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ABSTRACT With the rapid development of biometric recognition systems, users can be simultaneously
enrolled in multiple biometric recognition systems, either with a single or multiple biometric characteristics
(e.g., face, voice, etc.). With such a growth of biometric systems, it is important to secure the sensitive
information used within these systems. In particular, considering the privacy issues in such systems,
several biometric template protection schemes are proposed in the literature. According to the ISO/IEC
24745 standard, each template protection scheme should satisfy the unlinkability property. While previous
measures to evaluate unlinkability were based on two protected templates, the adversary may have access to
more information. Such information can correspond to multiple templates from different biometric systems,
a single multi-modal biometric system, or even a single unimodal biometric system. In this paper, we focus
on measuring the linkability of multiple protected biometric templates, and define maximal linkability in
the presence of multiple similarity scores. We define different scenarios where the adversary gains access to
multiple similarity scores and evaluate the linkability of protected templates in each scenario. We investigate
the theoretical properties of the maximal linkability measure, and compare the theoretical prediction with the
calculated linkability of the compositive systems in our experiments. To our knowledge, this is the first work
on measuring the linkability of multiple protected biometric templates. The source codes of our measure and
all experiments are publicly available.

INDEX TERMS Biometrics, biometric template protection, feature extraction, linkability, maximal leakage,
multi-modal, multiple templates, statistical hypothesis testing, template.

I. INTRODUCTION and their applications range from personal (e.g., smartphone

Biometric recognition systems establish the identity of
people based on their physiological (e.g., face, finger vein,
iris, fingerprint, etc.), behavioral (e.g., voice, keystroke,
signature, gait, etc.), or chemical (e.g., DNA, etc.) traits.
Since these traits are unique to each person, biometric
recognition systems are considered a reliable alternative
to traditional authentication systems (e.g., PIN, passwords,
tokens, etc.). Over the last few years, biometric systems
have become one of the most popular authentication tool,
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unlocking!-?) to large-scale authentications (e.g., national
identity systems’>,* border controls at airports,’ etc.). As a
matter of fact, the widespread application of biometric
systems is due to simultaneously offering a high level
of security as well as convenience to their users. The
ubiquity of biometric systems is such that nowadays many

1 https://apple.co/3mLGCYV
2https://bit.ly/3¢TI7Gp
3https://bbe.in/3Qels02
4https://uidai.gov.in
Shitps://cnet.co/3sG8qSd
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people may be concurrently enrolled in multiple biometric
systems with the same or different biometric modalities.
Multi-modal biometric recognition systems (also known
as multi-biometric systems) are also proposed to provide
further security by using multiple biometric modalities in the
automatic biometric authentication process [1], [2], [3], [4],
(51, [61, [7].

Biometric recognition systems typically extract biometric
templates (also known as features or embeddings) from the
captured biometric data and store the extracted templates in
the system’s database during enrollment. During the recog-
nition stage, the newly extracted templates are compared
with the ones in the system’s database, and recognition is
made based on the similarity score. Therefore, biometric
templates convey important information about users’ identity
in a biometric system. Along the same lines, data protection
regulations® consider biometric data as sensitive information
and impose legal obligations to protect biometric data [10].
To this end, several biometric template protection (BTP)
schemes have been proposed in the literatures [11], [12], [13],
and [14] to protect biometric templates.

The ISO/IEC 24745 standard [15] defines four require-
ments for each BTP scheme: First, the protected templates
should not considerably degrade the accuracy of the biometric
recognition system (i.e., recognition accuracy preservation).
Second, the protected templates should be non-invertible.
In other words, it should be computationally infeasible
to reconstruct the original unprotected templates from the
protected templates (i.e., irreversibility). Third, it should be
possible to cancel a compromised protected template and
replace it with a new protected template (i.e., renewabil-
ity/revocability). Fourth, if two or more protected templates
are compromised, it should not be possible to link the
protected templates and find if they are from the same subject
or different subjects (i.e., unlinkability).

While there are standardized methods for evaluating the
recognition accuracy of biometric systems (e.g., ISO/IEC
19795-1 standard [16]), no measure has been standard-
ized in the ISO/IEC 30136 standard [17] for evaluating
the irreversibility and unlinkability of protected biometric
systems. Several papers have focused on the irreversibility
evaluation of protected templates [18], [19]. In the case that
the adversary gains access to multiple protected templates,
there are also some works on the inversion of multiple
protected templates which investigated if the adversary can
estimate the original raw template from multiple protected
templates [20], [21]. However, there has been less work on
evaluating the linkability of protected templates, and to our
knowledge, no previous work investigated the linkability of
multiple protected templates in biometric systems. In this
paper, we focus on measuring the linkability of multiple
biometric protected templates.

6Such as the European Union General Data Protection Regulation
(EU-GDPR) [8], the Illinois Biometric Information Privacy Act 740 ILCS
14 (BIPA) [9], etc.
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Previous works for evaluating the linkability of protected
biometric templates considered the scenario where the
adversary has two templates and aim to determine if
these two templates are for the same subject (i.e., mated
templates) or for the different subjects (i.e., non-mated
templates) [22]. In [23], [24], [25], [26], and [27] the
recognition performance of the protected system in different
scenarios is used to evaluate the linkability of protected
templates. Buhan et al. [23] and Kelkboom et al. [24]
considered two scenarios: i) regular analysis, where templates
are protected with a single key, ii) unlinkability analysis,
where templates are protected with different keys. Then,
to evaluate the linkability of the system, Buhan et al. [23]
compared the recognition accuracy of the system in terms of
Equal Error Rates (EER) and Kelkboom et al. [24] compared
the recognition performance of the system in terms of the
Receiving Operating Characteristic (ROC). In both of these
methods, if the recognition performance degrades in the
unlinkability analysis compared to the regular recognition
performance, the system is considered to be unlinkable to
some degree. Similar to [24], Nagar et al. [25] used the ROC
plot of matching templates with different keys (i.e., second
scenario), but they merely used this ROC plot to evaluate the
unlinkability of the system. In contrast, Piciucco et al. [26]
combined the results of regular analysis (first scenario) and
unlinkability analysis (second scenario), and plotted the True
Match Rate (TMR) from the unlinkability analysis’ versus
the system’s False Non-Match Rate (FNMR) from the regular
analysis. Rua et al. [27] also plotted the probability that the
adversary can find the correct identity in a top-N list (similar
to Cumulative Match Curves (CMC)) and compared the
resulting plot with the one corresponding to random guess,
as a fully unlinkable situation. However, similar to [23], [24],
[25], and [26], they did not quantify the general unlinkability
of the system as a single number.

In contrast to accuracy-based methods [23], [24], [25],
[26], [27], recent works used score distributions to evaluate
the unlinkability of protected templates [22], [28], [29], [30].
Ferrara et al. [28] calculated three distributions of scores
for the comparison of two templates protected with different
keys, including scores for the comparison of two templates
from 1) the same sample (same subject), 2) different samples
of the same subject, and 3) samples of different subjects.
Then, they evaluated the unlinkability of the templates by
visually comparing the overlap of distributions. Wang and Hu
[29] only used the last two score distributions and similarly
evaluated unlinkability by visual comparison of the score
distributions. Similarly, Gomez-Barrero et al. [30] considered
two distributions of scores, called mated and non-mated
scores, and proposed two quantitative measures (local and
global) based on score distributions. As their local measure
for each score, they considered the difference in conditional
probabilities of the hypothesis that the given score is mated
or non-mated. They calculated the local measure using the

Treferred to as Renewable Template Matching Rate (RTMR) in their work.
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likelihood ratio of mated and non-mated hypotheses and
the ratio of prior probabilities. For their global measure,
they calculated the conditional expectation of the local
measure over score values. Their proposed global measure
was properly defined and bounded in the [0, 1] interval.
However, as discussed in [22], it has several drawbacks. First,
the proposed global measure does not have any operational
interpretation, which makes difficult to understand the level
of linkability of a system after calculating the global measure
in [30]. In particular, when comparing two systems, it is
not clear the significance of the difference in linkability
of the systems given the values of measure. Second, the
method [30] is dependent on the prior probabilities of
mated and non-mated hypotheses. Finally, it is necessary to
estimate likelihood ratios in this method [30], which makes
it numerically unstable for low values of probability of being
non-mated (as it appears in the denominator of the likelihood
ratio).

In [22], score distributions of mated and non-mated
templates was used with maximal leakage from information-
theoretic literature [31] to propose a measure (called max-
imal linkability) for evaluating the linkability of protected
biometric templates. The proposed measure in [22] is
also properly defined and bounded in the [0, 1] interval.
In particular, the proposed measure has a number of
important theoretical properties and an appealing oper-
ational interpretation in terms of statistical hypothesis
testing. More precisely, it is shown in [22] that the
proposed measure gives a theoretical upper bound on
the adversary’s hypothesis test and guarantees that an
adversary cannot achieve higher accuracy than the resulting
bound.

In this paper, we build upon the previous measure proposed
in [22] for measuring the linkability of protected biometric
templates and extend it to situations where the adversary has
access to multiple (two or more) similarity scores. We define
different scenarios in which the adversary gains access to two
or more protected templates within a single biometric system
or across multiple biometric systems with the same enrolled
user. Then, the adversary will have more than a single score
value for the hypothesis testing task of determining if the
templates are mated or not. In general, this means that the
adversary has more information and the associated linkability
score should be higher. We investigate how this more general
setting degrades the linkability guarantees of the system in
terms of theoretical properties of the maximal linkability
measure. Then, we compare the theoretical prediction with
the actual linkability of the compositive systems. In our
experiments, we use different BTP schemes, different bio-
metric modalities (face and voice), and state-of-the-art deep
neural network feature extractors, to evaluate the linkability
of protected templates with multiple similarity scores.
We explore the linkability in biometric systems considering
leakage from different biometric systems, in a multi-modal
biometric system, or in different stages of a single biometric
system.
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In summary, the contributions of the paper are as follows:

o This paper presents the first study on measuring the
linkability of multiple protected biometric templates.
We define different scenarios where the adversary gains
access to two or more protected templates within a single
biometric system or across multiple biometric systems.

o We extend the definition of maximal linkability [22]
to the scenario where the adversary gains access to
multiple similarity scores, and evaluate the linkability of
protected systems in such scenarios.

« We investigate the theoretical properties of the maximal
linkability measure for multiple similarity scores, and
compare the theoretical prediction with the calcu-
lated linkability of the compositive systems in our
experiments.

The remainder of this paper is organized as follows.
In Section II, we present the notations used in the paper
and define the problem of linkability evaluation based on
multiple similarity scores. In Section III, we propose a
method for measuring the linkability with multiple similarity
scores based on our previous measure proposed in [22].
In Section IV, we report our experiments for different
scenarios defined in Section II for biometric systems and
evaluate the linkability of the protected templates using our
method. Finally, the paper is concluded in Section V.

Il. PROBLEM DEFINITION AND FORMULATION

A. PAPER NOTATION

Throughout the paper, we denote a biometric sample
(e.g., face image or voice signal, etc.) captured by a sensor
with C and a feature extractor with e(-). We also denote the
features extracted from C by the feature extractor with e(-)
as unprotected templates with U. In a protected biometric
system, a template protection scheme p(:, -) is applied to
each unprotected template U to generate protected template
T = p(U, k), where k is a key. Let us also denote a protected
biometric system with b = poe, which generates a protected
template T = b(C, k) from the biometric sample C and key k.
We also denote a scoring function with S(-, -) to compare
two protected templates 7 and 7> and find the similarity
score S = (T, T»). We distinguish different templates of
the same subject with different indices. For example, 7' and
T1 > indicate two templates of subject 1.

B. DIFFERENT SCENARIOS WITH MULTIPLE SIMILARITY
SCORES

Fig. 1 shows a general block diagram of a protected biometric
recognition system. Based on this block diagram, we consider
different scenarios (denoted with Sc.), in which the adversary
may have multiple scores from templates leaked from
different points in biometric systems and aims to find the
linkability of the protected templates.

SC. 1: DIFFERENT BIOMETRIC MODALITIES

We have two biometric modalities, e.g., face and voice.
We have two samples captured for the face (C; s and Cyf)

VOLUME 12, 2024
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FIGURE 1. General block diagram of a biometric recognition system.
and two samples captured for voice (C1,, and C3,) and know Subject 1 T11 Ti2 Ty Tip T
that Cy  and Cy, are from the same person (subject 1), and
also C y and Cg,vlare fronlq the same perso.n.(subject 2).é;l"hese A s\ /s, S, S,
samples are used in two biometric recognition systems® by(-)
(i.e., face recognition) and b,(-) (i.e., speaker recognition), .
yielding T1,; = by(Cis.ki,) and T1o = by(Cy. ki) Subject2 Th1 Toz I &
as well as T 1 = bf(CzJ', kp,1) and Top = bv(Cz’v, kz2). Se. 13 Sc. 4 Sc. 5

We use two scoring functions for these two biometric systems
Sr(-,-) and S,(-,-) and have Sy = s¢(T1,1,72,1) and
S2 = sy(T1,2, T2,2). We would like to determine whether
an adversary can say if C;y and Cy (and similarly Cp,
and C3 ) are for the same person or not, given S7 and S»?
(i.e., subjects 1 and 2 are the same person or not?)

SC. 2: DIFFERENT FEATURE EXTRACTIONS

We have biometric samples (e.g., two face images) C; and
C,, and extract features with two different feature extractors
(e1(-) and e3(+)), yielding U;,; = €1(Cy) and Uy > = €2(C1)
aswellas Uz 1 = €1(Cz) and Uz 2 = €(C2). We protect each
extracted feature and have four protected templates 7,1 =
P(U1,1,k1,1), Ti2 = p(Ui,2, k1,2), T2,1 = pP(U2,1, k2,1), and
T2 = p(Uz,2, k22). We use a scoring function S(:, -) and
have S| = s(T1.1, T12)and S2 = S(72.1, T2,2). We would like
to determine whether an adversary can find if C| and C, are
for the same person or not, given S7 and S2?

SC. 3: DIFFERENT TEMPLATE PROTECTION SCHEMES

We have two unprotected templates, U; and U,, which are
protected with two different BTP schemes p; (-, -) and p2(-, -),
yielding T1,1 = pl(Uly kl,l) and T1,2 = pZ(Ul, k1’2) as well
as To,1 = p1(Uz, k2,1) and Trp = pP2(Uz, k22). We use
two scoring functions, S;(-, -) and S»(+, -) correspond to BTP
scheme pi(-,-) and pa(-, -), respectively, and have §; =
$1(T1,1,T1,) and So = $2(12,1, 12,2). We aim to determine
whether an adversary can find if Uy and U are for the same
person or not, given S; and $2?

8We can also consider a bi-modal bometric recognition system which uses
face and voice data for recognition, and thus extracts separate templates from
face and voice samples.
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FIGURE 2. Different scenarios where we have two scores from different
leaked templates.

SC. 4: DIFFERENT PROTECTED TEMPLATES

We have three protected templates T 1, 71,2, and T2 and also
a scoring function s(-, -). We know that 711 = p(Uy, k1.1),
Ti2 = p(Uj,k;,2) are for the same person (U;) and aim
to determine whether having S| = S(71,1,72) and S =
S(T1,2, Tz), an adversary can find if 7o = p(Ua, k2) is also for
the same person or not? (i.e., subjects 1 and 2 are the same
person or not?)

SC. 5: DIFFERENT SCORING FUNCTIONS
We have two protected templates 71 = p(Uy, k1) and T, =
p(Ua, k) and also two scoring functions Si(-, -) and Sa(-, ).
We would like to determine whether having S; = s1(71, T2)
and S» = Sy(T, T2), an adversary can find if 71 and 75 are
for the same person (mated) or for different persons (non-
mated)? Note that in contrast to scenarios 1-4, in this scenario
the adversary does not have any additional knowledge about
any potential links between leaked templates, but uses two
scoring functions to facilitate the hypothesis testing task.
Fig. 2 illustrates different scenarios where we have
two scores from different leaked templates. It is worth
mentioning that each of these scenarios can be extended
to any number of templates/scores or combined with other
scenarios. For example, by combining Sc. 4 and Sc. 5, with
two scoring functions we can have four similarity scores:
s1 = S1(T1,1, 1), 52 = S1(Th 2, T2), s3 = S2(T1,1, T2), and
s4 = S2(T 2, T2). For simplicity, we do not discuss such
combinations in this paper, however, the proposed method
can be extended for such scenarios too.
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IIl. MEASURING LINKABILITY USING MULTIPLE
SIMILARITY SCORES

In this section, we overview the theoretical properties of
maximal linkability which are relevant to the present setting
of multiple templates and similarity scores. First, we review
the definition of maximal linkability introduced in [22].
Then, we discuss the properties of maximal linkability which
follow from well known properties of maximal leakage and
composition across multiple views. Finally, we address the
behavior of maximal linkability with respect to the five
composition scenarios outlined in Section II.

A. MAXIMAL LINKABILITY

Maximal linkability as introduced in [22] is based on
an information-theoretic measure called maximal leakage
[31, Theorem 1]. Maximal linkability measures the amount of
information revealed by two templates about the two possible
hypotheses: the templates are mated, and the templates are
not mated. That is, given two biometric systems, let 77 be
the space of all possible protected templates that could be
produced by the first system and 7, be the space of all
possible protected templates that could be produced by the
second system. Given two templates (¢, ) € 77 x 7y we
define the following hypothesis:

h, = {templates #; and f, belong to mated instances}

hnm = {templates #; and #, belong to non-mated instances}.

Moreover, let (T, T>) be random variables each taking values
on 77 x 7 and let H be a random variable taking values
on H = {hy, hym}. In other words, H denotes the true
hypotheses about templates 77 and 7>. Maximal linkability
of two systems producing templates (7, 7>) is then given as

M2 = LH — (Th, T2)) ey

=log > max{p(t. t2lm). p(tr. 12 hum)}
(t1,1)eT1xT

@

The biometric systems 1 and 2 could be two different
instances of the same simple system; this is the scenario
studied in [22]. They could also be different systems like the
ones in Section II.

In general, estimating M2’ can be an intractable problem
since the space 77 x 73 is very large. One way to overcome this
is to estimate linkability through a similarity score. Let S =
S(T1, T) be a similarity score for templates 77 and 73, and
a similarity function s. Maximal s-linkability of two systems
producing templates (77, 7>) is defined in [22] as maximal
leakage between two hypothesis:

Mi =L(H — 95). 3)
That is, for discrete S,

ME, = log D" max {p(slhm), p(slhum)} , )
se€S
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and for continuous S,
MS, = IOg/S max {p(s|hm), p(s|hum)} ds. ©)

Maximal linkabilities M2 and M, have strong interpre-
tations in terms of bounds on the False Match Rate (FMR)
and False Non-match Rate (FNMR) in the hypothesis test
defined above. We refer the reader to [22] for more in-depth
discussion of this interpretation.

Finally, we remark that maximal linkability M3, is well
defined even when the similarity scores is a vector. For
example, if the similarity score s = (s, s2) is a tuple, then
Eq. (4) becomes

log Z

(51,52)€S1 xSy

max {p(s1, s2|hm), p(st, $2)|hum)} . (6)

and Eq. (5) becomes
10g/ max {p(s1, $2|hm), p(s1, S21hpm)} ds. @)
S1xS

An example for a two-dimensional synthetic distribution is
provided in Fig. 3. Likewise, the same hypothesis testing
interpretation from [22] holds for the example in Fig. 3.

B. PROPERTIES OF MAXIMAL LEAKAGE

In addition to the operational interpretation in terms of
hypothesis testing, maximal linkability inherits theoretical
properties from maximal leakage. For example, we know that

0<M$ <M¥» <1, ®)

see [22, Lemma 1]. Specifically, two important groups of
such theoretical properties are data processing inequalities
and composition theorems. These properties generally hold
for most of the well-known measures of information (e.g.
mutual information), as well as privacy (e.g. differential
privacy). Such properties are useful in analyzing the behavior
of M2 and Mi, as we discuss next.

1) DATA PROCESSING INEQUALITY

Intuitively, the data processing inequality says that new
information cannot be gained by processing an observation.
It is well known that maximal leakage satisfies the data
processing inequality, see for example [31]. That is, if X <
Y <« Z are random variables which form a Markov chain,
then

LX—>2Z)<LX—>Y), )
and
LX > 2)< LY — 2). (10)

In terms of biometric systems, (9) could be alternatively
stated as

LH — S) < LH — (Ty, T)). an

VOLUME 12, 2024
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FIGURE 3. 2D histograms of synthetic distributions of mated and non-mated scores (first row) and their corresponding ROC plots (second row). The
distribution of mated and non-mated scores are indicated in the third and fourth rows, respectively. In each case, the value of maximal linkability

for each individual score (i.e., m:! and Mi_z,) and for the tuple of s = (s, 55), (i.e., Mﬁ' =2) ) is also indicated in the fifth and sixth rows, respectively.

The linkability M(f,' *2) for the joint similarity score is always higher than the linkability for individual scores since in the joint case more
information is available to the adversary. In the ROC plots, the green dotted curves indicate the maximal likability bound for the adversary
hypothesis test (from Lemma 1), the solid blue curves show the optimal possible hypothesis test by the adversary, and the dashed red curves depict

the random guess accuracy.

This is because (T, T7) is processed to obtain a scoring
function output S; thus, the amount of information in S about
H cannot be greater than in (77, T3).

Given any similarity function § on 77 x 73, the second
inequality in Eq. 8 follows from the data processing inquality
and in general M$, underestimates the true linkability M2’
Now, suppose that we have two scoring functions. That is
S1 =s1(T1, T») and Sp = s»(T1, T>). Then

H < (T1,T2) < (S1,82) < S (12)
and
H < (T1, T2) < (81, $2) < Sa. (13)
From this we have that
max (M3, M%2) < M%) < M, (14)

In other words, considering two scoring functions gives us a
better estimate of the true linkability than individual scores.
Similar to [22, Lemma 3], we can bound the adversary
hypothesis test using two similarity scores as follows:
Lemma 1: Suppose H is a decision rule for the hypoth-
esis H based on observing S1 = S1(T1,72) and S =
S2(T1, T>) and taking values on {hy,, hyy}. In other words,
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H < (S1,5) < H. Let
FMR = P [H = hlH = hnm]
and FNMR = P [H = | H = hm]

be the False Match and False Non-match Rates for this
decision rule. Let M8!-52) be the maximal s-linkability score
of the system. Then

(s1.82)
(1 — EMR) + (1 — ENMR) < 2M<"" (15)

Fig. 3 illustrates examples for two-dimensional synthetic
distributions of scores and their corresponding maximal
linkability.

2) COMPOSITION THEOREMS
Composition theorems track how much an information or
privacy measure changes if multiple noisy views of the event
of interest are available. For example, a composition theorem
for maximal leakage [31, Lemma 6] says that if Z] <> X <
Z» form a Markov chain, then

LX = (Z1,2) < LX = Z1)+ LX — Zp). (16)

On the other hand, if X, Z;, Z, do not satisfy the Markov
chain condition, we can still say that [31, Corollary 2]

LX = (Z1,22) = LX — Z) + LX — Z|Zy), (17)
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where L(X — Z,|Z;) denotes the so-called conditional
maximal leakage.
In terms of biometric systems, if we have that

S1 < (T1,T) <> H < (T1, T2) <> S5, (18)
then from (16)
M2 < M8 M2, (19)
On the other hand, if we just have that
H < (T\,T) < Syand H < (T1, Th) < Sa, (20)

then the Markov chain condition (Tl, Tz) < H < (T, Ty)
may not hold. We need to use the bound in (17) to obtain

MES) < ML+ L(H — $11S)), (1)
where L(H — S»|S}) is
log mE}SXI Z max {p(s2|s1, hm), p(salst, hnm)} . (22)

NS
$2€S,

Therefore, by having access to two similarity scores, the
adversary cannot learn more than the true linkability of the
system. However, they may learn more than simply the sum
of these two linkability.

C. MAXIMAL LINKABILITY FOR MULTIPLE SIMILARITY
SCORES

In this section we overview how the properties of maximal
linkability could be applied to the five different scenarios in
Section II.

DIFFERENT SCORING FUNCTIONS

In Sc. 5 described in Section II, the adversary observes two
scores, S and S from template pair (71, 72). By applying
the data processing inequality we can thus obtain that this
scenario satisfies Eq. 14. While it is not possible to get an
upper bound on true linkability M2’ by observing S and S5,
the joint linkability M$1:52) gives a better estimate of M2
than max (M2, M22). Moreover, if S| or S, really capture
the relevant information about the linkability of (7, T>), one
would expect that considering them jointly would not lead to
a significant increase in adversary’s ability to link that two
templates.

DIFFERENT PROTECTED TEMPLATES

Sc. 4 described in Section II behaves similarly to Sc. 5. The
difference is in Sc. 4 two protected templates are available
for the first user instead of one template in Sc. 5. That is,
the adversary has (77,1, T} 2) for the first user, and 7, for the

second user. Thus,
H < (T11,T12),T2) < (T, T2), ie{l,2}. (23)

From the data processing inequality we see that the linkability
of such a system will be generally higher than M%' since,
by definition,

MZ =LH — (T11, 1) = LH — (T12,T2). (24)
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It is also no longer possible to determine how the joint link-
ability M$1:52) will relate to MZ’. On the one hand, it could
be lower since some information is lost by considering the
scoring functions instead of the templates. On the other hand,
it could be higher since the adversary learns something about
two different linked templates (77,1, 71 ,2).

With respect to the data processing inequality, Sc. 2 (i.e.,
different feature extractors) and Sc. 3 (i.e., different template
protection schemes) described in Section II also resemble
Sc. 4. That is, the adversary has access to two templates from
each user and thus access to more information. In general, the
linkability of this overall composite systems will be higher
than M2, where

M2 = LH — (T1,1,T21) = LH — (T12,T22)). (25)

It is also not clear how the joint linkability MS!-52) will relate
to M2’ . Therefore, performing robustness analysis to see how
the linkability changes with multiple views could be very
interesting.

DIFFERENT BIOMETRIC MODALITIES

In Sc. 1 described in Section II, we have that the same two
individuals are compared with scoring functions derived from
voice and face templates. Let M, denote the linkability of the
voice system by itself, and M., denote the linkability of the

Sys

image system by itself. Let M., denote the linkability of the
overall bi-modal system and observe that max (Mf_), M’;) <

2’ However, since the voice and image templates are
already linked at an individual level, we cannot find an upper
bound for M2’ with the sum of individual linkabilities M”,
and M’:_). Thus, it is important to analyze the whole bi-modal
system as a single system and not individual parts.

From the perspective of the scoring functions, we have

H < ((T11,T12), (T1, T22)) < (S1,82).  (26)

By applying the data processing inequality we can thus obtain
that this scenario satisfies Eq. 14. That is, the adversary
cannot learn more than the true linkability MZ.'. Once again,
the joint linkability M$1:52) gives a better estimate of M2,
than max (M3, M$2).

COMPOSITION FOR ALL SCENARIOS

We emphasize that, from the composition perspective, Eq. 19
is not guaranteed to hold for any of the five scenarios. That
is, even a sum of two individual scores is not an upper bound
on the true score. Instead, we need Eq. 22.

Note, however, we can modify the setting in the following
way. Suppose two sets of face images (Cy, C») and (C‘ 1 C‘z)
are known to be both mated or both non-mated (but, the
adversary does not know which). However, the images
themselves come from two (if mated) or four (in non-mated)
different people. Then

S1 < (T,1,T2,1) < H < (T12,T22) <> S2. 27

In this case, Eq. 19 is a valid bound on the overall linkability.
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TABLE 1. Summary of BTP schemes used in our experiments.

BTP scheme output score function

BioHashing [32]  binary Hamming distance*

MLP-Hash [33] binary Hamming distance*

IoM-GRP [34] integer number of collisions

HE [35] ciphertext  Euclidean distance™® (in ciphertext)

*To have similarity values, distance functions are multiplied by -1.

IV. EXPERIMENTS

In this section, we present the experimental results for
evaluating the linkability of multiple protected biometric
templates based on our measure explained in Section IIIL.
First, in Section IV-A, we describe our experimental setup
for the used biometric systems and implementation details.
In Section I'V-B, we analyze the numerical results for different
scenarios (defined in Section II) in biometric systems where
multiple pieces of information are available (more specifi-
cally, two similarity scores) for linkability measurement of
protected biometric systems. In Section IV-C, we discuss
the extension of the scenarios studied in Section IV-B to
the situation where the adversary can find three similarity
scores to perform hypothesis tests. Finally, in Section IV-D,
we further discuss our experimental findings of measuring the
linkability of the biometric systems.

A. EXPERIMENTAL SETUP

We consider different BTP schemes, different modalities
(face and voice), and SOTA DNN-based feature extractors,
to evaluate the linkability of protected templates with
multiple similarity scores.

1) BTP SCHEMES

In our experiments, we use different BTP schemes, including
BioHashing [32], Multi-Layer Perceptron (MLP) Hashing
[33], Index-of-Maximum (IoM) Hashing [34] (i.e., Gaus-
sian random projection-based hashing, shortly GRP), and
Homomorphic Encryption (HE) based on Brakerski/Fan-
Vercauteren (BFV) [35] algorithm. Table 1 summarizes BTP
schemes we use in our experiments, and compares their
outputs and corresponding scoring functions.

2) BIOMETRIC MODALITIES

In our experiments, we use two different biometric modali-
ties, including face and voice.” We build different biometric
recognition systems for the these biometric modalities using
state-of-the-art feature extractor models:

Face Recognition For face recognition, we use ArcFace-
InsightFace [36], ElasticsFace [37], and FaceNet [38] models
as three different SOTA feature extractors. We consider
MOBIO [39] dataset, which is a bi-modal dataset including
face and voice data taken with mobile devices from

9Maximal linkability has been also used to evaluate the linkability of other
biometic modalities, such as finger vein [22], for single biometric template,
and it can be similarly applied to multiple leaked templates for different types
of biometric modalities.
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150 individuals and collected in 12 sessions (6)-11 samples in
each session) for each subject. For mated pairs, we consider
all possible combinations of samples for different subjects.
For non-mated pairs, we consider only the first 10 samples
for each subject, and then we use all possible pairs of samples
from different subjects.

Speaker (voice) Recognition For speaker (voice) recog-
nition, we use ECAPA-TDNN model [40] as the feature
extractor, and use voice data in MOBIO [39] dataset to
gnerate protected voice templates. To generate mated and
non-mated pairs, we use the same protocol as described for
the face recognition system.

Table 2 summarises different biometric recognition sys-
tems used in our experiments. This table also reports the
dimension of unprotected templates extracted by each feature
extractor as well as the recognition performance of each
model in terms of Equal Error Rate (EER). Note that in our
experiments in sections IV-B2-IV-B5, we use face templates,
and in the experiment in section IV-B1 we use pairs of face
and voice templates of same subjects in the MOBIO dataset.

3) IMPLEMENTATION DETAILS AND SOURCE-CODE

In our experiments, we use the Bob!0 toolbox [41], [42]
to build the biometric recognition systems. We also use the
open-source implementations (in Bob) of the BioHashing,
MLP-Hash, IoM-GRP, and HE schemes [33], [43], [44], [45].
For HE, we use its implementation using the SEAL-Python'!
wrapper on Python 3.8 for the C++ SEAL library [46]. The
source code of all our experiments is publicly available to
help researchers reproduce our results and build upon our
work. 12

B. ANALYSIS OF DIFFERENT SCENARIOS IN BIOMETRIC
SYSTEMS

In this section, we consider different scenarios in Section II
and for each scenario we describe a case based on biometric
systems based on biometric modalities and BTP schemes
explained in Section IV-A. In all cases, we assume that
the adversary could find two similarity scores to perform
hypothesis tests, and we evaluate the linkability of multiple
protected templates with different biometric modalities
(in Section IV-B1), different feature extractors (in Sec-
tion IV-B2), different BTP schemes (in Section IV-B3), dif-
ferent keys (in Section IV-B4), and different scoring functions
(in Section IV-B5). In our experiments in Sections IV-BI,
IV-B2, and IV-B5, we consider BioHash-protected templates
since BioHashing is the simplest BTP scheme in Table 1.
Similarly, we use face templates in our experiments in
Sections IV-B2-IV-B5 since the face is one of the most
popular biometric characteristics. However, we should note
that similar experiments with other BTP schemes and other

10 Available at https://www.idiap.ch/software/bob/
1 Available at https://github.com/Huelse/SEAL-Python
12https:// gitlab.idiap.ch/bob/bob.paper.access2024_linkability_multiple
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TABLE 2. Summary of biometric recognition systems used in our experiments.

Modality Dataset # Mated # Non-mated Feat. Extractor Feat. Length EER(%)
ArcFace 512 0.02

Face MOBIO (face) 1,516,300 2,235,000 ElasticFace 512 0.02
FaceNet 128 0.60

Voice MOBIO (voice) 1,516,300 2,235,000 ECAPA-TDNN 192 1.40

TABLE 3. Linkability of BioHash-protected templates for features from
different biometric modalities.

mod. #1 (by) mod.#2(b) MY, Mz MY
Face (ArcFace) Voice (ECAPA) 0.0169 0.0162  0.0232
Face (ElasticFace)  Voice (ECAPA) 0.0143  0.0162  0.0212
Face (FaceNet) Voice (ECAPA) 0.0302 0.0162 0.0344

biometric characteristics can be implemented using our
open-source paper package.

1) LINKABILITY OF PROTECTED TEMPLATES WITH
DIFFERENT BIOMETRIC MODALITIES (SC. 1)

In a multi-modal biometric recognition system the protected
templates of each biometric modalities can be stored in
the database of the system. In this experiment, we use
voice signals and corresponding face images from the
MOBIO dataset. We consider voice features extracted by
ECAPA-TDNN and face features extracted by different
models (ArcFace, ElasticFace, and FaceNet) and protect
features of each modality separately using BioHashing.
Table 3 reports the linkability of multiple protected biometric
templates from voice and face modalities (i.e., Sc. 1 defined
in Section II) denoted with M(i ) and compares it with
linkability of face templates (Mz) and voice templates
(M$y). As the results in this table show, pairs of voice
and face protected templates have more linkability than
their individual protected templates. This means the pair of
face and voice templates provide more information to the
adversary.

2) LINKABILITY OF PROTECTED TEMPLATES WITH
DIFFERENT FEATURE EXTRACTORS (SC. 2)

In some biometric systems, different feature extractors may
be used and the final decision is made by fusing the
scores from different templates available for each subject.
In this experiment, we consider face images from the
MOBIO dataset and extract features using different feature
extractors, including ArcFace, ElasticFace, and FaceNet.
We protect features extracted by each model separately
using BioHashing. Table 4 reports the linkability of multiple
protected biometric templates extracted from different face
feature extractor models (i.e., Sc. 2 defined in Section II)
denoted with M52 and compares it with linkability of
individual templates extracted by each model (i.e., MS! and
M$%2). As the results in this table show, protected pairs
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TABLE 4. Linkability of BioHash-protected templates for different face
feature extractors.

Feat. Ext. #1 (e;) Feat. Ext.#2(e) M3, M3 ME*)
ArcFace ElasticFace 0.0156  0.0149  0.0227
ArcFace FaceNet 0.0135 0.0149  0.0209
ElasticFace FaceNet 0.0295 0.0149  0.0337

TABLE 5. Linkability of different BTP schemes for ArcFace templates.

BTP #1 (p1) BTP #2 (p2) M3 M3 Mgil s2)
BioHashing MLP-Hashing  0.0156  0.0096  0.0188
BioHashing IoM-GRP 0.0156  0.0024  0.0171
BioHashing HE 0.0156  0.0042  0.0178
MLP-Hashing  IoM-GRP 0.0096  0.0024  0.0107
MLP-Hashing HE 0.0096  0.0042 0.0118
IoM-GRP HE 0.0024  0.0042  0.0088*

* MSE}*SZ) is greater than M3, + M3.

of features extracted from different models reveal more
linkability than individual protected templates. Therefore,
the adversary can have more information if templates from
different feature extractors are available.

3) LINKABILITY OF PROTECTED TEMPLATES WITH
DIFFERENT TEMPLATE PROTECTION SCHEMES (SC. 3)
Considering the required level of security, different BTP
schemes may be used in different biometric systems. In a
particular case, the same user can be enrolled in two systems
and the adversary may get access to templates of the
same users in both systems. In another case, different BTP
schemes may be used in the same system. In this experiment,
we extract ArcFace from face images in the MOBIO dataset
and use different BTP schemes including BioHashing, MLP-
Hashing, loM-Hashing, and HE. The results of the linkability
evaluation of multiple protected templates with different
BTP schemes (i.e., Sc. 3 defined in Section II) are reported
in Table 5, and show that multiple templates leak more
information. In particular, in the case of JoM-GRP and HE,
we observe that the linkability of multiple protected templates
is greater than the summation of the linkability of protected
templates with individual BTP schemes.

4) LINKABILITY OF PROTECTED TEMPLATES WITH
DIFFERENT KEYS (SC. 4)

In a single biometric system, the same user may be registered
with different keys at different times. This can happen
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TABLE 6. Linkability of protected templates with different keys for
ArcFace templates.

BTP M%L M2 MmE?)
BioHashing  0.0156 0.0156  0.0156
MLP-Hashing ~ 0.0096  0.0096  0.0096
10oM-GRP 0.0024 0.0024  0.0024
HE 00042  0.0031  0.0100*

* Mgl s2) i greater than M3 + M3.

because of the particular application or even in a typical
system if the user is removed and registered again into
the system. If the adversary gains access to both protected
templates with different keys, the linkability of the pairs of
protected templates is different than single protected tem-
plates. In this experiment, we use ArcFace features extracted
from face images of the MOBIO dataset, and generate
protected templates using different BTP schemes including
BioHashing, MLP-Hashing, IoM-Hashing, and HE. For each
BTP scheme, we generated two sets of protected templates
using different keys. Table 6 compares the linkability of
protected biometric templates if the adversary has access to
single templates or multiple templates with different keys
(i.e., Sc.4 defined in Section II). The results in this table show
that multiple protected templates with different keys have
more linkability than single protected templates. Particularly,
for HE the results in this table show that the linkability of
multiple protected templates with different keys is greater
than the summation of the linkability of single protected
templates.

5) LINKABILITY OF PROTECTED TEMPLATES USING
DIFFERENT SCORING FUNCTIONS (SC. 5)

In every protected biometric system, if the protected tem-
plates are leaked, the adversary can use different scoring
functions to perform a hypothesis test to identify if the
two templates are mated or non-mated. In this experiment,
we consider ArcFace features extracted from face images
of the MOBIO dataset and protected with BioHashing.
We apply different scoring functions'? (including Hamming
distance, Euclidean distance, Cosine distance, Kulsinski
distance, Russell-Rao distance, Sokal-Michener distance, and
Correlation distance) for BioHash-protected templates and
consider the scores available from all pairs of score functions.
Table 7 reports the linkability of biometric templates when
using two scoring functions (i.e., Sc.5 defined in Section II).
The results in this table show that in such a hypothesis test,
the linkability of protected templates is higher than using each
scoring function separately and the adversary gains a better
hypothesis test. However, theoretical properties of maximal
linkability discussed in Section III tell us that it is still less
than the true linkability of the system. As a matter of fact,
our theoretical predictions in Section III are also consistent

13Implementations of all these scoring functions are available in the SciPy
package: https://scipy.org
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TABLE 7. Linkability of BioHash-protected templates of AcrFace with
different scoring functions.

Func.#1(s;) Func.#2(s2) M3 MZ  ME=)
Hamming Euclidean 0.0156  0.0162  0.0162
Hamming Cosine 0.0156  0.0245  0.0272
Hamming Correlation 0.0156  0.0158  0.0159
Hamming Kulsinski 0.0156  0.0270  0.0287
Hamming Russell-Rao 0.0156  0.0266  0.0277
Hamming Sokal-Michener  0.0156  0.0166  0.0166
Euclidean Cosine 0.0162  0.0245 0.0274
Euclidean Correlation 0.0162 0.0158 0.0163
Euclidean Kulsinski 0.0162  0.0270  0.0282
Euclidean Russell-Rao 0.0162  0.0266  0.0276
Euclidean Sokal-Michener 0.0162 0.0166  0.0166
Cosine Correlation 0.0245  0.0158  0.0268
Cosine Kulsinski 0.0245 0.0270  0.0270
Cosine Russell-Rao 0.0245 0.0266  0.0268
Cosine Sokal-Michener  0.0245 0.0166  0.0275
Correlation Kulsinski 0.0158  0.0270  0.0288
Correlation Russell-Rao 0.0158  0.0266  0.0276
Correlation Sokal-Michener 0.0158 0.0166  0.0166
Kulsinski Russell-Rao 0.0270  0.0266  0.0271
Kulsinski Sokal-Michener  0.0270  0.0166  0.0283
Russell-Rao Sokal-Michener  0.0266  0.0166  0.0276

with the experimental results in Table 7 where we can see for
different score functions we have M$1-$2) < MS! 4 M$2,

C. EXTENDING STUDIED SCENARIOS TO THREE
SIMILARITY SCORES

In our experiments in Sections IV-B1-IV-BS5, we considered
the scenarios where the adversary could eventually find two
similarity scores to perform hypothesis tests. For each of
the scenarios analyzed in Section IV-B, we can extend our
linkability measurement to the situation where there are more
than two (e.g., three) scores available for the adversary’s
hypothesis tests. For example, let us consider the scenario
discussed in Section IV-B5 (i.e., Sc. 5) and extend to the
situation where the adversary applies three scoring functions
to find mated and non-mated protected templates. In such
a case, we can use our method to find linkability based
on three similarity scores. Fig. 4 illustrates the linkability
of BioHash-protected of ArcFace templates if the adversary
tries three different scoring functions in their hypothesis test.
This figure also depicts the linkability of protected templates
based on one and two similarity scores available for the
adversary’s hypothesis test. As we can observe by increasing
the number of scoring functions, the adversary achieves a
higher linkability. However, the value of maximal linkability
is still slightly higher than the maximum of linkability based
on a single similarity score in each case. Other scenarios
(Sc. 1-4) can be similarly extended to the situations where the
adversary can have three or more similarity scores between
multiple templates.

D. DISCUSSION

Our experiments in Sections IV-B and IV-C evaluate the
linkability of biometric systems when the adversary can
find multiple similarity scores from different stages (based
on defined scenarios) of a protected biometric system.
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FIGURE 4. Linkability of protected templates using multiple scoring functions for BioHash-protected templates of ArcFace.

With more available information, it is natural to assume
that there is more linkability between protected templates,
and thus an adversary can achieve better accuracy when
performing hypothesis tests to distinguish mated and non-
mated templates. Our experiments confirm that within bio-
metric systems, multiple available similarity scores facilitate
the linkability of templates. However, the unlinkability of
the protected biometric systems degrades gradually with
more available similarity scores. In most cases studied
in Sections IV-B and IV-C, we observe that linkability
often does not exceed the summation of linkability of each
similarity score,'* and in many cases, it is slightly greater than
the maximum of linkability based on a single similarity score.

In general, we are interested in estimating M2’ for each
biometric system to find the true linkability of the system.
However, as discussed in Section II1, it is not computationally
possible to calculate MZ’ for real biometric systems in
practice. An alternative approach is to use scoring functions to
compute a proxy for M2 and using several scoring functions
at once gives a better estimate of M2’ In particular, in our
experiments in Sections IV-B5 and IV-C, we showed that
we can use two and three scoring functions, respectively,
to better estimate the linkability of system with different
scoring functions. Different scoring functions (as in Sc. 5)
can be also applied to other scenarios (i.e., Sc. 1-4) defined
in Section II to improve our estimation of the linkability of
multiple biometric templates.

For a number of cases in Sc. 3 and Sc. 4 in our experiments
in Section IV-B, we observe that maximal linkability using
multiple similarity scores can be higher than the summation
of maximal linkability of each individual score, which
was expected from our theoretical analysis in Section III.
Therefore, as mentioned in Section III, it is important to
perform robustness analysis and evaluate the linkability
of protected templates based on multiple similarity scores
available for an adversary.

V. CONCLUSION

In this paper, we focused on measuring the linkability
of protected biometric templates when an adversary can
access multiple protected templates from different biometric

14Even if as discussed in Section 111, there is no theoretical guarantee not
to exceed the summation for scenarios 1-4 defined in Section II.
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systems, a single multi-modal biometric system, or even
a single unimodal biometric system. We defined maximal
linkability for the case where an adversary can find multiple
similarity scores from the available protected templates.
We considered five different scenarios where the adversary
gains access to multiple biometric templates from different
biometric modalities, different feature extractors, different
template protection schemes, or with different keys, and
also two protected templates with different scoring functions.
In each of these scenarios, the adversary can find multiple
similarity scores and can perform a hypothesis test to
determine mated and non-mated biometric templates. In our
experiments, we focused on the situation where the adversary
can find two similarity scores for their hypothesis test and
measured the linkability of protected templates. However,
our approach can be extended to more than two similarity
scores. In particular, we showcased measuring linkability
of protected templates where the adversary can find three
similarity scores for their hypothesis test. To our knowledge,
the linkability of multiple protected biometric templates
has not been studied in the literature, and thus this paper
paves the way for more comprehensive linkability studies
of protected biometric templates. Our proposed measure
can particularly be used to evaluate the linkability of
protected templates at different stages within the same
biometric system, across different biometric systems, and
within multi-modal biometric systems.
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