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ABSTRACT The image quality supports a high accuracy rate of medical image diagnosis using computer
vision. Digital thermal images resulting from the thermal device usually suffer from many watermarks that
may lower the neural network learning performance. Thus, providing only the region of interest (RoI) of
the breast area from the breast thermal images for early breast cancer detection is an important task. The
goal of our work are to develop a deep learning (DL) model for taking the RoI of the breast thermal images,
built a self-supervised DL model to classify the breast thermal images into healthy and cancer categories,
and integrated these two models as end-to-end bi-pipeline model for breast thermal image recognition. The
segmentation model was built using attention U-Net with residual recurrent network called R2AU-Net, and
the classification model was built using self-supervised learning consisting of the Simple Framework for
Contrastive Learning of Visual Representations (SimCLR) andResNet50. These networkswere trained using
unlabelled limited breast thermal datasets to allow more comprehensive learning. The result shows that
proposed self-supervised bi-pipeline model can take the RoI with an accuracy rate of 98.63% and classify the
breast thermal images with a top-1 accuracy rate of 84.37% and top-5 accuracy rate of 96.87%. In addition,
the bi-pipeline model implementation using a central processing unit shows that the model required only
about 4 seconds for segmentation and classification tasks. These findings indicate that the bi-pipeline model
can effectively aid the interpretation of unlabeled breast thermal images.

INDEX TERMS Deep learning, self-supervised learning, R2AU-net, SimCLR, breast thermal image.

I. INTRODUCTION
The development of breast cancer screening methods is an
important step to facilitate early detection and treatment of
breast cancer.Many researches have proposed a deep learning
(DL) based algorithm to recognize the indication of breast
cancer using a non-invasive breast thermal images [1], [2],
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[3], [4], [5], [6], but mostly focus on a single task within the
DLmodel, either classification, segmentation, or detection of
abnormalities.

In fact, breast thermal images often suffer from issues such
as noise, variable size, and watermarks. These factors can
negatively affect the performance of DL models, making it
essential to improve image quality to ensure effective learning
and accurate predictions. Typically, captured thermal images
include not just the breast area but also other body parts,
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such as the neck and abdomen, which can interfere with
classification results.

Extracting the region of interest (RoI) of the breast area
from breast thermal images has been the focus of many
studies. For example, Pramanik et al. [7] implemented a level
set method (LSM) algorithm, but the simulation was complex
and achieved an accuracy rate of only 72.18%. Sánchez-
Ruiz et al. [8] proposed an automatic method to segment the
RoI based on local operations, local analysis, interpolation,
and statistical operators. Roslidar et al. [9] proposed an
improved second-order polynomial curve fitting technique
employing edge detection to effectively capture the RoI of
breast thermal images. But both works do not implementing
direct pipeline from the segmentation algorithm to the
classification task. Therefore, in this study, we created a
framework of bi-pipeline model to improve breast thermal
images interpretation by combining end-to-end segmentation
and classification models. The segmentation model focuses
on isolating the breast area, while the classification model is
used to categorize the images in binary classes of healthy and
cancer.

A significant challenge in building breast thermal image
classification models is the difficulty in collecting ther-
mal images of breast cancer patients, resulting in an
unbalanced dataset with relatively small cancer datasets
compared to healthy ones. To address this issue, we used
a self-supervised learning approach, which is effective with
small datasets. In this paper, we proposed a bi-pipeline
deep learning model that utilized the Recurrent Resid-
ual Attention U-Net (R2AU-Net) [10] algorithm for the
segmentation, and the Simple Framework for Contrastive
Learning of Visual Representations (SimCLR) [11] for the
classification.

Overall, this article describes our work on developing a
DL model that takes the RoI of breast thermal images and
classifies the images. This coupled learning approach of
segmentation and classification, called bi-pipeline, is needed
to allow an automatic, fast, and accurate prediction model in
interpreting breast thermal images. The key contributions of
our work are as follows:

1) Introducing the step-by-step approach of recurrent
residual attention U-Net for breast thermal image
segmentation.

2) Developing a breast thermal image classification
model using self-supervised learning consisting of the
Simple Framework for Contrastive Learning of Visual
Representations (SimCLR) and ResNet50.

3) Validating the performance of proposed novel
bi-pipeline deep learning model using learning curves,
evaluation metrics of accuracy, sensitivity, specificity,
precision, F1-score, Jaccard Similarity, and Dice
Similarity for the segmentation model, and evaluation
metrics of top-1 accuracy and top-5 accuracy for the
classifier model.

4) Analysing the bi-pipeline model performance on cen-
tral processing units (CPU) for practical implementa-
tion.

5) Exposing the proposed bi-pipeline model properties
and comparing the research findings with existing
works.

The rest of this article is organized as follows. Section II
presents a review of related works and the deep learning con-
cept relevant to the approach methods. Section III describes
the details of the novel proposed network framework and
the learning process. Section IV discusses the proposed
bi-pipeline model along with its performance. In this section,
we also provide the potential implementation of our proposed
bi-pipeline as an early breast cancer detection system for
clinical practice. Then, we provide the comparison of our
work with similar existing work in Section V. Finally,
Section VI highlights the research findings.

II. RELATED WORKS
Research on developing non-invasive screening methods
based on thermography has advanced significantly. In the
context of breast cancer screening, the use of breast
thermal images to detect early signs of breast cancer has
led to numerous proposals for computer-aided algorithms
leveraging artificial intelligence. This section reviews related
works that have contributed to the development of breast
thermal image classifier models based on deep learning over
the past decade. Conceptual of the approach methods, along
with existing works that applied similar networks, are also
provided in the following section.

A. CONVOLUTIONAL NEURAL NETWORK
Deep learning has gained significant traction due to the
convolution operation’s ability to extract image features and
the deep neural network’s capacity to learn these features’
characteristics. Convolutional Neural Networks (CNNs) are
designed to process input images by assigning learnable
weights and biases to map key features distinguishing one
image from another. This process enables the generation of
classification results. Figure 1 illustrates the general architec-
ture of CNNs used for classifying breast thermograms into
categories of healthy and cancer. The classification process
involves three major steps: dataset preparation through
image preprocessing, feature learning, and classification. The
classification can be binary (healthy and cancer) or multi-
class, such as healthy, benign, and malignant.

Neural Networks (NNs) are commonly employed for
recognizing and detecting objects in image data. In general,
CNNs share similarities with other NNs, such as weights,
biases, and activation functions when processing inputs.
However, CNNs excel in feature extraction, allowing them
to learn patterns from high-dimensional inputs. This process,
known as convolution, is carried out in a convolutional layer
(feature extraction layer). As depicted in Figure 1, CNNs
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FIGURE 1. Convolutional Neural Network for Breast Thermal Image Classification [12].

comprise two major layers: the feature extraction layer and
the fully connected layer.

In 2018, Baffa and Lattari [13] developed a CNN model
with two convolutional layers, each with a size of 5 × 5 and
32 outputs, followed by two Max Pooling Layers with 5 ×
5 and a threshold of 3. The output layer is fully connected
and classifies the data into healthy and unhealthy classes.
Roslidar et al. [4] also classified breast thermal images into
binary classes but used transfer learning rather than building
a network from scratch. This strategy allows for faster model
development with high performance. Other studies in the
same year implemented transfer learning to identify the best
network for learning breast thermal image features [2], [14].
Research in this field continues to develop to this day [15],
[16], [17], [18].

B. U-NET WITH RECURRENT RESIDUAL ATTENTION GATE
U-Net is a CNN architecture used for image segmentation
tasks, developed by Ronneberger et al. [19] in 2015. U-Net
is widely used in the field of medical image processing,
especially in the task of segmenting organs or structures in
medical images. U-Net’s framework begins with cascading
convolutions that combine spatial information at different
resolutions. This architecture has two main paths: contraction
path (downsampling) and expansion path (upsampling). The
downsampling path consists of multiple convolution and
max-pooling layers to reduce image resolution. Then, the
expansion path uses conventional convolution and transposed
convolution layers to increase image resolution and produce
final segmentation [19]. In enhancing the breast thermal
images classification, works implementing U-Net for seg-
mentation have been developed [6], [21], [22].
Conventional U-Net has the disadvantage that it tends to

produce uneven segmentation on objects with complex or
blurred boundaries because U-Net cannot remove noise that
interferes with images [23]. To eliminate noise or focus only
on the important features in the image, U-Net requires an
attentionmechanism that increases theweight on certain parts

of the feature. This mechanism can improve the segmentation
accuracy as only focuses on important features and mitigate
noise.

In our work, we use the ability of the attention U-
Net [23], [24] to manage the noise of breast thermal images
that may interfere with the segmentation process. With this
mechanism, the model will only focus on the breast features
by giving greater weight than those outside the breast.

The Recurrent Residual Attention U-Net (R2AU-Net)
enhances U-Net’s capabilities by incorporating recurrent
residual convolutional neural networks (RRCNN) and atten-
tion mechanisms. This approach improves the network’s
ability to focus on important regions while ignoring irrelevant
information, making it suitable for segmenting complex
medical images, including breast thermograms.

Figure 2 shows the architecture of the R2AU-Net mech-
anism. The recurrent net and residual mechanisms help
eliminate the segmentation problem of contours that are not
smooth or unclear in U-Net. By adding a residual module,
R2AU-Net can reduce the effect of the deep convolution
layer on the U-Net, which causes detailed information to be
lost by repeating the convolution process several times. This
technique is called the recurrent mechanism [25].
Recurrent convolutional neural network (RCNN) contains

a stack of residual convolutional layers (RCLs) and inter-
leaved with max pooling layers. The RCL are performed with
respect to the discrete time steps that are expressed according
to the RCNN. Liang and Hu [25] expressed the output of the
nets as,

zijk (t) =
(
wf
k

)T
u(i,j)(t)+

(
wr
k
)T x(i,j)(t − 1)+ bk , (1)

where u(i,j)(t) and x(i,j)(t−1) represents the feed-forward and
recurrent input, respectively. Then, the outputs are fed to the
standard ReLU activation function f as follows:

xijk (t) = g
(
f
(
zijk (t)

))
= max

(
zijk (t)0

)
. (2)

For R2U-Net, the final outputs of RCNN unit (xl+1)
are passed through the residual unit and calculated as
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FIGURE 2. R2AU-Net architecture for breast thermal images segmentation.

follows [26]:

xl+1 = xl + F (xl,wl) (3)

with xl as the recurrent input of layer l.
The attention gates are incorporated into the conventional

U-Net architectures to extract salient features that are passed
through the skip connection. This operation is performed
right before the concatenation operation to merge only
relevant activations. Gradients resulting from background
regions are down-weighted during the backward pass, thus
allowing the model parameters in shallower layers to be
updated mostly based on spatial regions that are relevant to
a given task. The update rule for convolution parameters in
layer l − 1 is formulated in equation 4 [23].

∂
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x̂ li

)
∂

(
8l−1

) = ∂
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(
x l−1i ;8

l−1
))

∂
(
8l−1

)
= αli
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(
f
(
x l−1i ;8

l−1
))

∂
(
8l−1

) +
∂

(
αli

)
∂

(
8l−1

)x li , (4)

where αli is the scale of the first gradient and a vector at each
grid scale in case of multi-dimensional attention gates.

C. SELF-SUPERVISED LEARNING
Large-scale labeled data are generally required to train deep
neural networks effectively, enhancing performance in visual
feature learning from images or videos for computer vision

applications [27], [28]. However, the data collection and
annotation of large-scale datasets are time-consuming and
costly. For medical images, creating a large, curated dataset
to train deep learning algorithms is particularly expensive and
time-consuming. Unlike photographic images, which can be
sourced online and labeled by non-experts through crowd-
sourcing, medical images require expert annotation [29].
To avoid the extensive costs associated with collecting
and annotating large-scale datasets, self-supervised learning
(SSL) methods, a subset of unsupervised learning, have been
proposed to learn from general images without using any
human-annotated labels [30], [31]. In application domains
such as medical imaging, where high-quality labeled data
is scarce and data modalities shift rapidly, self-supervised
learning (SSL) has the potential to make a significant
impact [32]. Recent advances have demonstrated that SSL
methods can learn representations that are competitive with
those learned in a fully supervised manner for medical
imaging [33], [34].

D. CONTRASTIVE LEARNING IMPLEMENTING SIMPLE
FRAMEWORK
Contrastive Learning (CL) is a deep learning technique for
unsupervised representation learning. CL is used to learn the
general features of a dataset without labels by teaching the
model which data points are similar or different. The goal is
to learn such an embedding space in which similar sample
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FIGURE 3. SimCLR framework on breast thermal image learning.

FIGURE 4. Step-by step learning of SimCLR on breast thermal images.

pairs stay close to each other while dissimilar ones are far
apart [35]. Contrastive self-supervised learningmethods [11],
[36], [37], are currently state of the art in SSL. In these
methods, the final layer’s feature representations for positive
pairs of images are brought closer, and those for negative
pairs are pushed away using contrastive loss functions such
as InfoNCE [11].

Several previous studies have applied contrastive self-
supervised learning methods in the case of breast cancer
classification. Miller et al. [38] implemented several SSL
models such as SimCLR, ViT-MAE, BYOL, and SWaV on
the breast mammography datasets. The results showed that
SSL is better than full supervised, with 81.5% compared
to the full supervised, with only a 71% accuracy rate.
Another research by Chhipa et al. [39] applied SSL with
ResNet50 encoder and EffesientNetB2 on histopathological
breast cancer data with different magnification levels [39]
achieved a good accuracy value with a small amount of data.
Saidnassim et al. [40] used SSL with BYOL method and

transformer base network for breast cancer segmentation on
mammography dataset. The mean Intersection over Union
(IOU) performance of the U-Net (ResNet34) was enhanced,
using SSL, by close to 4%, and the loss function was reduced
by 12.5%. These results apparently indicate the efficacy of
Self-supervised learning (SSL) over supervised pre-trained
models. However, SSL has not been applied to thermography
datasets for breast cancer classification.

Simple Framework of Contrastive Learning of Visual
Representation (SimCLR) is a CL model that can learn from
representations of data without using labels. As demonstrated
in Figure 3, SimCLR employs data augmentation techniques
and negative sampling techniques to create self-supervised
learning tasks. The effectiveness of these techniques is
evident in their ability to create multiple variations of each
image, forcing the model to learn to recognize the same
features in different images. The negative sampling technique
ensures that the model learns to discriminate between
different pictures, not just match up the same pictures. This
robust learning approach prevents overfitting and equips the
model to recognize features that are more common and can
be applied to different images.

SimCLR uses augmentation to enrich the model’s knowl-
edge of an object to be classified by transforming the original
image into several transform types, called ‘‘view’’ [11].
SimCLR uses several types of transforms, such as random
cropping, random rotation, random color distortions, and
random Gaussian blur. In our work, the original image is
converted into two views (transformations).

As shown in Figure 4, the original image is changed into
2 views, namely rotation and color distortion, which are
useful for enriching the model’s knowledge of the trained
object. The combination of image transformation that has the
highest accuracy is crop and color distortion. If the batch size
(N) in each training is 4, then the output after going through
the batch size augmentation process will be (nview × N ),
or nview or the number of views multiplied by the initial batch
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FIGURE 5. The proposed bi-pipeline learning workflow.

size of 2 × 4 = 8. The two images that come out of the
augmentation process are positive pairs or the same image.
With SimCLR, these two images will later be brought closer
together and placed in the same cluster in latent space. After
the augmentation process, the encoder will produce an image
representation.

III. METHOD
In this section, the processes of dataset preparation and
model development are described. The proposed bi-pipeline
model is explained, covering the concepts and algorithms
for both segmentation and classification tasks. Finally, the
discussion ends with model performance evaluation using
learning curves and evaluation metrics.

A. DATASET
In this study, we used breast thermal images grouped into
three datasets: training with 400 images, validation with
100 images, and testing with 150 images. The images were
downloaded from the Database for Mastology Research
(DMR) [41] which provides breast thermal images with five
views with more than 20 images per patient. We sorted the
images with similar size of 256 × 256 and resized into
224 × 224 as required by the network input specification.
We maintained a balanced dataset with an equal number

of images from healthy and cancer classes. The R2AU-
Net segmentation model requires the same number of
mask images as the training, testing, and validation data.
The segmentation network uses the mask image to guide
the segmentation process to match the target segment.
To evaluate the classifier model’s performance, the dataset for
training SimCLR was divided into two subsets: one resulting
from the segmentation process of the R2AU-Net model and
one without segmentation (full body dataset).

B. PROPOSED ALGORITHM
Proposed bi-pipeline framework is divided into two parts:
segmentation and classification. The segmentation model
focuses on extracting the region of interest (RoI) of breast
thermal images obtained from DMR [41], primarily encom-
passing the area from the head to the waist. This work is
important in the deep learning process; as Roslidar et al. [9]
mentioned, feeding only the input’s RoI into the learning
network will improve the learning accuracy. Thus, the RoI
of the breast area was segmented using the R2AU-Net and
fed into the Simple Framework for Contrastive Learning of
Visual Representations (SimCLR) for the classification task.

Figure 5 shows our proposed model workflow, where a
thermal image with an image size of 224 × 224 is fed into
the R2AU-Net segmentation model to take only the breast
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areas. In the R2AU-Net model, the thermal image passes
through several convolution layers with a recurrent residual
CNN architecture. In the recurrent residual CNN there is a
skip connection from the input to the output layer of the CNN.

The algorithm comprises a segmentation process imple-
mented R2AU-Net using Algorithm 1 and a classification
process implemented SimCLR and ResNet50 using Algo-
rithm 2. To minimize the duration of the training, we applied
the pre-trained networks. Thus, initial weights were taken
from the network when trained on the Imagenet.

Algorithm 1 Segmentation Using R2AU-Net
Input: Pre-trained R2AU-Net, threshold, breast thermal

images (I0)
Output: ROI of breast thermal images, IS
1: for each image in dataset do
2: I0← read image
3: Ir ← resize of I0 to 224× 224
4: Im← apply pre-trained R2AU-net to Ir
5: M0← 0 if Im less than threshold, else 1
6: Is← apply bitwise-and-operator to I0 and M0
7: end for.
8: return IS

Algorithm 2 SimCLR Training Process Using Segmented
Breast Thermal Images
Input: Segmented breast thermal images, batch size (N),

temperature (τ ), encoder f (.), projection head g(.),
augmented function

Output: Trained SimCLR encoder, f (.)
1: for sample minibatch from segmented breast thermal

dataset do
2: for all k ∈ {1 . . . .,N } do
3: Is← segmented images
4: xi, xj← apply augmented function to Im
5: hi, hj← apply xi and xj to f (.)
6: zi, zj← apply hi, hj to g(.)
7: end for.
8: for all i ∈ {1 . . . ., 2N } and j ∈ {1 . . . ., 2N } do
9: Si,j ← apply pairwise similarity function to zi,

and zj
10: hi, hj← apply xi and xj
11: end for.
12: L← apply Si,j to NT-Xent loss with constant τ
13: Update network f and g to minimize L
14: end for.
15: return Trained SimCLR encoder f (.)

As shown in Algorithm 1, the segmentation process is
started with providing the initial weight of the pretrained
network R2AU-Net and the threshold value, following with
the images along with the ground truths. Next, the network
read the images, resize, and feeding the images and the
ground truths into the pretrained R2AU-Net. Then, the
segmented images are fed into the classification network.

Afterward, the classification network of SimCLR was
trained using pretrained ResNet50 for feature extraction of
the segmented images fed from the R2AU-Net. The image
resulting from the segmentation of the breast becomes the
input to SimCLR, where this image will be transformed into
2 views (xi, xj), which are chosen randomly. In this research,
the types of transformations include random cropping,
random rotation, random color distortions, and random
Gaussian blur. This transformation is used to enrich the
feature patterns recognized by the model so that it is forced
to recognize the same data sample but from a different view.
The two data views that have been transformed become input
to the SimCLR encoder f(.) section. The encoder in SimCLR
is part of the model architecture, which is responsible for
converting images into representations. The main function of
the encoder in SimCLR is to extract important features from
the image and compress them into a smaller representation.
In this research, we use ResNet50 as an encoder and added
two fully connected layer as the classification head. The data
representation resulting from the encoder f(.) is then changed
to be more compact and concise by the projection head g(.).
The projection head of this research consists of two MLP
layers, each consisting of 128 nodes with a ReLU activation
function. The output from the projection head g(.) is a
representation vector with shape 1×128. This representation
vector will then calculate the loss l(i,j) usingNT-Xent loss [42]
as shown in the Algorithm 2 using equation 5.

l(i,j) = − log
esim(zi,zj)/τ

2N∑
k=1

1k ̸=iesim(zi,zj)/τ
(5)

where sim(zi, zj) denotes the cosine similarity between two
vectors zi and zj.

C. MODEL DEVELOPMENT
As we have two pipelines, the model development was
conducted in two parts: developing the segmentation model
and building the classification model. For the first part,
We applied R2AU-Net to take the region of interest (RoI)
of the breast thermal image to increase the feature mapping
focus only on the breast area. The segmentation model
was obtained by fine-tuning the R2AU-Net hyperparameter.
We fed the ground truth into the network and set the
hyperparameter. During the learning process, we observed
the learning performance and fine-tuned the hyperparameter
to obtain the model with stable learning and a high accuracy
rate. The segmentation algorithm best learnt the input with a
learning rate of 2 × 10−4. The residual convolutional layer
was expanded to three time steps, t = 3.
The best network performance was achieved with

the fined-tuned hyperparameter, as mentioned in the
Subsection R2AU-Net Hyperparameter. Following by the
fined-tuned hyperparameter for best SimCLR perfor-
mance is provided in Subsection SimCLR+ResNet50
Hyperparameter.
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1) R2AU-NET HYPERPARAMETER
• Batch Size = 4
• Epoch = 100
• Loss function = Binary Cross Entropy
• Optimizer = Adam
• Learning Rate = 2× 10−4

• Recurrent process (t) = 3

2) SIMCLR+RESNET50 HYPERPARAMETER
• Batch Size = 4
• Epoch = 300 and 1000
• Loss function = NT-Xent loss
• Optimizer = AdamW
• Learning Rate = 5× 10−4, 2× 10−4, 10−4

• Weight decay = 10−4

• Temperature = 0.07
• Learning rate scheduler = CosineAnnealingLR
• Encoder = ResNet50

The proposed unsupervised classifier of SimCLR+
ResNet50 was trained twice, using epoch 300 and epoch
1000 with similar hyperparameter values. Three learning
rates of 5 × 10−4, 2 × 10−4, and 10−4 were applied
to figure out the most stable learning of the classifier
model.

Finally, the process of fine-tuning or taking the pre-trained
model in this work is by freezing the parameters on the
encoder trained using SimCLR and segmented dataset as
shown in Figure 6. Here, fine-tuning proceeded to utilize the
results from training with SSL SimCLR; fine-tuning must
be done because creating a downstream task classification
system requires a classification head in the form of a linear
layer with a number of nodes 2. This fine-tuning process
uses a learning rate of 10−3 with a loss function called
CrossEntropyLoss. The fine-tuning strategy used in this
research is as follows:

1) Freezing the parameters on the ResNet50 encoder
trained with SimCLR and segmented image data.

2) Training the classification head with 100 epochs with a
learning rate of 10−3.

D. MODEL EVALUATION
To build the bi-pipeline model, we trained each of the net-
works, segmentation and classification, separately. We eval-
uated the learning processes using learning curves, accuracy
rates, and loss rates. After the network training resulted in
a stable learning curve, we recorded the model and tested it
using evaluation metrics.

Taha and Hanbury [43] defined the medical volume by the
point set X = {x1, . . . , xn} with |X | = w× h× d = n where
w, h and d respectively are the width, height, and depth of
the grid on which the volume is defined. As we segment the
images into two partitions, breast area and non breast area
(background), there are four common cardinalities that reflect
the overlap between the two partitions, true positive (TP),
false positive, (FP), false negative (FN ), and true negative

FIGURE 6. The Bi-Pipeline end to end.

(TN ), which the values are determined using equation 6.

m(i,j) =

|X |∑
r=1

f ig(xr )f
r
t (xr ) (6)

where fg and ft represent the ground truth segmentation and
the evaluated segmentation respectively. These cardinalities
provide for each pair of subsets i ∈ Sg (ground segmentation)
and j ∈ St (evaluated segmentation), then the sum of
agreement mij between them are as follows: when i is 1 or
m11 = TP as the first class of interest; and i is 0 orm00 = TN
for the second class or the background. Then, m10 = FP and
m01 = FN are the false segmented areas.
For R2AU-Net, we used segmentation evaluation met-

rics of accuracy (ACC), sensitivity (SE), specificity (SP),
precision (PC), F1-score, Jaccard Similarity (JS), and Dice
Similarity (DC) as follows [43].

ACC =
TP+ TN

TP+ FP+ FN + TN
(7)

PC =
TP

TP+ FP
(8)

SE =
TP

TP+ FN
(9)

SP =
TN

TN + FP
(10)

F1score =
2× Recall × Precision
Recall + Precision

(11)

JS =
TP

TP+ FP+ FN
(12)

DC =
2TP

2TP+ FP+ FN
(13)

We also trained U-Net and Segnet with similar hyper-
parameter tuning and recorded the result. Then, R2AU-Net
performance is compared to vanilla UNet and Segnet to see
how well each model segments the breast region.

Meanwhile, for the SimCLR network, we evaluated the
model with the top-1 accuracy and top-5 accuracy metrics.
The top-1 accuracy metric measures the percentage of
conformity between the predicted class and the actual label
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FIGURE 7. Learning curve of segmentation model using R2AU-Net.

FIGURE 8. Learning curve of SimCLR with 300 epochs.

FIGURE 9. Learning curve of SimCLR with 1000 epochs.

on the test data sample. This metric only considers the
highest probability predictions, i.e., the top-1 predictions.
In other words, top-1 accuracy calculates what percentage
of data samples have correct predictions among all samples,
and top-5 accuracy measures the percentage of conformity
between the predicted class and the actual label in the
test data sample. Still, in this case, it considers predictions
with the highest probability up to the top five predictions
(top-5).

Afterward, We tested the SimCLR model using the
segmented and raw datasets. Then, we integrated both R2AU-
Net and SimCLRmodels as a bi-pipelinemodel and tested the
end-to-end process.

IV. RESULT AND DISCUSSION
In this section, we evaluated and analyzed the performance
of the segmentation and classification model. The learning
performances were evaluated using graphs of the learning
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FIGURE 10. Top-1 and Top-5 learning accuracy.

TABLE 1. Segmentation model testing result.

curves resulting from segmentation and classification net-
work training. Then, the resulting model interpretation ability
was justified using the metric evaluation. Finally, we exposed
the proposed bi-pipeline implementation performance along
with its properties.

A. LEARNING PERFORMANCE
Figure 7 shows the learning curve of R2AU-Net, depicting the
accuracy and loss resulting during the training. The learning
approached the highest accuracy after 100 epochs of 98%
and loss of 0.0195. The learning curve of training accuracy
and validation accuracy confirmed that the learning is a good
fit, showing a stable and consistent training performance.
The proposed hyperparameter values are appropriate and
in accordance with the task for breast segmentation. Our

TABLE 2. Proposed classifier model accuracy.

work supports the stability and satisfactory results of
the R2AU-Net model that was trained on breast thermal
images.

Meanwhile, the unsupervised classifier model built using
the SimCLR network has shown an increasing learning
performance along with an increasing number of epochs,
as shown in Figure 8 and Figure 9. Figure 8 shows that
the learning performance significantly improved when the
network was trained using the segmented images. Thus,
we added epochs until 1000 to obtain higher accuracy.
The learning curves confirmed that SimCLR required a
large number of epochs to obtain high accuracy. Moreover,
the learning curves are not stable; thus, more work on
hyperparameter tuning is needed to ensure the learning is
convergent. However, the learning performance consistently
increased along with the epochs.
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FIGURE 11. Training and Validation loss using various learning rates.

To improve the model performance, the classifier network
was trained using various learning rates, resulting in learning
performance as shown in Figure 10 for the learning accuracy
rate and Figure 11 for the learning loss rate. In our
investigation of the learning curves depicting the top-1
train accuracy for a deep learning model trained with three
different learning rates (10−4, 2×10−4, and 5×10−4), several
intriguing patterns and insights emerged. These observations
shed light on the intricate relationship between learning rates
and model convergence and performance.

The initial stages of training across all three learning
rates exhibited a common trend: a steady increase in top-1
train accuracy. This phenomenon is a typical hallmark
of successful model learning, indicating that the model
effectively assimilates information from the training data.
As training progresses, however, we observed that the rate
of increase in accuracy gradually decelerates, suggesting that
the model approaches convergence.

When scrutinizing the performance of the model at
different learning rates, distinct behaviors became apparent.
The learning rate of 5 × 10−4 showcased the highest top-
1 train accuracy among the three rates considered. How-
ever, this apparent advantage was accompanied by notable

volatility in the learning curve. Fluctuations in accuracy were
conspicuous throughout the training process, indicating that
the model’s optimization might be overly aggressive. Such
volatility is indicative of the learning rate overshooting the
minimum loss value during gradient descent, which can
impede the model’s ability to converge to an optimal solution.

In contrast, the learning rate of 2 × 10−4 demonstrated
a smoother trajectory in terms of accuracy progression.
Despite not reaching the pinnacle of accuracy achieved
by the 5 × 10−5 rate, this learning rate exhibited compa-
rable performance while maintaining a more stable train-
ing process. The smoother increase in accuracy suggests
that this learning rate strikes a balance between rapid
learning and stability, potentially leading to more reliable
convergence.

Conversely, the learning rate of 10−4 displayed the
slowest ascent in top-1 train accuracy among the three rates.
Despite the prolonged training duration, the attained accuracy
remained the lowest. This sluggish progress suggests that the
learning rate might be too conservative, causing the model
to learn at a leisurely pace. Consequently, the model may
struggle to capture intricate patterns in the data, hindering its
ability to achieve higher levels of accuracy.
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FIGURE 12. Segmentation results of healthy and cancer thermal images using R2AU-Net, U-Net, and SegNet.

In conclusion, our analysis underscores the critical role of
learning rates in shaping the convergence and performance
of deep learning models. While higher learning rates may
offer expedited learning, they also pose challenges related to
stability and convergence. Conversely, lower learning rates
prioritize stability but may compromise learning efficiency.
Through meticulous selection and fine-tuning of learning
rates, practitioners can navigate this delicate trade-off to
optimize the performance of deep learning models.

B. METRIC EVALUATION
R2AU-Net has a good ability to segment breast parts by
looking at the model accuracy (ACC), Sensitivity (SE),
Specification (SP), Precision (PC), F1, Jaccard Similarity
(JS), Dice Similarity (DS). In Table 1, we provided the
training and testing results of the segmentation model of
R2AU-Net and the comparison with 2 other segmentation
models of SegNet and U-Net. From the testing results, it can
be seen that R2AU-Net excels in training and testing for all
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metrics. For training and testing results, the commonly seen
dice similarity and Jaccard similarity values for segmentation
models resulted in by R2AU-Net with values for training JS
98.31, DS 99.14, and testing JS 97.92, DC 98.89.

In Figure 12, we visualized three healthy images and
four cancer images that were segmented using R2AU-Net,
conventional U-Net, and SegNet. We chose those images as
we found out that they were hardly segmented by the model
resulted in SegNet dan U-Net. The segmentation results show
that the conventional U-Net model and the Segnet model
have difficulty in segmenting cancer images, where many
parts of the breast that were not successfully segmented
properly. Even the SegNet segmentation model struggles to
accurately segment some healthy images. But not for the
R2AU-Net model, this model manages to segment all cancer
and healthy images well. Thus, the R2AU-Net model is good
to be implemented for breast segmentation which will later
be combined with SimCLR to classify breast cancer thermal
images.

Moreover, We evaluated the proposed classification model
performance of SimCLR for top-1 and top-5 learning
accuracy. In Table 2, we recorded the top-1 and top-5
accuracy learning of 300 and 1000 epochs. The results show
that the classifier model fed with R2AUnet segmentation
is better than the model without segmentation. For top-1
accuracy with 300 and 1000 epochs, the proposed bi-pipeline
model achieves 23% and 5.8% accuracy higher compared to
the one without a segmentation network, respectively. Our
work shows an increase in the performance of the SimCLR
model when combinedwith R2AUnet for breast cancer image
classification.

C. PROPOSED BI-PIPELINE PROPERTIES
Finally, we recorded the properties of our proposed self-
supervised bi-pipeline model as follows.

1) PROPOSED SEGMENTATION MODEL PROPERTIES
• Total parameters: 39,442,925
• Trainable parameters: 39,442,925
• Non-trainable parameters: 0
• Total multiply-adds (G): 150.99
• Input size (MB): 0.60
• Forward/backward pass size (MB): 1859.18
• Model size (MB): 157.77
• Estimated Total Size (MB): 2017.56

2) PROPOSED CLASSIFICATION MODEL PROPERTIES
• Total parameters: 24,622,784
• Trainable parameters: 24,622,784
• Non-trainable parameters: 0
• Input size (MB): 0.57
• Forward/backward pass size (MB): 286.56
• Parameters size (MB): 93.93
• Estimated Total Size (MB): 381.06
The segmentation model required 39,442,925 parameters

with a parameter size of 2017.56 MB. At the same time, the

FIGURE 13. Bi-Pipeline implementation scheme.

total learning parameter of the classifier model is 24,622,728,
with a model size of 381 MB. This model costs more
compared to BreaCNet [9], which only has 6.1 million
parameters and 22MB in size. The limitations of the proposed
method, which are computational cost and large size, make it
difficult to embed in mobile devices.

D. POTENTIAL PRACTICAL IMPLEMENTATION OF
PROPOSED BI-PIPELINE SYSTEM
In Figure 13, we visualized the proposed bi-pipeline end-
to-end process and some results in Table 3. As this finding
is intended to be used by medical experts, We used
CPU instead of GPU (Graphical Processing Unit) for the
performance evaluation, with the specification of AMD FX-
9830P and 8GB of RAM. Four images were fed into the
proposed bi-pipeline model, and the interpretation results
were recorded along with the simulation time.

The bi-pipeline model can take the RoI of the input images
and classify them all correctly. The segmentation process
takes more time, with an average time of 3.508 seconds, but
less in the classification process, with only 0.531 seconds on
average. The implementation result confirmed that the model
can be implemented as a real-time application.

On the other hand, a self-supervised learning model
can lead to more robust and generalizable models. Since
this model was trained on a broader spectrum of data,
it tends to develop a more comprehensive understanding
of the underlying patterns, making them less prone to
overfitting. This aspect is particularly crucial in medical
image recognition, where the model needs to perform well
across diverse and unpredictable real-world breast thermal
image datasets. With its robust and large size, the proposed
bi-pipeline model should be implemented in a website
application for medical experts.

V. COMPARISON WITH SIMILAR WORKS
We have investigated similar work in the last ten years using
the keywords of segmentation, classification, bi-pipeline,
fully automated, deep learning, breast thermal image, ther-
mogram, and breast cancer using scholar engine searches.
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TABLE 3. The proposed bi-pipeline implementation result.

We found one similar work by Mohamed et al. [20] as shown
in Table 4. They proposed a fully automated breast cancer

detection using U-Net for segmentation and a two-class
deep learning classification. Mohammed et al. proposed a
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TABLE 4. The comparison of proposed model with similar work.

classification model using CNN that was built from scratch.
With only 60 epochs, their model can achieve an accuracy
rate of 99.33% for two classes. From the learning curve, their
work exhibits a stable and high accuracy rate of the classifier,
but the accuracy rate of the segmentation should have been
discussed. Nevertheless, the properties of the proposedmodel
were not exposed.

VI. CONCLUSION
In this paper, we propose a self-supervised bi-pipeline deep
learning model to automatically recognize breast thermal
images. Themodel consists of a deeply trained and fine-tuned
hyperparameter of R2AU-Net for the segmentation task and
SimCLR connected to ResNet50 for the classification task.
All networks were trained on unlabelled breast thermal
images to obtain a set of weights that enable the extraction
of the region of interest (RoI) of the breast area and classify
the images into healthy or cancer categories. By applying
transfer learning, the model achieved high accuracy rates
in both segmentation and classification tasks, with 98.63%
and 96.87%, respectively. Moreover, the proposed bi-pipeline
model exhibits an effective use with only around 4 seconds
to proceed with segmentation and classification tasks. These
findings confirmed that the model can be implemented as a
real-time application. Despite the high accuracy rate, the clas-
sifier model requires further fine-tuning of hyperparameters
to ensure more stable learning.
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