IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 4 July 2024, accepted 22 July 2024, date of publication 25 July 2024, date of current version 5 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3433524

== RESEARCH ARTICLE
LK-Index: A Learned Index for KNN Queries

YONGXIN PENG

School of Mathematics and Computer Application, Shangluo University, Shangluo 726000, China
Engineering Research Center of Qinling Health Welfare Big Data, Universities of Shaanxi Province, Shangluo 726000, China

e-mail: pengyx185@163.com
This work was supported by the Science and Technology Research Project of Shangluo University of China under Grant 21SKY004.

ABSTRACT The k-Nearest Neighbor (kNN) search is a crucial problem in database and data mining,
especially in high-dimensional space. However, traditional kNN algorithms based on distance metrics and
brute-force search often have low search efficiency and accuracy, and high computational complexity when
dealing with large-scale high-dimensional datasets. These limitations have made them a bottleneck in prac-
tical applications. Inspired by the recently learned index that replaces B-tree with machine learning models,
I propose a method for kNN search based on a learned index, named LK-index. Initially, a conventional
tree-based index is created to process queries. The tree index is then utilized to find the k-nearest neighbor
points, and the neural network is trained to act as a learned index. Finally, the actual k-nearest neighbors
are obtained by computing the potential k-nearest neighbor points. Experiments conducted on synthetic and
real-world datasets demonstrate that the LK-index yields certain advantages regarding search accuracy and
time consumption.

INDEX TERMS KNN, learned index, locality sensitive hashing (LSH), recursive model index (RMI), neural

network.

I. INTRODUCTION

In the era of big data, efficient discovery of similarity
and accurate or approximate pattern recognition and clas-
sification in massive high-dimensional data have become
crucial research topics. One widely used machine learning
method is the k-Nearest Neighbor (kNN) search algorithm,
which is indispensable in supervised learning. In practical
application scenarios such as image recognition, text catego-
rization, recommender systems, and medical diagnosis, the
kNN algorithm has achieved remarkable results. Therefore,
the kNN algorithm is widely used in the field of supervised
learning.

The kNN algorithm is a commonly used technique to
identify the closest neighbor within a dataset. However,
it becomes computationally expensive as the dataset grows.
To improve its efficiency, data can be organized using tree
data structures like KD-tree [2], R-tree [3], HD-index [4],
and HCTree [5]. These structures reduce the number of com-
parisons needed by hierarchical division and partitioning.
However, when dealing with high-dimensional data, the tree

The associate editor coordinating the review of this manuscript and

approving it for publication was Domenico Rosaci

structure can lead to the ‘“curse of dimensionality,” which
decreases the search efficiency and turns it into a linear scan.

Recent research on learned index [1], [6] has presented
new avenues for index structures ((Fig. 1(a)). The paper
investigates how a machine learning model can be uti-
lized instead of a B-tree. It discusses the adoption of a
regression approach to determine the point to be queried
between a minimum error value and a maximum error value,
which validates the feasibility of a learned index model
on a B-tree.

However, most learned index focus on point and range
queries, with few studies on specific tree structures. I start
by asking myself the following question: Can I design a new
index structure (as shown in Fig. 1b) for kNN search that
adopts a neural network to replace the traditional tree-based
index structure to deliver high performance in time and
efficiency? My answer to that question is a new index struc-
ture called LK-index. I propose a learned index structure
to improve traditional tree-based index structures for kNN
search. The contributions of the proposed approach are sum-
marized as follows:

To build a learned index to answer kNN queries, I formu-
late the kNN search as a multiclass classification problem.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

103096

VOLUME 12, 2024

https://orcid.org/0009-0001-9943-4524
https://orcid.org/0000-0002-9256-9995

Y. Peng: LK-Index: A Learned Index for KNN Queries

IEEE Access

The candidate k-nearest neighbor points are obtained by mul-
tiple indexing and the final result is computed.

I propose a learned index based on a neural network model
to support kNN queries. The model is trained based on the
traditional tree index.

I conducted comprehensive experiments on eight bench-
mark datasets, Empirically I found that my index structure
leads most of the time in terms of search efficiency and search
accuracy.

The following is an overview of the paper’s structure: I will
begin by giving an introduction and background in Section II.
After that, I will explain how the kNN search task can be
approached as a supervised multi-classification problem and
provide a summary of my proposed method in Section III.
In Section IV, I will present the results of my evaluation.
Lastly, I will discuss future work and conclude my findings
in Section V.

Query ¢ Query ¢

(I

N Model

Pos Lable
L LT
f

— ~
The location of the candidate k-nearest neighbor

e

pos—min_err postmax_er

(a)Learned Index by Kraska et al. (b) Lk-Index Based on learned Index

FIGURE 1. Tree-based index versus learned index.

Il. BACKGROUND

A. RELATED WORK

This section provides an overview of the previous work in
the kNN field. Traditional nearest neighbor search algorithms
are broadly categorized into two types: tree-based [2], [3],
[7], [8], [9], and locality-sensitive hash-based [10], [11], [12],
[13].

Tree structure is a popular method for the kKNN search. This
structure requires space subdivision and comparison between
the query and candidate data points that are likely to be close
to it. One example of such a structure is the Ball-tree, which
efficiently retrieves nearest neighbors. Each internal node of
the ball tree represents a hypersphere containing multiple data
points, and the hyperspheres represented by its child nodes
are completely enclosed by the hyperspheres of the parent
nodes. Other structures like R-tree [3] and A-tree [9] have
also been proposed. However, with increasing data dimen-
sionality in practical applications, using tree structures for
exact searches in the kNN process can lead to a “curse of
dimensionality.” This phenomenon degrades the search-to-
line scanning and significantly reduces query efficiency.

Locality Sensitive Hashing (LSH) is a widely used tech-
nique for kNN search. The basic principle behind this
technique is to use the same hash function to map two
adjacent data points in the original data space to the same
storage space. Based on this, points that are closer to each
other are likely to be in the same set. While the approximate

VOLUME 12, 2024

nearest proximity algorithm has been able to satisfy the near-
est neighbor query problem for some high-dimensional big
data, some methods have been proposed to reduce the size of
the index [14]. However, the search time of the algorithm is
longer and the search accuracy also needs improvement.

Recently, Kraska and others from Google proposed the
structure of a learned index [1], called the Recursive Model
Index (RMI), and various improvements on the RMI [15],
[16]. Since then, there has been a corpus of work on extending
the ideas of the learned index to spatial and multi-dimensional
data (e.g., [6], [17], [18], [19], [20], [21]). It is used to replace
or enhance traditional tree-based indexes, such as HKC+--
index [22]. There is also a learned index method built on LSH
that can efficiently and flexibly map high-dimensional data
to low-dimensional spaces, such as LLSH [23]. In addition,
there is research focusing on the design and testing of learned
index and providing findings to select suitable learned index
under various practical scenarios [24].

B. PRELIMINARIES
Consider a dataset D with n data and dimension d. Given a
query point ¢ = (i, ..., ig) and a Euclidean distance function
dis. Suppose that for the query point g, the true set of k-nearest
neighbors is Ty = (p1, ..., pr), where p; is the closest to g,
followed by p», and so on. Assume that the set of k-nearest
neighbors of the sequential candidates obtained by the final
calculation is Cy = (p}, ..., p}).

Definition 1: Denote by c the ratio of the distance between
the output k-nearest neighbor and the true k-nearest neighbor
for a query point g:

k . /
c=1x (Z i) (q’p")) (1)

' dis (g, pi)

If ¢ = 1, it means that the predicted point is the true
k-nearest neighbor; otherwise, the predicted result does not
contain all the true k-nearest neighbors.

Definition 2: Use acc to denote the accuracy of the predic-
tion, i.e., the proportion of data that correctly finds the true
k-nearest neighbor points, out of all the data to be queried.
Assuming that there are n’ items of data such that ¢ = 1in (1),
then:

n/

acc = — 2)
n

Example 1: Suppose there are five two-dimensional data
points, named g1, q2, g3, 4, and g5, which need to be queried
to find their nearest neighbor. Given that the actual nearest
neighbors are (0.1, 0.2), (0.2, 0.3), (0.3, 0.4), (0.4, 0.5), and
(0.5, 0.6), I need to determine the nearest neighbor for each
point. The nearest neighbors found for the points are (0.1,
0.2), (0.2,0.3), (0.3,0.4), (0.4,0.6), and (0.7, 0.8). The acc is
calculated as 3/5, which is equal to 60%, as (2).

Definition 3: Use precision to represent the proportion of
correctly identified positive samples as a percentage of all
samples predicted as positive by the classifier. Assuming that

103097

IEEE Access

Y. Peng: LK-Index: A Learned Index for KNN Queries

the nearest neighbor to be found is k, and the number of
candidate nearest neighbors is k', then:
k

precision = o 3)

Example 2: Find the three nearest neighbors of the query

point g. The true labels are (1,1,1,0,0,0,0,0,0,0), and if the

output is labeled (1,1,1,1,1,0,0,0,0,0), then the precision is
3/5=60%.

Il. LK-INDEX

The LK-index is a technique that replaces the search and
computation part of the tree index structure with a neural
network model. For instance, when using a KD tree for the
k-nearest neighbor search, fetching the k-nearest neighbor
points requires numerous backtracking operations and dis-
tance calculations. However, with the LK-index approach,
neural network operations can replace this process. Addition-
ally, a small amount of computation and sorting are used to
enhance the accuracy of the neural network, achieving similar
results as the traditional approach.

Different index structures can be defined as regression or
classification tasks as required. For example, the k-nearest
neighbor search using KD-tree can be viewed as a multi-
categorization problem. In other words, the point to be
queried and the output result have similar attributes repre-
sented in the form of distances. The closer the distances, the
more similar the classifications can be seen. Specifically, for
a node, if this node may be one of the k£ neighbors of the
point to be searched, i.e., candidate k nearest neighbors, it is
considered as a positive class denoted by 1. On the contrary,
it is a negative class indicated by 0.

Based on the above discussion, the process of constructing
the LK-index is divided into two parts.

A. NEURAL NETWORK TRAINING AND PREDICTION

The neural network (Fig. 2) is trained using supervised learn-
ing, with a sigmoid activation function. To begin with, dataset
D is transformed into a KD-tree, and each of the »n data points
in the tree is randomly assigned an index value from O to
n, resulting in n categories. In this study, I use the Kohonen
self-organizing mapping network (SOM) to identify k-nearest
neighbor points in the training and test datasets. First, the
entire dataset D is input into the SOM, and through unsu-
pervised learning, the network automatically maps the data
points to the corresponding nodes in the output layer. Each
node represents a class of data points in the spatial location
of the output layer and maintains the topological relationship
of the input data. Then, for each query point g, I find its corre-
sponding winner node through SOM. Based on the location of
the winner node, combined with the neighborhood property
of the SOM, I am able to identify the k nearest-neighbor
nodes of g. The index values of these nodes are subsequently
converted into corresponding category labels, which are used
to construct the label sets for the training and testing sets. For
the labels of the training and test sets, the categorical values

103098

Input(iy,i,)

Kohonen
Model

Input(iy,i,)

Layer L,

Layer L,

|
¥

Index(1,4,5)

Layer L

Label Label
(0,1,1,0,1,1,0) Loss (0,1,0,0,1,1,0)

FIGURE 2. The supervised strategy in the neural network stage.

corresponding to the index values are set to 1 and the rest
to 0. When the model is trained, for a given query point g,
the candidate k nearest neighbor points are outputted. To find
the corresponding nodes in the KD-tree, indexing is used to
calculate their distances from the point g being searched, and
then they are sorted. Finally, the first k nodes are taken as the
true k-nearest neighbors.

In a multiclassification model, the search for each class can
be seen as a binary classification problem. This means that a
point can either be a k-nearest-neighbor point (represented
by 1) or not (represented by 0). The classifier predicts the
probability distribution as p=Pr(y=1). As a result, the loss
function is defined accordingly:

loss(y, p) = —logPr(ylp) = —(ylog(p) + (1 — y)log(1 — p))
4)

When the actual label of a piece of data is y = 1,
the loss is calculated as -log(p). This means that the
lower the probability of the classifier’s predicted probability
p=Pr(y=1), the higher the loss of classification. Conversely,
the higher the predicted probability p=Pr(y=1), the lower the
loss. On the other hand, when the label y = 0, the loss is
calculated as -log(1-p). In this case, the higher the predicted
probability p=Pr(y=1), the higher the loss of classification.

B. LK-INDEX FOR kNN SEARCH

In this section, I will provide a technical explanation of my
proposed solution. My approach consists of five stages (see
Fig. 3). The entire training and prediction process is done
using a feedforward neural network.

1) INPUT STAGE

The input data used for a search should have the same dimen-
sion. An input data point is represented as g = (iy, ..., ig),
where i1, ..., iy denote the values in each dimension. If there
are x data points to be searched, then the whole input data is
represented as D = qi, ..., g5, where qi, ..., g have the
same d values.

VOLUME 12, 2024

Y. Peng: LK-Index: A Learned Index for KNN Queries

IEEE Access

..

: Input Mapping and Transformation r Index . Calculation
; ali[] — mnhnn 1 P P
@ | -nﬂm—-—n-nﬂ—rﬁ' PraP2P3s- 2

H
H

H

1

; @

! 3] »
i Original Feature j:\L.]F) F s
H Input extraction u C C

-f-rnllﬂ-f‘%* P1sPD3se P

* Pn
"
"
1" i
" '
"
i

% 4L) o [o[5 [- [o. m 2] .- | : Y
FIGURE 3. Overview of my approach.
TABLE 1. A two-dimensional KD-tree.
Pi p2 Ps3 P4 Ps Ps p7 Ps Do Pro
i 1 8 6 7 6 9 1 8
i 6 5 1 5 7 8 1
Index 0 1 4 5 6 7 8 9

2) MAPPING STAGE

The neural network is composed of multiple fully connected
layers that produce an x*n matrix, with each value being a
number between 0 and 1.

3) CONVERSION STAGE

To convert numbers distributed between 0 and 1 to O or 1,
a threshold « is required. The output of this stage is an x*c
matrix where each value in the matrix is either O or 1. If a
position in the matrix has a value of 1, it means the node
corresponding to that position in the KD-tree is a potential k-
nearest neighbor. On the other hand, if the position has a value
of 0, it can be assumed that it is not a k-nearest neighbor, and
there is no need to process this position afterward. Therefore,
positions with a 0 value are not considered k-nearest neigh-
bors and can be skipped during processing.

4) INDEXING STAGE
This stage converts the 1-labeled positions into index values
to obtain the candidate k" nearest neighbors.

5) CALCULATION STAGE

To find the k nearest neighbors of a query point ¢ in a
KD-tree, the index value of the output results is compared
to the KD-tree to identify the node it represents. Then, the
distance between the query point and the k candidate’s nearest
neighbor points is calculated, and the nodes are ranked based
on this distance. The first k nodes in the ranking are the true

VOLUME 12, 2024

k nearest neighbors. The whole process is described in an
algorithm as follows:

Algorithm 1 LK-Index Search (g, D, o, KD-Tree, k)

Input: query point g, dataset D, threshold «, KD-tree structure KD-
Tree, number of nearest neighbors k
Output: list of indices of the k nearest neighbors of ¢
BEGIN

M_g = Neural_Network_Map(q)

M_D = [Neural_Network_Map(g;) for each g; in D]

B_D = [[(m_ij >= «)? 1: 0 for j in range(columns)] for i in
range(rows)]

candidate_indices = [(i, j) for i in range(len(D)) for j in
range(len(D[:])) if B_DIi][j] == 1]

nearest_neighbors_indices=KD_Tree .Find_Neighbors(g, candi-
date_indices, k)

RETURN nearest_neighbors_indices
END

Consider a two-dimensional KD tree with 10 data entries,
as shown in Table 1, where ““i;”” and “i,” refer to the val-
ues on the first and second dimensions, respectively. The
10 classifications are represented by index values 0-9. Table 2
provides an example of training and testing two specific input
data, g1 and g3, in a neural network. Assuming k = 3, the
three nearest neighbors of ¢; can be found through the KD
tree, which are p1, p», and p4. This translates into index values
of 0,1, and 3, respectively, so the actual labels are 1, 1, 0,
1,0, 0, 0, 0, 0, and 0. The prediction of this piece of data
is considered correct if the index value corresponding to the
position where 1 is located in the output of the neural network
contains the index value corresponding to the true k-nearest

103099

IEEE Access

Y. Peng: LK-Index: A Learned Index for KNN Queries

TABLE 2. Training and testing of neural networks.

i I k=3 Index The actual label Output labels predicted outcomes
q 1 2 pypps 01,3 1,1,0,1,0,0,0,0,0,0 1,1,0,1,0,0,0,0,0,1 correct
q: 6 5 puprps 3,67 0,0,0,1,0,0,1,1,00 1,0,0,0,0,0,1,1,0,0 wrong
TABLE 3. The search process.
i i Label Index Candidate kNN(q) True kNN(q)
qs3 5 1 0,0,0,1,1,0,0,0,0,1 3,49 P4, Ps, Pio P4 Ps, Pro
9 8 5 1,0,0,1,0,0,1,1,0,0 0,3,6,7 Dis P4, P> Ps D4 D7, Ps
neighbors. This ensures that the true k-nearest neighbor is query point g 0] query pointg

obtained by the calculation. The output of the neural network
is allowed to exceed the number of k-values by 1, indicating
the candidate’s k-nearest neighbor. For example, for the query
point g4 (Table 3), the neural network outputs 1, 0, 0, 1, 0,
0, 1, 1, 0, and 0. There are 4 candidate k-nearest neighbors,
and the first 3 nodes are the true k-nearest neighbors through
calculation and sorting. The algorithm is described below:

Algorithm 2 K_Nearest_Neighbors_Search(g, KD_Tree, k,
neural_network)

Input: an n-dimensional vector query point ¢, an n-dimensional KD
tree KD tree containing a collection of data points, number of nearest
neighbors to be found k, The trained neural network model neural
network
Output: nearest_neighbors_indices
BEGIN
neural_network_output = neural_network.predict(q)
candidate_list = []
for i = 1 to length(neural_network_output):
if neural_network_output(i] == 1:
candidate_list.append(i)
if length(candidate_list) > k:
candidate_list = candidate_list[: k + 1]
for index in candidate_list:
candidate_point= KD_Tree.find_point_by_index(index)
for each point in KD_Tree:
if point.index == index:
distance=KD_Tree.calculate_distance(q, point)
KD_Tree.update_nearest_neighbors(nearest_neighbors_
indices, point.index, distance, k)
return nearest_neighbors_indices
END

Extending this to the more general case is shown in Fig. 4.

IV. EXPERIMENTS

This section provides a detailed overview of the experiments
conducted. All the experiments were performed on a GPU
server with 128 GB of RAM, two 2.1 GHz Intel(R) E5
processors, and two GTX1080Ti GPU cards with 11 GB
of dedicated RAM. The operating system used was Ubuntu
14.10, and the implementation was done in Python 3.6 and
Keras 3.0. I ran each experiment ten times and considered

103100

|

\.
C NNModel . %)

‘} ~
I'\»IHI\
]
[

a
o] Jos o]

KD-Tree-
Index
Construction
(N

M6 o]n].

w2 | Ous > Loss «— 1,

Location of kNN(g)

L 7 dcewme—J 0 [1 [3 [= [2]
|

Index Value of Candidate KNN(g)

Location of Candidate kKNN(q)

Calculation

e e

Candidate KNN(q)

(oo [ml—T ol

KNN(g)

FIGURE 4. A more generalized situation.

the median or the average of the ten outcomes as the final
performance.

In this study, a flexible neural network is constructed for a
binary classification problem with arbitrary input dimension
n. The following is a detailed parameter description of the
neural network configuration:

Input layer: the input layer of the network receives a vec-
tor with n features, which allows the model to handle data
instances of varying complexity and diversity.

Hidden Layer: the NN consists of multiple fully connected
hidden layers, each using a Leaky ReLLU activation function
to introduce nonlinearities and enhance the expressive power
of the model. The exact number of layers and the number of
neurons per layer can be adjusted according to the complexity
of the task.

Output layer: the last layer of the network is an output layer
with a single neuron that is activated by a sigmoid activation
function, which outputs a value between 0 and 1.

Loss function: to train the network, I used a binary
cross-entropy loss function. This loss function is applied
to the sigmoid output layer and ensures that the predicted
probabilities learned by the model are consistent with the true
labels.

VOLUME 12, 2024

Y. Peng: LK-Index: A Learned Index for KNN Queries

IEEE Access

TABLE 4. The datasets used in the experiments: four are randomly generated, and four are from the real world.

Dataset Type Dimension Mean Dataset Type Dimension Mean

Uniform Random 100 0.5 Tiny Images GIST 384 0.11

Normal Random 100 0 Ann SIFT SIFT 128 27.05
Lognormal Random 100 1.65 Nytimes word2vec 250 0
Exponential Random 100 1 Glove word2vec 200 0

Optimization algorithm: I choose the Adam optimizer to
minimize the loss function with a learning rate of le-4.

The weights of the network are initialized using the Xavier
initializer, which helps to avoid the problem of vanishing or
exploding gradients at the beginning of training. The bias
term of the network is initialized to zero, which ensures that
there is no preset bias at the beginning of training.

With this configuration, the neural network is able to adapt
to different dimensions of input data and learn a complex
mapping from input features to predicted probabilities, while
the binary cross-entropy loss function ensures that the prob-
abilistic interpretation of the network’s outputs is consistent
with the true labels.

A. DATASETS

In my experiments, I use two types of datasets: synthetic
and real. The purpose of this is to simulate data with dif-
ferent distributions that are commonly found in real-world
applications. To achieve this, I have created four synthetic
datasets that accurately reflect the characteristics of uniform,
exponential, normal, and lognormal distributions.

Additionally, I used several key real-world datasets to
support my experiments and analysis, namely Tiny Image,
Approximate Nearest Neighbor with SIFT (Ann SIFT),
Nytimes, and Global Vectors for Word Representation
(Glove).

Tiny Image is an image dataset that is a subset of the Ima-
geNet dataset containing 60,000 tinted images divided into
100 categories. This dataset provides rich visual information
for image processing tasks. The Ann SIFT dataset utilizes
the Scale Invariant Feature Transform (SIFT) descriptor to
provide key points and descriptors for image recognition and
computer vision tasks. The SIFT algorithm has been widely
adopted in feature extraction due to its invariance to image
scaling, rotation, and luminance changes. In addition, I used
the Nytimes dataset, which contains a large number of news
articles from The New York Times that are tagged accord-
ingly and are well suited for natural language processing tasks
such as text categorization, topic modeling, and sentiment
analysis. Finally, to provide semantic representations of word
items in natural language processing tasks, I employ the

VOLUME 12, 2024

© @

FIGURE 5. The accuracy rate of the various number of threshold «.

Glove model, a word embedding technique based on global
statistical information, which generates word vectors that
capture the rich semantic information of words and is widely
used in various NLP applications.

Each dataset has different types, scales, and dimensions,
which are detailed in Table 4. The value of k is fixed at 100 for
all experiments.

B. ABLATION STUDY

Various factors can impact the efficiency of the LK-index.
However, the two main parameters that significantly affect its
performance are the number of layers in the neural network L
and the threshold value «. In this section, I will explore some
ways to determine the optimal values for these parameters to
enhance the effectiveness of the LK-index.

Indexing performance is generally believed to improve
with an increase in the number of neural network layers.
However, my experimental results have shown that this is
not always the case. The query accuracy of different numbers
of layers was tested on several datasets, and the results are

103101

IEEE Access

Y. Peng: LK-Index: A Learned Index for KNN Queries

0

0.005 0.008 0.01 0.015 0.02 L 0
Threshold(L~8) Threshold(1=9)

(a) (b)
FIGURE 6. The precision rate with the different datasets of threshold «.

9.8 964

Usiforn Exponential Nomal

(a) Synthetic Data

Lognomal Tiny Images Am SIFT Nytimes Glove

(b) Real Data

FIGURE 7. The accuracy rate on different datasets.

shown in Fig. 5. I used uniform(a), normal(b), and lognor-
mal distribution(c) datasets, as well as a real image dataset
Tiny Images(d). As the number of layers increases, search
accuracy generally increases and then decreases, with some
fluctuations in individual results. This suggests that it is
important to choose a suitable number of layers to achieve
better results. In Fig. 5, it can be seen that most of the
search accuracy peaks when L = 8 or L = 9. Additionally,
I observed that a smaller value of « leads to higher search
accuracy. However, in Fig. 6, it can be observed that the
precision decreases rapidly when « is smaller, indicating
that the model’s performance starts to degrade towards linear
search. When « is set to 0.01, a certain search accuracy (above
90%) can be guaranteed while maintaining high precision.

Therefore, in the following experiments, I set the key
parameters of the proposed LK-index as @ = 0.01 and L =
9 to pursue optimal performance.

C. FEASIBILITY VERIFICATION

The distribution of data in the real world can be more
complicated. To test the accuracy of LK-index, I conducted
experiments on four synthetic datasets and four real-world
datasets. The details of the experiments are provided in
Table 4, and the results for the synthetic and real-world
datasets are shown in Fig. 7.

The results presented in Fig. 7(a) and 7(b) demonstrate that
the LK-index, which is based on a learned index, achieves
outstanding performance in kNN search. The accuracy rates
for randomly generated datasets are impressive, reaching
94.2%, 95.6%, 93.7%, and 96.8% for uniform, exponen-
tial, normal, and lognormal distributions, respectively. These

103102

§ N Numbert10°)
Number(10')

(2) ()

FIGURE 8. Query accuracy & Time consumption vs. data with different
magnitudes.

100

90

FIGURE 9. Query accuracy & Time consumption vs. data with different
dimensions.

results indicate that the LK-index can potentially replace
traditional tree structures with a high degree of accuracy. Fur-
thermore, experiments conducted on four real-world datasets
revealed that the accuracy rates can reach up to 96.4%, 93.9%,
95.2%, and 95.4% for Tiny Images, Ann SIFT, Nytimes, and
Glove, respectively. This shows that the LK-index is a reliable
option for both synthetic and real-world datasets, making it
suitable for specific application scenarios.

D. EVALUATION OF LK-INDEX

In this section, I have designed experiments to assess the
effectiveness of the LK-index in the kNN search process
regarding search accuracy and time consumption. I have used
data that varies in magnitude and dimensions and compared
it with three traditional nearest neighbor search methods
namely, Brute, Ball-tree, and E2LSH. I draw data from a
uniform distribution with a magnitude range from 1 x 10* to
5 x 10* as the validation dataset and each dataset dimension
is set to 20.

Fig. 8(a) demonstrates that the LK-index has a significant
advantage when it comes to accuracy. When compared to the
traditional tree structure, for instance, the LK-index achieves
an average increase of over 9%. The comparison with the
LSH-based algorithm E2LSH is even more stark, increasing
by over 13%. In terms of time consumption (Fig. 8(b)),
the search time of the traditional tree structure increases
significantly as the data volume increases. In contrast, the
LK-index maintains a lower level of increase, and its advan-
tage becomes more apparent over time. While E2LSH has
the best performance when it comes to time consumption,
considering the search accuracy (Fig. 8(a)), the LK-index

VOLUME 12, 2024

Y. Peng: LK-Index: A Learned Index for KNN Queries

IEEE Access

undoubtedly has a greater advantage in some scenarios where
more emphasis is placed on search accuracy.

I have compared the search accuracy and time consump-
tion of the LK-index with three other methods for different
data dimensions in Fig. 9. The data dimension has been set
from 10 to 50 and the magnitude to 10*. As the dimension
increases, the search performance of the tree structure-based
and LSH-based methods decreases faster. However, the per-
formance of the LK-index based on the learned index only
decreases slightly, which is minimally affected by the dimen-
sion and maintains a high accuracy rate in general (Fig. 9(a)).
Regarding time consumption, the tree structure gradually
increases with the increase of dimension due to the influence
of the “curse of dimension”. However, the LK-index and
E2LSH increase more slowly (Fig. 9(b)). Compared to the
traditional tree structure, the LK-index demonstrates superi-
ority in terms of time consumption.

As previously discussed, the LK-index, which is based
on the learned index, has significant advantages over the
traditional tree structure. It provides better search accuracy
and speed, making it a more practical solution that avoids
the “curse of dimension”. Compared to the classical LSH
algorithm, while there is still a gap in time consumption, the
LK-index provides superior search accuracy.

V. CONCLUSION

In the face of increasing data and dimensionality, tradi-
tional index structures encounter many challenges. To address
this issue, I investigated the kNN search algorithm based
on the learned index and proposed a new learned index
called the LK-index. The experimental results have demon-
strated the feasibility and superiority of this proposed method.
In the future, further research will be conducted to develop
effective methods for kNN search in high dimensional space
based on the LK-index.

REFERENCES

[1] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The case for
learned index structures,” in Proc. Int. Conf. Manage. Data, Houston, TX,
USA, May 2018, pp. 489-504.

[2] J. L. Bentley, ‘““Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, no. 9, pp. 509-517, Sep. 1975.

[3] A.Guttman, “R-trees: A dynamic index structure for spatial searching,” in
Proc. ACM SIGMOD Int. Conf. Manag. Data (SIGMOD), 1984, pp. 47-57.

[4] A. Arora, S. Sinha, P. Kumar, and A. Bhattacharya, ‘““HD-index: Pushing
the scalability-accuracy boundary for approximate kNN search in high-
dimensional spaces,” 2018, arXiv:1804.06829.

[5] L.Li, J. Xu, Y. Li, and J. Cai, “HCTree+: A workload-guided index for
approximate kNN search,” Inf. Sci., vol. 581, pp. 876-890, Dec. 2021.

[6] V. Nathan, J. Ding, M. Alizadeh, and T. Kraska, ‘“Learning multi-
dimensional indexes,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
Jun. 2020, pp. 985-1000.

[71 M. Komorowski and T. Trzciriski, ‘“Random binary search trees for approx-
imate nearest neighbour search in binary spaces,” Appl. Soft Comput.,
vol. 79, pp. 87-93, Jun. 2019.

VOLUME 12, 2024

[8]

[9]

[10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

[22]

(23]

(24]

B. Leibe, K. Mikolajczyk, and B. Schiele, “Efficient clustering and match-
ing for object class recognition,” in Proc. Brit. Mach. Vis. Conf., 2006,
pp. 789-798.

Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima, “A-tree: An index
structure for high-dimensional spaces using ralative approximation,” Dept.
Inf. Sci., Tech. Rep. TR2000011, 2000.

Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative quanti-
zation: A procrustean approach to learning binary codes for large-scale
image retrieval,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 12,
pp. 2916-2929, Dec. 2013.

P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards
removing the curse of dimensionality,” in Proc. 13th Annu. ACM Symp.
Theory Comput., 1998, pp. 604—613.

V. Satuluri and S. Parthasarathy, “Bayesian locality sensitive hashing for
fast similarity search,” 2011, arXiv:1110.1328.

L. Wang, Y. Zhong, and Y. Yin, “Nearest neighbour Cuckoo search
algorithm with probabilistic mutation,” Appl. Soft Comput., vol. 49,
pp. 498-509, Dec. 2016.

Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-probe LSH:
Efficient indexing for high-dimensional similarity search,” in Proc. 33rd
Int. Conf. Very Large Data Bases, 2007, pp. 950-961.

P. Ferragina and G. Vinciguerra, ‘“The PGM-index: A fully-dynamic com-
pressed learned index with provable worst-case bounds,” Proc. VLDB
Endowment, vol. 13, no. 8, pp. 1162-1175, Apr. 2020.

A. Kipf, R. Marcus, A. van Renen, M. Stoian, A. Kemper, T. Kraska, and
T. Neumann, “RadixSpline: A single-pass learned index,” in Proc. 3rd
Int. Workshop Exploiting Artif. Intell. Techn. Data Manage., Jun. 2020,
pp. 1-5.

J. Ding, U. F. Minhas, J. Yu, C. Wang, J. Do, Y. Li, H. Zhang,
B. Chandramouli, J. Gehrke, D. Kossmann, D. Lomet, and T. Kraska,
“ALEX: An updatable adaptive learned index,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, Jun. 2020, pp. 969-984.

A. Galakatos, M. Markovitch, C. Binnig, R. Fonseca, and T. Kraska,
“FITing-tree: A data-aware index structure,” in Proc. Int. Conf. Manage.
Data, Jun. 2019, pp. 1189-1206.

A. Hadian, A. Kumar, and T. Heinis, ‘““Hands-off model integration in
spatial index structures,” 2020, arXiv:2006.16411.

Y. Wu, J. Yu, Y. Tian, R. Sidle, and R. Barber, “Designing succinct
secondary indexing mechanism by exploiting column correlations,” in
Proc. Int. Conf. Manage. Data, Jun. 2019, pp. 1223-1240.

A. Galakatos, M. Markovitch, C. Binnig, R. Fonseca, and T. Kraska,
“FITing-tree: A data-aware index structure,” 2018, arXiv:1801.10207.

L. Li, J. Cai, and J. Xu, “A learned index for approximate kNN
queries in high-dimensional spaces,” Knowl. Inf. Syst., vol. 64, no. 12,
pp. 3325-3342, Dec. 2022.

R. Liu, J. Zhao, X. Chu, Y. Liang, W. Zhou, and J. He, ““Can LSH (locality-
sensitive hashing) be replaced by neural network?”” Soft Comput., vol. 28,
no. 2, pp. 1041-1053, Jan. 2024.

Z. Sun, X. Zhou, and G. Li, “‘Learned index: A comprehensive experimen-
tal evaluation,” Proc. VLDB Endowment, vol. 16, no. 8, pp. 1992-2004,
Apr. 2023.

YONGXIN PENG received the B.S. and M.S.
degrees from the School of Software, Yunnan
University, in 2017 and 2020, respectively. He is
currently a member of Shangluo University. His
current research interests include machine learning
and big data computing.

103103

