
Received 11 July 2024, accepted 22 July 2024, date of publication 25 July 2024, date of current version 2 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3433405

Nonfragile Observer-Based Control With
Passivity and H∞ Performance for
a Class of Power-Line Inspection
Robots With Input Time-Delay
BINGSHAN LIU 1 AND CHEN ZHANG 2
1Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China
2Faculty of Automation, Huaiyin Institute of Technology, Huaian 223003, China

Corresponding author: Bingshan Liu (sanderlbs@126.com)

ABSTRACT This study introduces a nonfragile observer-based control strategy for power-line inspection
robots (PILRs) that adeptly tackles input time delays while integrating passivity and H∞ performance. The
research commences with the development of a nonlinear system model for PILRs, where the equilibrium
manifold linearization method is employed to transform these underactuated systems into a linear framework
using scheduling variables. Given the challenges posed by input delays, parameter disturbances, and
uncertainties in real-world applications, this study proposes a robust observer-based control framework.
Utilizing Lyapunov-Krasovskii functions and linear matrix inequalities (LMIs), the strategy confirms
the system’s robustness in maintaining mixed passivity and H∞ performance. Simulation assessments
substantiate the effectiveness of the proposed control approach, demonstrating its capacity to uphold system
stability under diverse operational conditions. The strategy significantly enhances the reliability and safety
of PILRs operating in complex environments, marking a pivotal advancement in robotic technologies for
maintaining and inspecting utility infrastructures. This contribution not only strengthens the operational
capabilities of PILRs but also provides a scalable approach to handling uncertainties and disturbances in
robotic control systems.

INDEX TERMS Power-line inspection robots (PILRs), passivity,H∞ performance, input delays, nonfragile
control.

I. INTRODUCTION
Robots have been deployed across a myriad of sectors,
as documented extensively in the literatures [1], [2], and [3]
and so on. In the system of electricity, for example, the
Power Line Inspection robot(PLIR) is capable of automatic
or remote inspection of the external high voltage equip-
ment(HVE) in substations, examine all kinds of problems in
the electrical equipment, and then supply related data to the
operator so that they can diagnose potential accidents, see
references [4], [5], and [6]. Hence, to guarantee the safety and
stability of the transmission line, it is necessary to inspect the
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transmission line periodically. Recently, research on Power
Line Inspection robots(PLIRs) has become a popular topic,
and many researchers at home and abroad have done a great
deal of research on detecting robots, for example, testing,
maintenance, nondestructive testing, etc., in [7], [8], [9],
and [10].

In practice, there are a number of PLIRs that operate
in the nonlinear system with underactuation [11], [12].
Since actuators in the PLIRs system with underactuation are
smaller than the freedom degrees, the system operating cost
is reduced, thus in high voltage (HV) line detection it is
wide to be applied. Nonetheless, controlling an underactuated
system presents a significantly greater challenge compared
to managing a fully actuated system. In particular, when
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the robot operates on HV, the underactuated system will
be influenced by any outside interference, which will cause
the system performance to deteriorate [13], [14], [15].
Additionally, the effect of input delay is also taken into
account. When PLIR is concerned with HVE, there exists the
delay in the date and in fact in other cases [16], [17]. In a lot of
practical problems, the state feedback control can not ensure
the desired stability when some system states cannot be
measured. In this situation, a controller based on observation
will assist in reconstructing the system’s status and providing
the system with the desired feedback, such as [18]. The main
advantage of an observer based control design is that it can
stabilize the plant with an output feedback control unit even
in the presence of external disturbances. Therefore, it remains
a challenge to enhance the capability of processing controller
in aspect of the uncertain PLIR system based on observer
with input delay. That is one of the motives for the study of
this thesis.

Among the above results, there have been many papers
on H∞ control problems in PILR systems in [19], [20],
and [21]. H∞ robust control is a useful tool for dealing
with uncertainty, and there has been lots of research on
it. In some nonlinear system time-delay, the H∞ control
under discrete-time and continuous time has been studied.
But there has not been a novel approach for the problem of
the nonlinear PLIRs system based on observation. Passive
control approaches have garnered considerable interest
due to their direct and seamless applicability to power
converters. Furthermore, they have become a focal point
of attention. The fundamental concept behind a passive
controller involves acquiring the energy and its fluctuations
within the closed-loop system in alignment with a achieved
state trajectory. This is achieved in virtue of incorporating
the desired damping and effectively channeling the force
that lacks work into the function about energy dissipation.
Muhammad and Cerezo [22] proposed passive controllers
were used in the dynamic ship model. Passivity-based
fault-tolerant synchronization has been proposed by [23]
to address the problem of failure in neural networks.
The passive sliding mode control problem for uncer-
tain, non-linear and input time-delay PLIR systems are
presented by [24].

Concurrently, the nonfragile control problem has gar-
nered significant attention in both theoretical and practical
domains [25]. Considerable focus has been directed towards
the development of robust feedback controllers designed
to substantially diminish the impact of disturbances on the
plant. Furthermore, a nonfragile controller possesses the
ability to withstand a bounded alteration in controller gain.
Then, a number of researchers have studied the problem of
nonfragile control methods based on the observer. Likewise,
nonfragile H∞ control has been explored in the context
of numerous singular systems with discrete-time featuring
uncertainties and input delay in parameters [26], [27]. But,
as far as we are concerned, nonfragile observer-based control,
incorporating passivity and H∞ performance, for a specific

category of power-line inspection robots with input time-
delay has not been extensively examined.

Generally speaking, in this paper, we consider the topic
of nonfragile observer-based control with passivity and H∞

performance for a class of power-line inspection robots with
input time-delay. Within the framework of the nonfragile
controller, LKF are devised to fully exploit the information
inherent in the PLIRs system. Linear Matrix Inequalities
(LMIs) are then presented to establish that the closed-
loop PLIR system achieves exponential asymptotic stability,
satisfying the essential conditions for system stability. The
key developments in this paper can be encapsulated as
follows:

(1)Motivated by the nonlinear PLIR system is constructed,
and the equilibrium manifold linearization method is utilized
to convert the underactuated PLIR into a linear model by
incorporating scheduling variables.

(2)For dynamic PLIR system, comparing with previous
researches, considering input delay, parameter disturbances,
uncertainties in practical situations, nonfragile observer-
based control is presented to demonstrate the stability of the
system above described.

(3)Lyapunov-Krasovskii functions and linear matrix
inequalities are introduced to demonstrate the passivity and
H∞ performance of the established system. Subsequently,
simulation verifications are performed to confirm the
robustness for discussed system.

This paper is structured in the following manner: Sec-
tion ‘‘Preliminary results’’ considers the problems in this
paper, introducing ‘‘Dynamic Model for PLIR’’, ‘‘Con-
struction of equilibrium manifold linearization model for
PLIR’’ and ‘‘Mathematical Preliminary Findings’’. Section
‘‘Principal findings and demonstrations’’ describes main
results in which two theorems clarify the stability of
the system. Section ‘‘Simulations’’ includes a numerical
simulation example aimed at validating the reliability of
the suggested controller. The conclusion is outlined in
Section ‘‘Conclusion’’.

II. PRELIMINARY RESULTS
A. DYNAMIC MODEL FOR PLIR
The PLIR system is a two-degree-of-freedom underactuated
system subjected to outside interference and input delay.
Figure 1-3 illustrates the balance adjusting parameters of
the PLIR. [28] Let α1 be the angle of inclination of the
robot’s body to the X1axis, and α2 represents the angle
measured from the initial position of the driven rod to its
engaged orientation. Let r1 denote the horizontal distance
from the cable to the body centroid and r2 denote the
horizontal distance between the counterweight boxes,ma and
mb represent the mass of the robot and the weight of the
counter [29]. Let u denote a system control moment, and τσ is
an external perturbation, then τδ represents the system input
delay. The input torque is represented as u(t − τδ) when the
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FIGURE 1. 3D model and framework illustration of PLIR.

FIGURE 2. Illustration of the frame in the X1O1Z1 plane.

system is influenced by an input delay, which can also be
abbreviated as τδ .

Utilizing the Euler-Lagrange equation, we derive the
motion equation governing the balance adjustment process of
the PLI robot under the influence of parameter disturbances
and input delays. The equation can be described as:([28])

uiτδ =
d
dt
(
∂L

∂α̇i
) −

∂L

∂αi
,

where, the external moment acting on the ith (i = 1, . . . n)
generalized coordinate with a time delay τδ is represented by

FIGURE 3. Illustration of the equilibrium adjustment for the PLIR.

u(t − τδ), and the equation I = X − Y represents the
balance regulation of motion for a PLI robot, where X and
Y denote the kinetic and potential energy, respectively.

X =
mar21 α̇

2
1

2
+
mbw2α̇22

2
+
mb

[
d2 + (−r2 + w sinα2)2

]
α̇21

2
,

Y = −magr1 sinα1+mbg [(r2+w sinα2) sinα1−d cosα1] ,

where g is the acceleration of gravity, w and d denote the
length of the actuator rod and the height of the T-shaped base,
respectively. We can choose mar1 = mbr2, then P can be
rewritten as

P = −mag (−d cosα1 + w sinα2 sinα1) .

Based on the previous research on the PLIR’s dynamic
model, the PLIR state equation is chosen as:

x =
[
x1 x2 x3 x4

]⊤
=

[
α1 α̇1 α2 α̇2

]⊤
,

where x is a continuous function, define ẋ =
dx
dt , then the

state equations are able to be formulated as:

ẋ = f [x, u (t − τδ)] ,
ẋ1 = x2,
ẋ2 =

−mbgd sin x1−mbgw sin x3 cos x1
mal21+mb

[
d2+(−r2+w sin x3)2

] + τσ ,

ẋ3 = x4,

ẋ4 =
uτn+mbd(−r2+w sin x3)(cos x3)x22−mbgd sin x1 cos x3

mbd2
.

(1)

From the equation above, it is evident that all n-order
derivatives of the state function remain continuous and
bounded, which qualifies the state function as the Cn

functions. The state space equation (1) for a PLIR has an
equilibrium point x = 0 when the control input satisfies
u0 = 0, i.e.

x =
[
x1 x2 x3 x4

]⊤
=

[
0 0 0 0

]⊤
.

In such case, the state space equation of PLIR is as follows:
0 = x2,
0 =

−mbgd sin x1−mbgw sin x3 cos x1
mar21+mb

[
d2+(−r2+w sin x3)2

] + τσ ,

0 = x4,

0 =
uτδ+mbd(−r2+w sin x3)(cos x3)x22−mbgd sin x1 cos x3

mbd2
,

(2)
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then, the derivation of equation (2) leads to:
x2 = 0,
x3 = arcsin

(
−dw−1 tan x1

)
,

x4 = 0,
uo = u(0) = mbgw sin x1 cos

[
arcsin

(
−dw−1 tan x1

)]
,

(3)

and from eq. (3) we can obtain: for every x1, −1 ≤

−dw−1 tan x1 ≤ 1, (3) has the equivalent x3 and u0. Given
that the equilibrium family encompasses every equilibrium
point within a nonlinear system, it is evident that system (1)
also contains at least one equilibrium state.

B. CONSTRUCTION OF EQUILIBRIUM MANIFOLD
LINEARIZATION MODEL FOR PLIR
The PLIR method involves approximating a nonlinear sys-
tem’s behavior by linearizing it about an equilibrium point.
This process transforms the original nonlinear equations into
their linear counterparts with respect to this specific point
x =

[
x1 x2 x3 x4

]⊤
=

[
0 0 0 0

]⊤, is transformed into the
following eq.(3),

ẋ = f
(
x, uτδ

)
=
∂f
∂x

∣∣∣∣
(x=0,u=0)

x

+
∂f
∂u

∣∣∣∣
(x=0,u=0)

uτδ + o
(
x, uτδ

)
= A x + Buτδ + o

(
x, uτδ

)
,

where o
(
x, uτδ

)
is a higher order approximation term that is

often omitted,

A =


0 1 0 0

−mbgd
mar21+mb

(
d2+r22

) 0 −mbgw
mar21+mb

(
d2+r22

) 0

0 1 0 0
−g
w 0 0 0



=


0 1 0 0
a21 0 a23 0
0 1 0 0
a41 0 0 0

 ,

B =
∂f
∂u

∣∣∣∣
u0=0

=

[
∂f1
∂u

∂f2
∂u

∂f3
∂u

∂f4
∂u

]⊤

=

[
0 0 0 1

mbw2

]⊤

=
[
0 0 0 b4

]⊤
,

where, we can think of o
(
x, uτδ

)
as nonlinear func-

tion H (x) and external interference ϖ (t), then let
y =

[
α2 α̇2

]T
=

[
x3 x4

]T , so that the state space equation
can be expressed as:

ẋ(t) = A x(t) + Bu(t − τδ) + DH (g) + F1ϖ (t)
y(t) = C x(t)
z(t) = C1x(t) + F2ϖ (t)

, (4)

where, x(t) represents the state of a dynamic system at time
t , which is the vector of n dimension and u(t − τδ) ∈

Rn denote the vector for control input in which τδ is a
time delay. The function H (x) ∈ Rn is a vector-valued

function with nonlinearity that fulfills the condition that is
quadratic bounded with respect to increments. Additionally,
ϖ (t) belongs to the space Rq and represents an external
disturbance. The measured output is denoted as y(t) ∈ Rl ,
while z(t) ∈ Rq represents an output subject to regulation.A ,
B, C , C, D , F1, F2 are matrices with proper dimensions.
In order to ensure that there is no instability in the control

process, A non-fragile robust controller that incorporates an
observer can be developed using the following approach:

˙̂x(t) = A x̂(t) + Bu(t − τδ) + DH (f̂ )
+(L +1L (t))[y(t) − ŷ(t)]
ŷ(t) = C x̂(t)
u(t) = −(K +1K (t))x̂(t)
f̂ = E x̂(t),

(5)

here, x̂(t) represents the state of a dynamic system at time t
and it is the vector of n dimension with estimation. There is a
control gainmatrix denoted byK , which is of dimensionm×

n. An observer gain matrix, represented asL has dimensions
of n×p.1K (t) stands for a time-varying disturbance matrix
within Rm×n, and 1L (t) represents another time-varying
disturbance matrix within Rn×p. It is important to note that
these perturbations are as follows:[

1K (t) 1L (t)
]T

=
[
M111(t)N1 M212(t)N2

]T
,

(6)

where, M1, M2, N1, N2 consist of some matrices with
suitable dimensions. 11(t) and 12(t) represent continuous
unknown functions, subject to the conditions1T

1 (t)11(t) ≤ I
and 1T

2 (t)12(t) ≤ I , where I is the identity matrix.
Combining the aforementioned equation (4) with equa-

tion (5), we derive the following expression:
ẋ(t) = A x(t) − B(K +1K (t))x(t − τδ)

+B(K +1K (t))σ (t − τδ) + DH (f ) + F1ϖ (t)
σ̇ (t) = (A − L C −1L (t)C )σ (t) + DH̃ (f )
+F1ϖ (t)
z(t) = C1x(t) + F2ϖ (t),

(7)

where H̃ (f ) = H (f ) − H (f̂ ).
Remark 1: We propose an innovative enhancement to

the non-fragile robust controller by harnessing an iterative
estimation technique. This technique, ‘iterative proportional-
integral interval estimation,’ is traditionally utilized in linear
discrete-time systems to incrementally perfect the state
estimation. It operates by fine-tuning the proportional and
integral components of the controller within a defined
range, thereby ensuring that the discrepancy between the
estimated and actual values is minimized to a preset margin.
The integration of this iterative mechanism could endow
the controller with superior precision and dependability,
especially in fluctuating operational contexts where the
system’s parameters or external perturbations are prone to
fluctuation. For power-line inspection robots (PILRs) that are
frequently subjected to varying conditions and demand acute
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accuracy in monitoring and manipulative tasks, this method
may offer distinct advantages.

C. MATHEMATICAL PRELIMINARY FINDINGS
For the investigation of the study outlined above, we intro-
duce the following assumptions, definitions, and lemmas.
Assumption 1 ([24]): The pair (A ,B) exhibits full con-

trollability, and the pair (A ,C ) demonstrates full observabil-
ity.
Assumption 2 ([25]): If the nonlinear function H (q) is

defined for all values of q, then there must exist a symmetry
matrix Tρ which fulfills the condition expressed by the
inequality[

q− q̂
H (q) − H (q̂)

]T
Tρ

[
q− q̂

H (q) − H (q̂)

]
≥ 0

is valid, in that case, the non-linear function H (q) satisfies
the condition of being increasing and quadratically bounded,
while the symmetric matrix Tρ is denoted as the incremental
multiplier matrix.
Definition 1 ([30]): The composite system (7) exhibits

passivity if∫ t

0
ϖ T (t)z(t)dt ≥ η,∀ϖ (t) ∈ L2[0,∞),

where η is a constant that might vary according to the initial
conditions.
Definition 2 ([31]): That composite system (7) achieves

H∞ performance when the following inequality holds true:∫ t

0
zT (s)z(s)ds ≤ γ 2

∫ t

0
ϖ T (s)ϖ (s)ds,

where γ being a constant that may be influenced by the
system’s initial conditions.

Lemma 1 ([32]): For a given matrix S =

[
S11 S12
S T

12 S22

]
with S11 = S T

11,S22 = S T
22, the equivalent conditions are

as follows:
(1) S < 0;
(2) S11 < 0, S22 − S T

12S
−1
11 S12 < 0;

(3) S22 < 0, S11 − S12S
−1
22 S T

12 < 0.
Lemma 2 ([33]): Given arbitrary real matrices P , Q, and

a matrix function F(t) of appropriate dimensions, where F(t)
satisfies FT(t)F(t) ≤ I for all t ∈ R. Then for every number
ε > 0, the following inequality holds true:

PF(t)Q + QTFT (t)PT
≤ λPPT

+ λ−1QTQ.

Lemma 3 ([34]): There exists an inequalityW +QTY T
+

Y Q < 0 for proper dimensions matrices W , Y , Q and U ,
if µ ̸= 0 is a constant, which is equal to[

W µY + QTU T

∗ −µU − µU T

]
< 0.

In order to verify the stability of the system (4), the LMI
method is used to assess whether the integrated system,
as described by equation (7), fulfills the specified criteria for
passivity and H∞ robustness.

III. PRINCIPAL FINDINGS AND DEMONSTRATIONS
In this segment, a condition that proves sufficient is
explored. The system in question is inherently reactive,
maintaining equilibrium without the influence of external
inputs, and demonstrates stability that gradually approaches
an asymptotic state. To commence, Theorem 1 is formulated
as follows.
Theorem 1: Considering the amalgamated system (7),

assume the existence of positive constants λ1, λ2, λ3, u, v,
along with normal η and non-zero constants µ. Additionally,
consider positive definite matrix, denoted as P , Q1, Q2,
and R ∈ Rn×n, as well as the matrices U ∈ Rm×m,
K ∈ Rm×n, and L ∈ Rn×q. Subsequently, the integration
of the disturbance specified in (6) into the system denoted
as (4) results in a configuration that demonstrates both passive
stability and asymptotic stability when subjected to control by
the controller based on observer (5). The gain of controller is
determined by K = U −1K , and the gain of observer is
given by L = R−1L . These conditions are satisfied when
the following Linear Matrix Inequality (LMI) is valid:

U1−B ˆK 0 B ˆK U2 0 PF1 − C T
1 U3℧1

∗ ϕ2 0 0 0 0 0 0 0
∗ ∗ U4 0 0 U5 RF1 ˆK ℧2
∗ ∗ ∗ ϕ4 0 0 0 0 0
∗ ∗ ∗ ∗ uT22 0 0 0 0
∗ ∗ ∗ ∗ ∗ vT22 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −F T

2 − F2 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ U6 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ℧3


< 0,

(8)

where

U1 = A TP + PA + uT̂11 + Q1,U2 = PD + uT̂12,

U3 = µ(PB − BU ) − ˆK ,

U4 = A TR + RA − C T L̂ T
− L̂ C

+ λ3C
TNT

1 N1C + Q2 + vT̂11,

U5 = RD + vT̂12,U6 = −µU − µU T ,

ϕ2 = −Q1 + λ1N
T
2 N2, ϕ4 = −Q2 + λ2N

T
2 N2,

℧1 = [RM1,PBM2, 0] ,℧2 = [0, 0,RM1] ,

℧3 = diag {−λ1 I ,−λ2 I ,−λ3I } .

Proof: For controllers based on system (4) and
observers (5), contemplate the subsequent Lyapunov-
Krasovskii functional candidate:

V (t) = V1(t) + V2(t) + V3(t) + V4(t),

V1(t) = xT (t)Px(t),V2(t) =

∫ t

t−σ
xT (t)Q1x(t)dt,

V3(t) = σ T (t)Rσ (t),V4(t) =

∫ t

t−σ
σ T (t)Q2σ (t)dt,

thus, the rate of change of the potential energy function
V (t) with respect to time can be described by the sum of
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the time derivatives of its individual components. This is
mathematically expressed as:

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t),

where,

V̇1(t) = ẋT (t)Px(t) + xT (t)P ẋ(t)

= [A x(t) − B(K +1K )x(t − τδ)

+ B(K +1K )σ (t − τδ)

+ DH (f ) + F1ϖ (t)]TPx(t) + xT (t)P[A x(t)

− B(K

+1K )x(t − τδ) + B(K +1K )σ (t − τδ)

+ DH (f ) + F1ϖ (t)],

V̇2(t) = xT (t)Q1x(t) − xT (t − τδ)Q1x(t − τδ),

V̇3(t) = σ̇ T (t)Rσ (t) + σ T (t)R ˙σ (t)

=

[
(A − L C −1L C )σ (t) + DH̃ + F1ϖ (t)

]T
× Rσ (t)

+ σ T (t)R
[
(A − L C −1L C )σ (t) + D ˜H (f )

+F1ϖ (t)F1ϖ (t)] ,

V̇4(t) = σ T (t)Q2σ (t) − σ T (t − τδ)Q2σ (t − τδ).

So that

V̇ (t)

= V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t)

= xT (t)(A TP + PA + Q1)x(t) + xT (t)(−PBK

− PB1K )x(t − τδ) + xT (t)(PBK

+ PB1K )σ (t − τδ)

+ xT (t)PDH (f ) + xT (t)PF1ω(t)

+ xT (t − τδ)(−Q1)x(t

− τδ) + xT (t − τδ)(−K TBTP −1K TBP)x(t)

+ σ T (t)(RA + A TR − C TL TR

− RL C − C T1L TR

− R1L C + Q2)σ (t) + σ T (t)RD ˜H (f )

+ σ T (t)RF1ω(t)

+ σ T (t − τδ)(−Q2)e(t − τδ) +ϖ T (t)F T
1 Rσ (t)

+ σ T (t − τδ)(K TBTP +1K TBTP)x(t)

+ H (f )T (f )DTPx(t +ϖ T (t)F T
1 Px(t)

+ H̃ (f )TDTRσ (t). (9)

Utilizing Lemma2, we obtain

ϱ1 = xT (t)(−PB1K )xT (t − τδ)

+ xT (t − τδ)(−1K TBTP)xT (t)

= xT (t)(−PBM212(t)N2)x(t − τδ) + xT (t

− τδ)(−N T
2 1

T
2 (t)M

T
2 BTP)x(t)

≤ λ−1
1 xT (t)PBM2M

T
2 BTPx(t)

+ λ1xT (t − τδ)N T
2 N2x(t − τδ),

ϱ2 = xT (t)PB1K σ (t − τδ) + σ T (t − τδ)1K TBTPx(t)

= xT (t)PBM212(t)N2σ (t − τδ)

+ σ T (t − τδ)N T
2 1

T
2 (t)M

T
2 BTPx(t)

≤ λ−1
2 xT (t)PBM2M

T
2 BTPx(t)

+ λ2σ
T (t − τδ)N T

2 N2σ (t − τδ),

ϱ3 = −C T1L TR − R1L C

= −C TN T
1 1

T
1 (t)M

T
1 R − RM111(t)N1C

≤ λ−1
3 RM1M

T
1 R + λ3C

TN T
1 N1C . (10)

Replacing the inequalities from (10) into (9) leads to

V̇ (t)

= V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t)

≤ xT (t)(A TP + PA + λ−1
1 PBM2M

T
2 BTP

+ λ−1
2 PBM2M

T
2 BTP + Q1)x(t)

+ xT (t)(−PBK )x(t

− τδ) + xT (t)(PBK )σ (t − τδ) + xT (t)PDH (g)

+ xT (t)PF1ϖ (t) + xT (t − τδ)(−Q1 + λ1N
T
2 N2)

× x(t − τδ)

+ xT (t − τδ)(−K TBTP)x(t) + σ T (t)(A TR + RA

− C TL TR − RL C + λ−1
3 RM1M

T
1 R

+ λ3C
TN T

1 N1C

+ λ1N
T
2 N2 + Q2)σ (t) + σ T (t)RG H̃

+ σ T (t)RF1ϖ (t)

+ σ T (t − τδ)(−Q2 + λ2N
T
3 N3)σ (t − τδ) + σ T (t

− τδ)(K TBTP)x(t) + H T (f )G TPx(t)

+ϖ T (t)F T
1 Px(t)

+ H̃ TG TRσ (t) +ϖ (t)T (t)F T
1 Rϖ (t),

then,

V̇ (t) − 2ϖ (t)z(t) ≤ χT (t)ϒ1χ (t),

in which,

χT (t)

=
[
xT (t) xT (t−τδ) σ T (t) σ T (t − τδ)H T (f ) H̃ T ϖ T (t)

]T
.

Ifϒ1 is less than zero, then the expression V̇ (t)−2ϖ (t)z(t)
is negative. Consequently,

∫ t

0
ϖ T (t)z(t)dt >

1
2

∫ t

0
V (t)dt = η,
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subsequently, the above can prove that ϒ1 < 0.

ϒ1 =



ϕ1 −PBK 0 PBK PD 0 PF1 − C T
1

∗ ϕ2 0 0 0 0 0
∗ ∗ ϕ3 0 0 RD RF1
∗ ∗ ∗ ϕ4 0 0 0
∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ −F T

2 − F2


,

where

ϕ1 = A TP + PA + λ−1
1 PBM2M

T
2 BTP

+ λ−1
2 PBM2M

T
2 BTP + Q1,

ϕ2 = −Q1 + λ1N
T
2 N2, ϕ4 = −Q2 + λ2N

T
3 N3

ϕ3 = RA − C TL TR + A TR − RL C

+ λ−1
3 RM1M

T
1 R

+ λ3C
TN T

1 N1C + λ1N
T
2 N2 + Q2.

Given the presence of the nonlinear term PBK in ϒ1,
we proceed to address the nonlinear term as follows: since
the functionH (f ) meets the bounded condition for quadratic
increment, the following inequality holds true:[

x(t)
H (f )

]T [
G 0
0 I

]T
Tρ

[
G 0
0 I

] [
x(t)
H (f )

]
⩾ 0[

σ (t)
H̃

]T [
G 0
0 I

]T
Tρ

[
G 0
0 I

] [
σ (t)
H̃

]
⩾ 0,

Set

Tρ =

[
T11 T12
T21 T22

]
, ϕ =



G 0 0 0 0 0 0
0 I 0 0 0 0 0
0 0 G 0 0 0 0
0 0 0 I 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 I 0
0 0 0 0 0 0 I


,

then,

χT (t)ϕT



uT11 0 0 0 uT12 0 0
∗ 0 0 0 0 0 0
∗ ∗ 0 0 0 0 0
∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ uT22 0 0
∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0


ϕχ (t) ⩾ 0,

χT (t)ϕT



0 0 0 0 0 0 0
∗ 0 0 0 0 0 0
∗ ∗ vT11 0 0 vT12 0
∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ vT22 0
∗ ∗ ∗ ∗ ∗ ∗ 0


ϕχ (t) ⩾ 0,

where

V̇ (t) − 2ϖ (t)z(t) ≤ χT (t)ϒ1χ (t),

ϒ =



ψ1 −PBK 0 PBK ψ2 0 PF1 − C T
1

∗ ϕ2 0 0 0 0 0
∗ ∗ ψ3 0 0 ψ4 RF1
∗ ∗ ∗ ϕ4 0 0 0
∗ ∗ ∗ ∗ uT22 0 0
∗ ∗ ∗ ∗ ∗ vT22 0
∗ ∗ ∗ ∗ ∗ ∗ −F T

2 − F2


,

and

ψ1 = ϕ1 + uT̂11, ψ2 = PD + uT̂12, ψ3 = ϕ3 + vT̂11,

ψ4 = RD + vT̂12T̂11 = GTT11G, T̂12 = GTT12G.

Imagine that a nonlinear event can be represented as

PBK = (PB − BU )U −1 ˆK + B ˆK , K = U −1 ˆK ,

at this juncture,ϒ has the potential to undergo transformation
into

ϒ̄ =



ψ1 −B ˆK 0 B ˆK ψ2 0 PF1 − C T
1

∗ ϕ2 0 0 0 0 0
∗ ∗ ψ3 0 0 ψ4 RF1
∗ ∗ ∗ ϕ4 0 0 0
∗ ∗ ∗ ∗ uT22 0 0
∗ ∗ ∗ ∗ ∗ vT22 0
∗ ∗ ∗ ∗ ∗ ∗ −F T

2 − F2



+



0 ψ5 0 ψ6 0 0 0
∗ 0 0 0 0 0 0
∗ ∗ 0 0 0 0 0
∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0


,

where,

ψ1 = ϕ1 + uT̂11, ψ2 = PD + uT̂12, ψ3 = ϕ3 + vT̂11,

ψ4 = RD + vT̂12, ψ5 = −(PB − BU )U −1 ˆK ,

ψ6 = (PB − BU )U −1 ˆK ,

T̂11 = GTT11G, T̂12 = GTT12G.

If

Y =



PB − BU
0
0
0
0
0
0


,Z = U −1



− ˆK T

0
ˆK T

0
0
0
0



T

,

subsequently, based on the Lemma 3, we obtain

ϒ̄ ′
=



ψ1 −B ˆK 0 B ˆK ψ2 0 PF1 − C T
1 �1

∗ ϕ2 0 0 0 0 0 0
∗ ∗ ψ3 0 0 ψ4 RF1 ˆK
∗ ∗ ∗ ϕ4 0 0 0 0
∗ ∗ ∗ ∗ uT22 0 0 0
∗ ∗ ∗ ∗ ∗ vT22 0 0
∗ ∗ ∗ ∗ ∗ ∗ −F T

2 − F2 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ �2


.
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where, �1 = µ(PB − BU ) − ˆK , �2 = −µU − µU T .
Applying the Schur complement, if ϒ̄ ′ < 0, it implies that

ϒ < 0. Consequently, the validity of LMI (8) is established,
and this indicates that ϒ1 < 0, signifying the passive and
asymptotically stable nature of the system (7).

Indeed, when ω(t) = 0, similarly, we readily derive

V̇ (t) ≤ ξT (t)3ξ (t),

where

ξ (t)

=

[
xT (t) xT (t − τδ) σ T (t) σ T (t − τδ) H T (g) H̃

]T
,

and

3 =


ϕ1 −PBK 0 PBK PD 0
∗ ϕ2 0 0 0 0
∗ ∗ ϕ3 0 0 RG
∗ ∗ ∗ ϕ4 0 0
∗ ∗ ∗ ∗ uT22 0
∗ ∗ ∗ ∗ ∗ vT22

 < 0.

If ϒ1 < 0, Schur Complement Lemma implies that 3 <

0. Additionally, V̇1(t) ≤ ξT (t)3ξ (t) holds for ξ (t) ̸= 0 ;
indicating the asymptotic stability of system (7) when ξ (t) =

0. This concludes the proof.
Building upon the investigation into the examination of

the passive and stable characteristics for closed-loop systems,
in above system we delve into the H∞ optimal properties,
as established in Theorem 1. Consequently, Theorem 2
unfolds as follows. □
Theorem 2: Assuming γ remains constant, consider the

external disturbance ϖ (t) to be not zero. Assume the exis-
tence of positive constants λ1,λ2,λ3, u, v, normal η, non-
zero constantsµ, positive definitematricesP,Q1,Q2,R ∈

Rn×n, matrices U ∈ Rm×m, ˆK ∈ Rm×n, and L̂ ∈

Rn×q. The closed-loop system exhibits passivity, asymptotic
stability and H∞ performance when it meets the conditions
of the LMI (11) stated below:

Ū1 −B ˆK 0 −B ˆK U2 0 41 U3 ℧1
∗ ϕ2 0 0 0 0 0 0 0
∗ ∗ U4 0 0 U5 RF1 ˆK ℧2
∗ ∗ ∗ ϕ4 0 0 0 0 0
∗ ∗ ∗ ∗ uT22 0 0 0 0
∗ ∗ ∗ ∗ ∗ vT22 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 42 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ U6 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ℧3


< 0,

(11)

where

Ū1 = U1 + I ,

41 = PF1 − C T
1 + C T

2 F2

42 = −F T
2 − F2 + I − γ 2.

TABLE 1. Specifications for a single-link flexible manipulator’s
parameters.

Proof: For any perturbation ω(t) that is non-zero,
regardless of its specific values, we obtain:

V̇ (t) + zT (t)z(t) − γ 2ϖ T (t)ϖ (t) < 0,

subsequently,∫ t

0
zT (t)z(t)dt < γ 2

∫ t

0
ϖ T (t)ϖ (t)dt − V1(0) + V1(t).

As stated in Theorem 1, the discussed system exhibits
asymptotic stability. Therefore, as time approaches infinity
(t → ∞), we can derive:∫ t

0
zT (t)z(t)dt < γ 2

∫ t

0
ϖ T (t)ϖ (t)dt.

If so, it is asserted that the H∞ performance criteria are
satisfied. Given that V̇ (t) + zT (t)z(t) − γ 2ϖ T (t)ϖ (t) ⩽
χT (t)ϒ4χ (t), the verification for the matrix inequality (11)
is readily attainable, where, as shown in the equation at the
bottom of the next page.
Hence, χT (t)ϒ4χ (t) < 0 is synonymous with∫ t

0 z
T (t)z(t)dt < γ 2

∫ t
0 ϖ

T (t)ϖ (t)dt , fulfilling the H∞

performance criterion.

IV. SIMULATIONS
To assess the efficacy of the suggested nonfragile observer-
based controller, this section will involve conducting MAT-
LAB simulations on a PLIR system.
The precise parameters of the PILR are outlined in

Table 1. For a more comprehensive set of physical parameters
regarding the system, please refer to citation [29].
The simulation design incorporates the following model

parameters:

A =


0 1 0 0

−48.6 −1.25 48.6 0
0 0 0 1

19.5 0 −19.5 0

 ,
B =

[
0 21.6 0 0

]T
,H (f ) = sin(f ),

D =


0
0

−2.44
0

 ,C =


1 0
0 0
0 1
0 0


T

,

E =
[
0 0 1 0

]
,F =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,
102900 VOLUME 12, 2024



B. Liu, C. Zhang: Nonfragile Observer-Based Control With Passivity and H∞ Performance

FIGURE 4. Actual value and estimate value of x1.

ϖ (t) =


eps(0)
0
0
0

 .
The matrix representing the perturbation (6) can be

deduced from the given data as follows:

M1 =


1 0
0 1
0 0
0 0

 ,M2 = 1,N1 =

[
0 1
1 0

]
,N2 =


1
0
1
0

 ,
12(t) = e,13(t) =

[
0 p
h 0

]
, τδ = eps(0),

where,

e = cos(4t), p = cos(3t), h = −0.6 cos(2t).

Given that Assumption 2 is valid, it implies that the
nonlinear function H (f ) satisfies the quadratic bound
constraint, implying that as f increases, so does the growth
of H (f ), so the incrementing matrix can be expressed in the
following manner:

Tρ =

[
−1 0
0 1

]
.

To guarantee the system stability, one can solve the LMIs
of Theorem 1. Subsequently, the gain of controller and the
gain of observer can be determined, respectively:

K =
[
4.58 5.24 −0.43 −0.83

]
,

L =

[
13.13 −12.00 14.59 15.81
14.33 −26.98 −26.68 14.73

]T
.

FIGURE 5. Actual value and estimate value of x1.

FIGURE 6. Actual value and estimate value of x3.

FIGURE 7. Actual value and estimate value of x4.

Upon substituting the gain of controller and the gain of
observer into the non-fragile robust controller derived from
observer (5), associated with the original system (4), and then
simulating the system using MATLAB software, Figures 4
to 11 can be generated.

ϒ4 =



U1 + I −B ˆK 0 −B ˆK U2 0 PF1 − C T
1 U3 ℧1

∗ ϕ2 0 0 0 0 0 0 0
∗ ∗ U4 0 0 U5 RF1 ˆK ℧2
∗ ∗ ∗ ϕ4 0 0 0 0 0
∗ ∗ ∗ ∗ uT22 0 0 0 0
∗ ∗ ∗ ∗ ∗ vT22 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −F T

2 − F2 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ U6 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ℧3


.
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FIGURE 8. Error between real value and estimate value of x1.

FIGURE 9. Error between real value and estimate value of x2.

FIGURE 10. Error between real value and estimate value of x3.

FIGURE 11. Error between real value and estimate value of x4.

Figures 4 to 7 illustrate that, when the influence of the
observer-based controller (5) works, the state for above
system converges toward stability, and the estimated system
state progressively approaches its actual value. Figures 8
to 11 reveal a diminishing trend in the estimation error of the
system, ultimately approaching zero.

FIGURE 12. Angle tracking error.

When the novel controller is not used, the following
contrast graph present the angle tracking error:

V. CONCLUSION
This investigation has comprehensively analyzed perturba-
tions affecting both the controller gain and the observer
gain within a non-fragile observer-based control framework
for Power-Line Inspection Robots (PILRs). Unlike previous
methodologies, the primary goal of this study is to develop
an effective non-fragile state feedback controller grounded
in observational data. By employing Lyapunov-Krasovskii
Functional (LKF) methods and Linear Matrix Inequalities
(LMIs), we demonstrate that the states of the closed-loop
system achieve passivity and are stabilized with H∞ perfor-
mance, even within a continuous-time context. The efficacy
and robustness of the proposed approach are rigorously
validated through theoretical derivations and a series of
simulation experiments, confirming its superior performance
and reliability in enhancing the operational stability of
PILRs. Nevertheless, the appliation and sustainability of
PLIR remain improve and develop.
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