “Origin and destination forecasting on dockless shared
bicycle in a hybrid deep-learning algorithms,” Multimedia Tools Appl.,
vol. 79, nos. 7-8, pp. 5269-5280, Feb. 2020.

Z. Lin, J. Feng, Z. Lu, Y. Li, and D. Jin, “DeepSTN+: Context-
aware spatial-temporal neural network for crowd flow prediction in
metropolis,” in Proc. 33rd AAAI Conf. Artif. Intell., 31st Innov. Appl.
Artif. Intell. Conf., 9th AAAI Symp. Educ. Adv. Artif. Intell., Honolulu,
HI, USA, Jan. 2019, pp. 1020-1027.

VOLUME 12, 2024

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

G. Jin, Q. Wang, C. Zhu, Y. Feng, J. Huang, and J. Zhou, “Addressing
crime situation forecasting task with temporal graph convolutional
neural network approach,” in Proc. 12th Int. Conf. Measuring Technol.
Mechatronics Autom. (ICMTMA ), Feb. 2020, pp. 474-478.

J. C. N. Bittencourt, D. G. Costa, P. Portugal, and F. Vasques, “A data-
driven clustering approach for assessing spatiotemporal vulnerability
to urban emergencies,” Sustain. Cities Soc., vol. 108, Aug. 2024,
Art. no. 105477.

J. Li, A. Zheng, W. Guo, N. Bandyopadhyay, Y. Zhang, and Q. Wang,
“Urban flood risk assessment based on DBSCAN and K-means clustering
algorithm,” Geomatics, Natural Hazards Risk, vol. 14, no. 1, Dec. 2023,
Art. no. 2250527.

J. Kim, A. Manna, A. Roy, and I. Moon, “Clustered vehicle routing
problem for waste collection with smart operational management
approaches,” Int. Trans. Oper. Res., pp. 1-25, Mar. 2023.

W.-H. Lee and C.-Y. Chiu, “Design and implementation of a smart traffic
signal control system for smart city applications,” Sensors, vol. 20, no. 2,
p. 508, Jan. 2020.

G. A. A. Coelho, T. C. Jesus, and D. G. Costa, “Urban emergency
detection system using hierarchical, collaborative and configurable
wireless sensor networks,” in Proc. 13th Brazilian Symp. Comput. Syst.
Eng. (SBESC), Nov. 2023, pp. 1-6.

A. Mishra and A. Kumar Ray, “IoT cloud-based cyber-physical system
for efficient solid waste management in smart cities: A novel cost function
based route optimisation technique for waste collection vehicles using
dustbin sensors and real-time road traffic informatics,” IET Cyber-Phys.
Syst., Theory Appl., vol. 5, no. 4, pp. 330-341, Dec. 2020.

I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, ‘“Wireless
sensor networks: A survey,” Comput. Netw., vol. 38, no. 4, pp. 393-422,
2002.

D. L. Dutta and S. Bharali, “TinyML meets IoT: A comprehensive
survey,” Internet Things, vol. 16, Dec. 2021, Art. no. 100461.

S. B. Balasubramanian, P. Balaji, A. Munshi, W. Almukadi, T. N. Prabhu,
K. Venkatachalam, and M. Abouhawwash, ‘““Machine learning based IoT
system for secure traffic management and accident detection in smart
cities,” PeerJ Comput. Sci., vol. 9, p. €1259, Mar. 2023.

A. Datta, A. Pal, R. Marandi, N. Chattaraj, S. Nandi, and S. Saha, “Real-
time air quality predictions for smart cities using TinyML,” in Proc. 25th
Int. Conf. Distrib. Comput. Netw. New York, NY, USA: Association for
Computing Machinery, Jan. 2024, pp. 246-247.

B. Tekinerdogan, O. Koksal, and T. Celik, “System architecture design
of IoT-based smart cities,” Appl. Sci., vol. 13, no. 7, p. 4173, Mar. 2023.
X. Li, W. Lin, and B. Guan, “The impact of computing and machine
learning on complex problem-solving,” Eng. Rep., vol. 5, Jun. 2023,
Art. no. e12702.

X. Zhang and K. Long, “Improved learning experience memristor
model and application as neural network synapse,” IEEE Access, vol. 7,
pp. 15262-15271, 2019.

B. Aydogdu and A. A. Salah, ‘“Machine learning for urban computing,” in
Machine Learning and the City: Applications in Architecture and Urban
Design. Hoboken, NJ, USA: Wiley, May 2022.

V. Pesala, T. Paul, K. Ueno, H. G. S. P. Bugata, and A. Kesarwani,
“Incremental learning vector auto regression for forecasting with edge
devices,” in Proc. 20th IEEE Int. Conf. Mach. Learn. Appl. (ICMLA),
Pasadena, CA, USA, Dec. 2021, pp. 1153-1159.

A. Ghosh, M. S. Sabuj, H. H. Sonet, S. Shatabda, and D. M. Farid,
“An adaptive video-based vehicle detection, classification, counting, and
speed-measurement system for real-time traffic data collection,” in Proc.
IEEE Region 10 Symp. (TENSYMP), Jun. 2019, pp. 541-546.

N. Singhal and A. Chhabra, “A novel learning approach of adaptive
cyber defense system for smart cities,” in Electronic Systems and
Intelligent Computing (Lecture Notes in Electrical Engineering), vol. 860.
Singapore: Springer, 2022, pp. 465-471.

J. M. Mannan, J. K. Myilvahanan, R. M. Yousuf, K. S. Selvan, and
T. Parameswaran, ‘“‘Smart scheduling on cloud for traffic signal to
emergency vehicle using I0T,” Int. J. Cloud Comput., vol. 10, no. 4,
pp. 356-369, 2021.

M. Marzouk and A. Othman, “Planning utility infrastructure require-
ments for smart cities using the integration between BIM and GIS,”
Sustain. Cities Soc., vol. 57, Jun. 2020, Art. no. 102120.

G. Muhammad and M. S. Hossain, “‘Deep-reinforcement-learning-based
sustainable energy distribution for wireless communication,” [EEE
Wireless Commun., vol. 28, no. 6, pp. 42-48, Dec. 2021.

102847



IEEE Access

J. C. N. Bittencourt et al.: Survey on Adaptive Smart Urban Systems

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

J. Gerhards, D. Held, T. Schneider, and P. Hirmer, “BURST—A dynamic
bus routing system,” in Proc. IEEE Int. Conf. Pervasive Comput.
Commun. Workshops Affiliated Events (PerCom Workshops), Mar. 2021,
pp. 395-397.

M. Schotten, W. J. Meester, S. Steiginga, and C. A. Ross, “A brief
history of scopus: The world’s largest abstract and citation database
of scientific literature,” in Research Analytics. Boca Raton, FL, USA:
Auerbach, 2017, pp. 31-58.

Y. Sun, Z. Xing, and G. Liu, “Achieving resilient cities using data-driven
energy transition: A statistical examination of energy policy effectiveness
and community engagement,” Sustain. Cities Soc., vol. 101, Feb. 2024,
Art. no. 105155.

M. Farmanbar, K. Parham, @. Arild, and C. Rong, “A widespread review
of smart grids towards smart cities,” Energies, vol. 12, no. 23, p. 4484,
Nov. 2019.

S. I. Kaitouni, I. A. Abdelmoula, N. Es-sakali, M. O.Mghazli,
H. Er-retby, Z. Zoubir, F. El Mansouri, M. Ahachad, and J. Brigui,
“Implementing a digital twin-based fault detection and diagnosis
approach for optimal operation and maintenance of urban distributed
solar photovoltaics,” Renew. Energy Focus, vol. 48, Mar. 2024,
Art. no. 100530.

A. Aliberti, L. Bottaccioli, G. Cirrincione, E. Macii, A. Acquaviva,
and E. Patti, “Non-linear autoregressive neural networks to forecast
short-term solar radiation for photovoltaic energy predictions,” Commun.
Comput. Inf. Sci., vol. 992, pp. 3-22, Jul. 2019.

M. Hardinghaus, J. E. Anderson, C. Nobis, K. Stark, and G. Vladova,
“Booking public charging: User preferences and behavior towards public
charging infrastructure with a reservation option,” Electronics, vol. 11,
no. 16, p. 2476, Aug. 2022.

P. Shaikh and H. Mouftah, “Intelligent charging infrastructure design for
connected and autonomous electric vehicles in smart cities,” in Proc.
IFIP/IEEE Int. Symp. Integr. Netw. Manag., May 2021, pp. 992-997.

S. Zhang and J. J. Q. Yu, “Electric vehicle dynamic wireless charging
system: Optimal placement and vehicle-to-grid scheduling,” IEEE
Internet Things J., vol. 9, no. 8, pp. 6047-6057, Apr. 2022.

K. Kumar, K. Chowdary, B. Nayak, and V. Mali, “A study on the
implications of parameter variation involved with dynamic wireless
charging system for vehicular application,” in Proc. IECON, Oct. 2023,
pp. 1-5.

S. Arshad, A. Saeed, V. Akre, H. Khattak, S. Ahmed, Z. Khan, Z. Khan,
and A. Nawaz, “Leveraging traffic condition using IoT for improving
smart city street lights,” in Proc. IEEE Int. Conf. Commun., Networks
Satell. (Comnetsat), Dec. 2020, pp. 92-96.

E. Bingol, M. Kuzlu, and M. Pipattanasompom, “A LoRa-based smart
streetlighting system for smart cities,” in Proc. Int. Istanbul Smart Grids
Cities Congr., Apr. 2019, pp. 66-70.

G. Weng, “Intelligent control of solar LED street lamp based on adaptive
fuzzy PI control,” EAI Endorsed Trans. Energy Web, vol. 10, pp. 1-11,
Nov. 2023.

M. Padmini, R. Rajkumar, S. Kuzhalivaimozhi, S. Galagali, and
K. Reddy, “Energy efficient smart street lighting system,” in Proc. Int.
Conf. Artif. Intell. Data Eng. (AIDE), Dec. 2022, pp. 162-170.

D. Mitieka, R. Luke, H. Twinomurinzi, and J. Mageto, “Smart mobility in
urban areas: A bibliometric review and research agenda,” Sustainability,
vol. 15, no. 8, p. 6754, Apr. 2023.

D. R. Aleko and S. Djahel, “An efficient adaptive traffic light control
system for urban road traffic congestion reduction in smart cities,”
Information, vol. 11, no. 2, p. 119, Feb. 2020.

A. Sachan and N. Kumar, “S-Edge: Heterogeneity-aware, light-weighted,
and edge computing integrated adaptive traffic light control framework,”
J. Supercomput., vol. 79, no. 13, pp. 14923-14953, Sep. 2023.

H. Khan, K. K. Kushwah, M. R. Maurya, S. Singh, P. Jha, S. K. Mahobia,
S. Soni, S. Sahu, and K. K. Sadasivuni, “Machine learning driven
intelligent and self adaptive system for traffic management in smart
cities,” Computing, vol. 104, no. 5, pp. 1203-1217, May 2022.

R. SenthilPrabha, D. Sasikumar, G. Sriram, K. Nelson, and P. Harish,
“Smart traffic management system through optimized network architec-
ture for the smart city paradigm shift,” in Proc. Int. Conf. Intell. Syst.
Commun., 1oT Secur. (ICISColS), Feb. 2023, pp. 700-705.

P. Deshmukh, D. Gupta, S. Das, and U. Sahoo, “Design of a traffic density
management and control system for smart city applications,” in Proc. Adv.
Intell. Sys. Comput., vol. 1040, 2020, pp. 457-468.

102848

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

N. Faqir, N. En-Nahnahi, and J. Boumhidi, “Deep Q-learning approach
for congestion problem in smart cities,” in Proc. Int. Conf. Intell. Comput.
Data Sci. (ICDS), Oct. 2020, pp. 1-6.

A. Ata, M. A. Khan, S. Abbas, M. S. Khan, and G. Ahmad, “Adaptive loT
empowered smart road traffic congestion control system using supervised
machine learning algorithm,” Comput. J., vol. 64, no. 11, pp. 1672-1679,
Nov. 2019.

S. Baldi, I. Michailidis, V. Ntampasi, E. Kosmatopoulos, I. Papamichail,
and M. Papageorgiou, “A simulation-based traffic signal control for
congested urban traffic networks,” Transp. Sci., vol. 53, no. 1, pp. 6-20,
Feb. 2019.

Y. Shi, Y. Zhang, X. Yin, W. Liu, and T. Cheng, ‘‘Risk-averse perimeter
control for alleviating the congestion of an urban traffic network system
with uncertainties,” [ET Intell. Transp. Syst., vol. 18, no. 1, pp. 72-87,
Jan. 2024.

G. Manogaran, J. J. P. C. Rodrigues, S. A. Kozlov, and K. Manokaran,
“Conditional support-vector-machine-based shared adaptive computing
model for smart city traffic management,” IEEE Trans. Computat. Social
Syst., vol. 9, no. 1, pp. 174-183, Feb. 2022.

Y. Sabri and N. El Kamoun, “Medium access in cloud-based for
the Internet of Things based on mobile vehicular infrastructure,”
TELKOMNIKA Telecommunication Comput. Electron. Control, vol. 21,
no. 2, pp. 280-289, Apr. 2023.

R. Bustamante-Bello, A. Garcfa-Barba, L. A. Arce-Saenz,
L. A. Curiel-Ramirez, J. Izquierdo-Reyes, and R. A. Ramirez-Mendoza,
“Visualizing street pavement anomalies through fog computing V2I
networks and machine learning,” Sensors, vol. 22, no. 2, p.456,
Jan. 2022.

S. Herrnleben, M. Pfannemiiller, C. Krupitzer, S. Kounev, M. Segata,
F. Fastnacht, and M. Nigmann, ‘“Towards adaptive car-to-cloud communi-
cation,” in Proc. IEEE Int. Conf. Pervasive Comput. Commun. Workshops
(PerCom Workshops), Mar. 2019, pp. 119-124.

J. Hu and B. Li, ““A deep learning framework based on spatio-temporal
attention mechanism for traffic prediction,” in Proc. IEEE 22nd Int.
Conf. High Perform. Comput. Commun., IEEE 18th Int. Conf. Smart City
IEEE 6th Int. Conf. Data Sci. Syst. (HPCC-SmartCity-DSS), Dec. 2020,
pp. 750-757.

0. Makke and O. Gusikhin, “Robust IoT based parking information
system,” in Proc. Commun. Comput. Info. Sci., vol. 1475, 2021,
pp. 204-227.

S. R. Rizvi, S. Zehra, and S. Olariu, “ASPIRE: An agent-oriented smart
parking recommendation system for smart cities,” IEEE Intell. Transp.
Syst. Mag., vol. 11, no. 4, pp. 48-61, Winter 2019.

J. C. Provoost, A. Kamilaris, L. J. J. Wismans, S. J. van der Drift, and
M. van Keulen, ‘““Predicting parking occupancy via machine learning in
the Web of things,” Internet Things, vol. 12, Dec. 2020, Art. no. 100301.
F. Cairoli, N. Paoletti, and L. Bortolussi, “Neural predictive monitoring
for collective adaptive systems,” in Leveraging Applications of Formal
Methods, Verification and Validation. Adaptation and Learning (Lecture
Notes in Computer Science), vol. 13703. Cham, Switzerland: Springer,
2022, pp. 30-46.

J. Li and V. Allan, “Balancing taxi distribution in a city-scale dynamic
ridesharing service: A hybrid solution based on demand learning,” in
Proc. IEEE Int. Smart Cities Conf. (ISC2), Sep. 2020, pp. 1-8.

S. Singh, A. S. Nandan, A. Malik, N. Kumar, and A. Barnawi, “An
energy-efficient modified metaheuristic inspired algorithm for disaster
management system using WSNs,” IEEE Sensors J., vol. 21, no. 13,
pp. 15398-15408, Jul. 2021.

N. Mohammad, S. Muhammad, A. Bashar, and M. A. Khan, “Formal
analysis of human-assisted smart city emergency services,” IEEE Access,
vol. 7, pp. 60376-60388, 2019.

D. G. Costa, F. Vasques, A. Aguiar, and P. Portugal, ‘“Automatic
assignment of emergency vehicles in response to sensors-based generated
alarms in smart city scenarios,” in Proc. IEEE Int. Smart Cities Conf.
(ISC2), Sep. 2020, pp. 1-7.

L. Qi, T. Zhang, K. Xu, H. Pan, Z. Zhang, and Y. Yuan, “A novel terrain
adaptive omni-directional unmanned ground vehicle for underground
space emergency: Design, modeling and tests,” Sustain. Cities Soc.,
vol. 65, Feb. 2021, Art. no. 102621.

Y. Lei, Y. Rao, J. Wu, and C.-H. Lin, “BIM based cyber-physical systems
for intelligent disaster prevention,” J. Ind. Inf. Integr., vol. 20, Dec. 2020,
Art. no. 100171.

VOLUME 12, 2024



J.C.N.

Bittencourt et al.: Survey on Adaptive Smart Urban Systems

IEEE Access

[101]

[102]

[103]

[104]

[105]

[106

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

H. Hong, C. Lan, and L. Wang, ““Design of dynamic building information
system based on structural health monitoring information,” Proc. SPIE,
vol. 11382, pp. 91-96, Apr. 2020.

Y. Zhang, Z. Yan, X. Zhu, and W. Piao, “Dynamic emergency evacuation
system for large public building,” in Proc. Adv. Intell. Sys. Comput.,
vol. 890, 2019, pp. 173-182.

A. Dodia, S. Kumar, R. Rani, S. K. Pippal, and P. Meduri, “EVATL: A
novel framework for emergency vehicle communication with adaptive
traffic lights for smart cities,” JET Smart Cities, vol. 5, no. 4, pp. 254-268,
Dec. 2023.

A. Agrawal and R. Paulus, “Smart intersection design for traffic,
pedestrian and emergency transit clearance using fuzzy inference
system,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 3, pp. 516-522,2021.
N. Bagheri, S. Yousefi, and G. Ferrari, “Software-defined traffic light
preemption for faster emergency medical service response in smart
cities,” Accident Anal. Prevention, vol. 196, Mar. 2024, Art. no. 107425.
K. Okokpujie, I. P. Okokpujie, R. E. Subair, E. O. Simonyan, and
A. V. Akingunsoye, “Designing an adaptive age-invariant face recog-
nition system for enhanced security in smart urban environments,”
Ingénierie des systémes d Inf., vol. 28, no. 4, pp. 815-822, Aug. 2023.
F. Mara and V. Cutini, “Digital city-surveillance models and urban
security: Integrating isovist and space syntax in realising adaptive deci-
sion support systems,” in Computational Science and Its Applications
(Lecture Notes in Computer Science), vol. 13377. Cham, Switzerland
Springer: Springer, 2022, pp. 353-369.

X. Pan, N. Mohammadi, and J. Taylor, “Smart city digital twins for public
safety: A deep learning and simulation based method for dynamic sensing
and decision-making,” in Proc. Winter Simulation Conf., Dec. 2022,
pp. 808-818.

A. Zahra, M. Ghafoor, K. Munir, A. Ullah, and Z. Ul Abideen,
“Application of region-based video surveillance in smart cities using
deep learning,” Multimedia Tools Appl., vol. 83, no. 5, pp. 15313-15338,
Dec. 2021.

J. Rojo, L. Bocanegra, J. Vega, and N. Gomez, “Crime prediction using
support vector machine and extracted Twitter features,” in Proc. IEEE
Colombian Conf. Commun. Comput. (COLCOM), Jul. 2023, pp. 1-5.

S. Ahmed, M. Gentili, D. Sierra-Sosa, and A. S. Elmaghraby, “Multi-
layer data integration technique for combining heterogeneous crime
data,” Inf. Process. Manage., vol. 59, no. 3, May 2022, Art. no. 102879.
B. Zhou, L. Chen, S. Zhao, S. Li, Z. Zheng, and G. Pan, “Unsupervised
domain adaptation for crime risk prediction across cities,” IEEE Trans.
Computat. Social Syst., vol. 10, no. 6, pp. 3217-3227, Dec. 2023.

A. Silva, T. Brito, J. Tuesta, J. Lima, A. Pereira, A. Silva, and H. Gomes,
“Dynamic urban solid waste management system for smart cities,”
in Learning and Intelligent Optimization (Lecture Notes in Computer
Science (Including Subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics)), vol. 13621. Cham, Switzerland:
Springer, 2022, pp. 178-190.

H. Li, Z. Jin, and S. Krishnamoorthy, “E-waste management using
machine learning,” in ACM Int. Conf. Proc. Ser., 2021, pp. 30-35.

T. Malche, P. Maheshwary, P. Tiwari, A. Alkhayyat, A. Bansal, and
R. Kumar, “Efficient solid waste inspection through drone-based aerial
imagery and TinyML vision model,” Trans. Emerg. Telecommun.
Technol., vol. 35, no. 4, p. 4878, Apr. 2024.

O. Dolinina, V. Pechenkin, M. Mansurova, D. Tolek, and S. Ixsanov,
““Algorithmic approach to building a route for the removal of household
waste with associated additional loads in the ‘smart clean city’ project,”
in Computational Collective Intelligence (Lecture Notes in Computer
Science), vol. 12876. Cham, Switzerland: Springer, 2021, pp. 745-755.
Y. Bouleft and A. E. Alaoui, “Dynamic multi-compartment vehicle
routing problem for smart waste collection,” Appl. Syst. Innov., vol. 6,
no. 1, p. 30, Feb. 2023.

M. M. Ahmed, E. Hassanien, and A. E. Hassanien, ““loT-based intelligent
waste management system,” Neural Comput. Appl., vol. 35, no. 32,
pp- 23551-23579, Nov. 2023.

F. Facchini, S. Digiesi, and M. Vitti, “Waste collection with smart bins
and residual capacity forecasting: The case of an apulia town,” in Proc.
29th Medit. Conf. Control Autom. (MED), Jun. 2021, pp. 712-717.

S. Bebortta, N. Rajput, B. Pati, and D. Senapati, “A real-time smart
waste management based on cognitive IoT framework,” in Advances
in Electrical and Computer Technologies (Lecture Notes in Electrical
Engineering), vol. 672. Singapore: Springer, 2020, pp. 407-414.

VOLUME 12, 2024

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

M. Alsha’Rat, “Dynamic waste collection model for smart bins in smart
cities,” in Proc. Int. Conf. Eng. Emerg. Technol. (ICEET), Oct. 2022,
pp. 1-4.

M. Belhiah, M. El Aboudi, and S. Ziti, “Optimising unplanned waste
collection: An IoT-enabled system for smart cities, a case study in tangier,
Morocco,” IET Smart Cities, vol. 6, no. 1, pp. 27-40, Mar. 2024.

P. A. Sarvari, I. A. Ikhelef, S. Faye, and D. Khadraoui, “A dynamic data-
driven model for optimizing waste collection,” in Proc. IEEE Symp. Ser:
Comput. Intell. (SSCI), Dec. 2020, pp. 1958-1967.

J. Kozarik, K. Gasparek, T. Zavodnik, L. Cernaj, M. Jagelka, and
M. Donoval, “Multi-sensor modular IoT platform for high-density
monitoring of environmental parameters,” in Proc. 14th Int. Conf. Adv.
Semiconductor Devices Microsystems (ASDAM), Oct. 2022, pp. 1-4.

D. G. Costa, F. Vasques, P. Portugal, and A. Aguiar, “‘A distributed multi-
tier emergency alerting system exploiting sensors-based event detection
to support smart city applications,” Sensors, vol. 20, no. 1, p. 170,
Dec. 2019.

G. Solmaz, P. Baranwal, and F. Cirillo, “CountMeln: Adaptive crowd
estimation with Wi-Fi in smart cities,” in Proc. IEEE Int. Conf. Pervasive
Comput. Commun. (PerCom), Mar. 2022, pp. 187-196.

R. Palumbo, M. F. Manesh, M. M. Pellegrini, A. Caputo, and G. Flamini,
“Organizing a sustainable smart urban ecosystem: Perspectives and
insights from a bibliometric analysis and literature review,” J. Cleaner
Prod., vol. 297, May 2021, Art. no. 126622.

Y. Piadyk, B. Steers, C. Mydlarz, M. Salman, M. Fuentes, J. Khan,
H. Jiang, K. Ozbay, J. P. Bello, and C. Silva, “REIP: A reconfigurable
environmental intelligence platform and software framework for fast
sensor network prototyping,” Sensors, vol. 22, no. 10, p. 3809, May 2022.
Y. Hashmy, Z. U. Khan, F. Ilyas, R. Hafiz, U. Younis, and T. Tauqeer,
“Modular air quality calibration and forecasting method for low-cost
sensor nodes,” IEEE Sensors J., vol. 23, no. 4, pp. 4193-4203, Feb. 2023.
D. Costa, M. Collotta, G. Pau, and C. Duran-Faundez, “A fuzzy-
based approach for sensing, coding and transmission configuration of
visual sensors in smart city applications,” Sensors, vol. 17, no. 1, p. 93,
Jan. 2017.

K. Brzozowski, A. Ryguta, and A. Maczynski, “The use of low-cost
sensors for air quality analysis in road intersections,” Transp. Res. D,
Transp. Environ., vol. 77, pp. 198-211, Dec. 2019.

F. G. Pratic0, D. Severini, and P. G. F. Filianoti, “‘Can sensor-based noise
mapping be a proxy of PM and permeability mapping?” Noise Mapping,
vol. 8, no. 1, pp. 295-306, Jan. 2021.

K. J. Jadaa, L. M. Kamarudin, W. N. Hussein, A. Zakaria, and
S. M. M. S. Zakaria, “Multi-target detection and tracking (MTDT)
algorithm based on probabilistic model for smart cities,” J. Phys., Conf.
Ser., vol. 1755, no. 1, Feb. 2021, Art. no. 012043.

T. N. C. Ta, D. Pham-Khac, and Q. Le-Trung, “Development of libelium-
based reconfigurable solutions for smart city applications,” in Proc. RIVF
Int. Conf. Comput. Commun. Technol. (RIVF), Dec. 2022, pp. 566-571.
A. R. Javed, F. Shahzad, S. U. Rehman, Y. B. Zikria, 1. Razzak, Z. Jalil,
and G. Xu, “Future smart cities: Requirements, emerging technologies,
applications, challenges, and future aspects,” Cities, vol. 129, Oct. 2022,
Art. no. 103794.

Y. Yun and M. Lee, “Smart city 4.0 from the perspective of open
innovation,” J. Open Innovation: Technol., Market, Complex., vol. 5,
no. 4, p. 92, Dec. 2019.

J. Koo and Y.-G. Kim, “Interoperability requirements for a smart city,”
in Proc. 36th Annu. ACM Symp. Appl. Comput. New York, NY, USA:
Association for Computing Machinery, Apr. 2021, pp. 690-698.

R. Rezaei, T. K. Chiew, and S. P. Lee, ““An interoperability model for ultra
large scale systems,” Adv. Eng. Softw., vol. 67, pp. 22—46, Jan. 2014.

C. K. Wu, K. F Tsang, Y. Liu, H. Zhu, H. Wang, and Y. Wei,
“Critical Internet of Things: An interworking solution to improve
service reliability,” IEEE Commun. Mag., vol. 58, no. 1, pp. 74-79,
Jan. 2020.

S. S. G. Acharige, Md. E. Haque, M. T. Arif, N. Hosseinzadeh,
K. N. Hasan, and A. M. T. Oo, “Review of electric vehicle charging
technologies, standards, architectures, and converter configurations,”
IEEE Access, vol. 11, pp. 41218-41255, 2023.

C.-Y. Huang, Y.-H. Chiang, and F. Tsai, “An ontology integrating the
open standards of city models and Internet of Things for smart-city
applications,” IEEE Internet Things J., vol. 9, no. 20, pp. 20444-20457,
Oct. 2022.

102849



IEEE Access

J. C. N. Bittencourt et al.: Survey on Adaptive Smart Urban Systems

[142]

[143]

[144]

[145]

[146]

[147]
[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

B. Cheng, G. Solmaz, F. Cirillo, E. Kovacs, K. Terasawa, and
A. Kitazawa, “FogFlow: Easy programming of IoT services over cloud
and edges for smart cities,” IEEE Internet Things J., vol. 5, no. 2,
pp. 696707, Apr. 2018.

S. Bohm and G. Wirtz, “Cloud-edge orchestration for smart cities: A
review of kubernetes-based orchestration architectures,” EAI Endorsed
Trans. Smart Cities, vol. 6, no. 18, p. 2, May 2022.

E. C. d’Oro, S. Colombo, M. Gribaudo, M. Iacono, D. Manca, and
P. Piazzolla, “Modeling and evaluating a complex edge computing
based systems: An emergency management support system case study,”
Internet Things, vol. 6, Jun. 2019, Art. no. 100054.

D. B. R. Ugli, I. Kim, A. F. Y. Mohammed, and J. Lee, “Cognitive
video surveillance management in hierarchical edge computing system
with long short-term memory model,” Sensors, vol. 23, no. 5, p. 2869,
Mar. 2023.

V. Rajapakse, I. Karunanayake, and N. Ahmed, “Intelligence at the
extreme edge: A survey on reformable TinyML,” ACM Comput. Surv.,
vol. 55, no. 13s, pp. 1-30, Dec. 2023.

J. Awange and J. Kiema, “Fundamentals of GIS,” in Environmental
Geoinformatics. Berlin, Germany: Springer, 2018.

T. Malgundkar, “GIS driven urban traffic analysis based on ontology,”
Int. J. Manag. Inf. Technol., vol. 4, no. 1, pp. 15-23, Feb. 2012.

L. Ma, L. Cheng, and M. Li, “Quantitative risk analysis of urban natural
gas pipeline networks using geographical information systems,” J. Loss
Prevention Process Industries, vol. 26, no. 6, pp. 1183—-1192, Nov. 2013.
M. Lourenco, L. B. Oliveira, J. P. Oliveira, A. Mora, H. Oliveira, and
R. Santos, “An integrated decision support system for improving wildfire
suppression management,” ISPRS Int. J. Geo-Inf., vol. 10, no. 8, p. 497,
Jul. 2021.

M. Jiang, “An integrated situational awareness platform for disaster
planning and emergency response,” in Proc. IEEE Int. Smart Cities Conf.
(ISC2), Sep. 2020, pp. 1-6.

T. Podobnikar, “Georeferencing and quality assessment of josephine
survey maps for the mountainous region in the Triglav National Park,”
Acta Geodaetica et Geophysica Hungarica, vol. 44, no. 1, pp. 49-66,
Mar. 2009.

J. P. J. Peixoto, D. G. Costa, P. Portugal, and F. Vasques, “A geospatial
dataset of urban infrastructure for emergency response in Portugal,” Data
Brief, vol. 50, Oct. 2023, Art. no. 109593.

J. Yang, Y. Han, Y. Wang, B. Jiang, Z. Lv, and H. Song, “‘Optimization of
real-time traffic network assignment based on IoT data using DBN and
clustering model in smart city,” Future Gener. Comput. Syst., vol. 108,
pp. 976-986, Jul. 2020.

H. da Rocha, J. Pereira, R. Abrishambaf, and A. E. Santo, “An
interoperable digital twin with the IEEE 1451 standards,” Sensors,
vol. 22, no. 19, p. 7590, Oct. 2022.

JOAO CARLOS N. BITTENCOURT (Member,
IEEE) received the M.Sc. degree in electrical
engineering from the Federal University of Bahia,
Brazil, in 2017. He is currently a Professor with
the Centre of Exact and Technological Sciences
(CETEC), Federal University of Reconcavo da
Bahia, Brazil. His research interests include inte-
grated circuits digital design, embedded systems,
the Internet of Things applications, and smart
cities.

102850

DANIEL G. COSTA (Senior Member, IEEE)
received the M.Sc. and Ph.D. degrees in electri-
cal and computer engineering from the Federal
University of Rio Grande do Norte, Brazil, in
2006 and 2013, respectively. He was an Associate
Professor with the State University of Feira de
Santana, Brazil, until 2022. He is currently an
Assistant Professor with the Electrical and Com-
puter Engineering Department (DEEC), Faculty
of Engineering (FEUP), University of Porto,

Portugal, and an Associated Investigator with SYSTEC. He is the author or
co-author of more than 150 international articles in the areas of embedded
systems, computer networks, the Internet of Things, smart cities, and sensor
networks.

PAULO PORTUGAL (Member, IEEE) received
the Licentiate, M.Sc., and Ph.D. degrees in electri-
cal and computer engineering from the University
of Porto, Portugal, in 1992, 1995, and 2005,
respectively.

Currently, he is an Associate Professor with
the Department of Electrical and Computer Engi-
neering, University of Porto. He is the author or
co-author of more than 130 technical articles in the
areas of industrial communication systems, com-
munication networks for embedded systems and dependability modeling,
and evaluation of safety-critical systems. He supervised or co-supervised
eight Ph.D. and more than 70 Master’s theses. He has teaching experience
in more than 30 courses, covering subjects, such as industrial automation,
industrial communications, discrete event systems modeling, safety-critical
systems, instrumentation, and electronics.

FRANCISCO VASQUES received the Ph.D.
degree in computer science from LAAS-CNRS,
Toulouse, France, in 1996.

He has been an Associate Professor with the
University of Porto, Portugal, since 2004. He is
the author and co-author of more than 150 articles
in the areas of real-time systems and industrial
communication systems. His current research
interests include real-time communication, indus-
trial communication, and real-time embedded
systems. He has been a member of the Editorial Board of Sensors and MDPI,
for the Sensor Networks Section, since 2018, and International Journal of
Distributed Sensor Networks (Hindawi). He has been an Associate Editor
of IEEE TRrANsACTIONs ON INDUSTRIAL INFORMATICS for the topic of Industrial
Communications, since 2007.

VOLUME 12, 2024



