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ABSTRACT The concept of differential privacy (DP) can quantitatively measure privacy loss by observing
the changes in the distribution caused by the inclusion of individuals in the target dataset. The DP, which is
generally used as a constraint, has been prominent in safeguarding datasets in machine learning in industry
giants like Apple and Google. A common methodology for guaranteeing DP is incorporating appropriate
noise into query outputs, thereby establishing statistical defense systems against privacy attacks such as
membership inference and linkage attacks. However, especially for small datasets, existing DP mechanisms
occasionally add excessive amount of noise to query output, thereby discarding data utility. This is because
the traditional DP computes privacy loss based on the worst-case scenario, i.e., statistical outliers. In this
work, to tackle this challenge, we utilize per-instance DP (pDP) as a constraint, measuring privacy loss for
each data instance and optimizing noise tailored to individual instances. In a nutshell, we propose a per-
instance noise variance optimization (NVO) game, framed as a common interest sequential game, and show
that the Nash equilibrium (NE) points of it inherently guarantee pDP for all data instances. Through extensive
experiments, our proposed pDP algorithm demonstrated an average performance improvement of up to 99.53
% compared to the conventional DP algorithm in terms of KL divergence.

INDEX TERMS Differential privacy, game theory, per-instance differential privacy, security.

I. INTRODUCTION
Recently, the surge in machine learning has not only
spotlighted the importance of statistical datasets but has also
intensified the focus on privacy protections. Leading tech
companies use the personal information we readily submit
for training their machine learning models. If latent data
is extracted from these models, our personal information
could be exploited to facilitate financial crimes or terrorist
activities. Meanwhile, the innovative concept of differential
privacy (DP) has emerged as a key solution for quantitatively
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measuring privacy risks [1]. As depicted in Fig. 1, the DP,
a method that balances the utility of data with individual
privacy by injecting controlled randomness into datasets,
ensures that the privacy of individual data points is preserved
by making it mathematically indiscernible whether any
specific individual data is included or excluded. In the figure,
from a dataset D, the data agent answers a query Q(D).
If there is no randomness in the query output, one potential
attacker may access the private information via membership
inference [2] or data linkage attacks [3]. In DP, the basic
concept is forwarding randomized query output Q(M(D))
orM(Q(D)), whereM is a randomized mechanism, thereby
making the query output mathematically indiscernible.
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FIGURE 1. The essence of DP’s data security lies in injecting noise into
query outputs. The noise level has to be delicately balanced, considering
the tradeoff between privacy and utility. From above, the attacker tries to
identify if Jacob is in the dataset based on his known height of 208cm,
but privacy is protected by noise, making it impossible. Meanwhile, the
statistician struggles to analyze the feature of the dataset accurately due
to noisy responses, resulting in utility loss.

In today’s digital landscape, DP has been a promising
technology as a strong safeguard against the looming threats
of privacy violations, where the most common approach
is simply adding noise to query outputs, i.e., additive
noise mechanism. Specifically, compared to its rivals like
homomorphic encryption and federated learning [4], [5],
the additive noise DP mechanisms are computationally
simple and generally applicable. By virtue of its simplicity
and straightforwardness, DP has been widely employed
by industry giants such as Apple [6] Google [7], and
Microsoft [8] for data protection. Recently, many research
endeavors have aimed to apply DP in distributed networks [9]
and indoor localization scenarios [10], [11], adapting to
evolving communication network environments.

A. LIMITATIONS OF DP
Although the DP mechanisms have been found in our daily
lives, they sometimes add an excessive amount of noise to
the query output, thereby making the datasets’ utility almost
statistically useless. To introduce this limitation, we bring the
definition of the ϵ-DP, the basic concept of DP, where the ϵ

is a privacy parameter.
Definition 1 (ϵ-DP): A randomized mechanism with

domain Rd , denoted by M, has a range R(M). The
mechanism M is ϵ-differential private, if for all dataset
D,D′ ∈ Rd such that ||D −D′||1 ≤ 1:∣∣∣∣ ln Pr[M(D) ∈ S]

Pr[M(D′) ∈ S]

∣∣∣∣ ≤ ϵ, ∀S ⊆ R(M). (1)

In Definition 1, the smaller ϵ, the stronger the privacy guar-
antees in DP. More importantly, the ϵ-DP is broadly defined
across arbitrary datasets D ∈ Rd and data instances. That is,
the traditional DP focuses on designing mechanism M that

satisfies the condition (1) for all statistical datasets D, i.e.,
the mechanismM is designed for the worst-case scenario of
all the statistical datasets. In general, the worst-case scenario
indicates that n − 1 data instances are the same, while one
outlier has totally different information. Because this outlier
can be placed anywhere, the conventional DP mechanisms,
such as Logistic and Gaussian mechanisms [12], reasonably
add excessive amount of identical noise to the query outputs.

B. PER-INSTANCE DP
Although adding identical noise in the conventional mech-
anisms is a reasonable choice in DP; however, if we only
consider a specific dataset D, we can further enhance the
utility of the dataset by adopting non-identical noise while
preserving privacy. The recently proposed concept, per-
instance DP (pDP), gives us a motivation that the privacy loss
of an instance in a fixed dataset can be measured.
Definition 2 (ϵ-pDP [13]): A randomized mechanism,

denoted by M, has a range R(M). For a fixed dataset Z
and a fixed data instance z ∈ Z , the mechanism M meets
ϵ-pDP, if the following condition holds:∣∣∣∣ ln Pr[M(Z) ∈ S]

Pr[M(Z\{z}) ∈ S]

∣∣∣∣ ≤ ϵ, ∀S ⊆ R(M), (2)

where red-colored contents are different from Definition 1.
We note that the pDP is defined for fixed dataset Z and data
instance z; thus, the DP in (1) is the supremum of pDP for
dataset Z and instance z.

Although no specific solution to design noise distribution
tightly guaranteeing pDP, the authors of [13] provide
measuring different security levels for each data instance,
defining privacy loss within the actual dataset and analyzing
the variations. If a specific dataset is given, we no longer
need to consider the worst-case for all arbitrary datasets.
As depicted in Fig. 2, applying identical noise to all query
outputs for DP satisfaction is undoubtedly not the optimal
solution.

In this paper, we focus on designing appropriate noise
distribution for each data instance for simultaneously sat-
isfying pDP for all data instances. Intuitively, according to
the definition of the pDP, the rarer the data instance, the
harder it is to guarantee statistical indistinguishability. Let us
consider the example depicted in Fig. 1. The person who is
extremely taller than the others is easily specified; however,
the person who is in the range (175 to 180 cm tall) is
relatively hard to specify. In other words, the statistical outlier
requires larger noise to guarantee indistinguishability. In the
upcoming sections, we aim to answer the following question:

How can we optimize noise on a per-instance basis to
satisfy pDP for a dataset while preserving the statistical

features of the original data as much as possible?

In response to this question, our objective is to introduce
a per-instance additive noise mechanism grounded in the
principles of pDP. We propose solving the problem as a noise
variance optimization (NVO) game and establish, through
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FIGURE 2. This figure illustrates the concept of DP guarantees. Conventional DP mechanisms sample noise values from the
same probability distribution for all query outputs. Our proposed pDP mechanism aims to maintain the same level of privacy
loss while mimicking the probability distribution of original query outputs by adding noise with varying variances to each
instance’s query output.

Theorem 1, that the Nash equilibrium (NE) of this game
necessarily ensures pDP for all data instances.

C. CHALLENGES
Here, we introduce challenges on the horizon in optimizing
the noise distribution to guarantee pDP. The main challenge
is that ensuring pDP for a particular data instance is
inherently dependent on the noise distribution of other data
instances. Thus, altering the noise distribution for a data
instance presents a tangible risk: certain instances might
become non-compliant for pDP as a consequence of such
modifications. Conventional additive noise mechanisms can
guarantee mathematically well-proven assurance; however,
when introducing non-identical noises, establishing these
guarantees becomes more difficult. In summary, finding a
balance between preserving the dataset’s original statistical
utility and ensuring ϵ-pDP requires intricate adjustments to
the noise distribution, a challenge amplified by the curse of
interdependency.

D. CONTRIBUTIONS
We introduce an innovative approach to optimize non-
identical noise distribution tailored to specific data instances.
Our main contributions are three-fold:

• We propose the NVO game designed to find suit-
able non-identical per-instance additive Laplace noises
within a dataset. Within this game, every player (repre-
senting data instances) collaboratively/sequentially acts
to guarantee ϵ-pDP, all the while optimizing the utility
of data statistics.

• We prove that an NE strategy in the NVO game ensures
ϵ-pDP across all data instances.

• We simulate the best response dynamics (BRD) algo-
rithm and the approximated enumeration (AE) algo-
rithm as examples to obtain an NE strategy for the
proposed NVO game. The proposed NVO game not
only assures the same ϵ-pDP as the commonly adopted
Laplace mechanism but also demonstrates superiority in
preserving statistical utility.

II. RELATED WORKS
A. ADDITIVE MECHANISMS FOR DP
Traditional additive noise mechanisms offer straightforward
and mathematically well-proven methods to ensure DP.
Many attempts have been made to improve these traditional
methods: [14], [15], [16] have proposed additive staircase-
like noise as a substitute for the Laplace distribution, aiming
to optimize a given statistical utility function while guaran-
teeing ϵ-DP. In addition, the IBM DP library demonstrates
efforts to enhance additive noise mechanisms by constraining
the randomized output within a predefined range [17].
In the context of optimizing the noise distribution, [18] has
attempted to regulate additive noise tomeet Rényi DP criteria.
Similar concepts have been explored in parallel studies:
sampling scenarios [19], [20] or deep learning [21], [22].
While there are efforts to alter noise distributions, prior
studies have primarily employed uniform noise across all
data. Such a method is not appropriate for guaranteeing tight
pDP while preserving statistical utility through per-instance
non-identical noise.

B. RELATION TO (ϵ, δ)-DP
The pioneer of DP [23], defined (ϵ, δ)-DP, demonstrating
that the Gaussian mechanism can achieve this definition.
Since the advent of DPSGD [24], there has been a surge
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of applications in machine learning [25], [26], [27]. It is
worth noting that our method can be easily adapted to the
widely-known relaxation of DP, – namely (ϵ, δ)-pDP, with
the per-instance Gaussian mechanism. Furthermore, when
the dataset displays ample diversity among its values and
there are constraints on accessing external data, (ϵ, δ)-pDP
becomes equivalent to (ϵ, δ)-DP. Thus, our research on the
pDP mechanism can be interpreted as striving to ensure
greater effectiveness of DP in specific scenarios.

C. GAME THEORY
We introduce the NVO game, designed to simplify identi-
fying the best variance for additive noises, inspired by the
familiar game-theoretic approach introduced by [28]. Within
the context of the NVO game, we show that the NE points of
the game ensure ϵ-pDP. However, identifying this NE point
brings its own set of complexities. To address this, we devise
methods utilizing established algorithms to reach the NE
point [29], [30].

III. PRELIMINARY
In this section, we introduce the preliminary concepts
underpinning this paper. For brevity, we use scalar-form data
instances in the remainder of this paper. We note that the
concepts presented here can be seamlessly applied to vector-
form data instances as well.

A. LAPLACE MECHANISM
In addition to the ϵ-DP and ϵ-pDP in Definitions 1 and 2,
we begin with the definition of the Laplace mechanism, the
most recognized method to guarantee ϵ-DP.
Definition 3 (Laplace Mechanism): Given any query

function f : X → R with ℓ1 sensitivity of 1f ∈ R, the
Laplace mechanism is defined as:

ML(x, f (·), ϵ) = f (x)+ y, (3)

where y is a random number drawn from Lap(1f /ϵ) and X
denotes the domain of variable x.

The Laplace mechanism ensures ϵ-DP by considering the
worst-case scenario and adding identical noise to all data
instances. However, we see an opportunity to enhance the
preservation of statistical features in the data by employing
a customized per-instance noise variance within the Laplace
distribution.

B. RANDOM SAMPLING QUERY
In this study, we focus on the random sampling query,
as detailed subsequently.
Definition 4 (Random sampling query): Given numeric

dataset D, the output of the random sampling query q is a
random variable following the probability distribution of a
dataset, i.e.,

q(D) ∼ Pr(D). (4)

This query captures the statistical characteristics of the
dataset by directly retrieving an instance from it.

Remark 1 (Extensibility of Random Sampling Query): The
random sampling query is a fundamental query that
encompasses all possible statistical queries. This is because
the random sampling query can capture the statistical
distribution of a dataset. Thus, from the post-processing
theorem, achieving pDP/DP for random sampling queries
can guarantee pDP/DP for all statistical queries, even those
utilized in machine learning applications.

C. NASH EQUILIBRIUM
The Nash equilibrium, a foundational concept in a game
theory introduced by [31], denotes the ideal state of a game
where every player makes their optimal decision based on the
choices of their counterparts as below.
Definition 5 (Nash Equilibrium): The Nash equilibrium is

a profile of strategies (s∗i , s
∗
−i), such that each player’s

strategy is an optimal response to the other players’ strategies:
5i(s∗i , s

∗
−i) ≥ 5i(si, s∗−i), ∀i where s−i is the strategy profile

of all players except for player i and5i(s) is a payoff function.
To minimize complexity and structure the problem in a

well-known format, our approach frames the challenge as
a game to ensure pDP within a dataset and maximize the
preservation of statistical features, ultimately reaching an NE
point.

IV. NOISE VARIANCE OPTIMIZATION GAME
In this section, our focus is to design a sequential/cooperative
game that applies per-instance Laplace noises to the target
dataset, ensuring ϵ-pDP. We denote the target dataset by D,
and its data instances are represented by d ∈ R. We assume
that the target dataset consists of real-valued data instances,
e.g., a regression dataset. The problem we aim to solve using
game theory can be defined as a constrained optimization
problem:

min
M

U (D,M(D))

s.t.

∣∣∣∣ln Pr[M(D) ∈ S]
Pr[M(D \ {d}) ∈ S]

∣∣∣∣ ≤ ϵ,∀d ∈ D,∀S ∈ R(M),

(5)

where the function U represents an arbitrary utility function,
quantifying the statistical difference between the original
datasetD and the randomized datasetM(D). In our work,KL
divergence is used as our utility function. Solving the problem
as a conventional optimization problem becomes challenging
due to the non-differentiable nature of the constraint function,
making it difficult to apply gradient-based methods, and
the presence of intricate interdependencies. To address this,
we simplify the problem as selecting a variance value among
possible options and elucidate it using familiar game theory
principles.

An illustration of the proposed game design, including
the preprocessing step, is depicted in Fig. 3. Detailed
explanations corresponding to this figure will be covered in
the subsequent portions of this section.
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FIGURE 3. The process involves determining the optimal combination of noise variances for the query outputs of individual data instances. In Step 1,
we depict the dataset as a histogram through normalization and categorization. In Step 2, we aim to find an NE point for the NVO game, where
multiple players iteratively update their variance parameters to ensure ϵ-pDP while preserving statistical utility. Once the prime set of noise variances
is determined, Step 3 allows us to formulate queries that assure ϵ-pDP by executing a random sampling query.

A. PREPROCESSING: A HISTOGRAM REPRESENTATION OF
THE DATASET
In the context of the NVO game, assessing the probability
density function of the mechanism’s output for every single
point across all data instances is computationally challenging.
Additionally, as highlighted by [24], the most precise method
for assessing privacy loss involves manual integration within
specified intervals, rather than relying solely on theoretical
boundaries.

1) NORMALIZATION
For the manual integration, we normalize the dataset into the
[0, 1] range by min-max normalization. We conservatively
opt to set our integration’s target range to encompass
p-percentile of the Laplace mechanism with the target ϵ,
which is defined by (−(1q/ϵ) ln(2− 2p), (1q/ϵ) ln(2− 2p))
if p > 0.5,1 where 1q denotes the sensitivity of random
sampling query q. For brevity, we denote (1q/ϵ) ln(2 − 2p)
as1(ϵ,p). Then, the min-max linear normalization is executed
in the interval [dmin − 1(ϵ,p), dmax + 1(ϵ,p)], where dmin =

mini di and dmax = maxi di.

2) CATEGORIZATION
After normalization, the continuous nature of the domain S
poses a unique challenge, differing from that in ϵ-DP. It is
necessary to verify the ϵ-pDP condition for each instance
and each point within set S, a task impractical to achieve
in polynomial time. To address this issue, we make K non-
overlapping intervals into the range of the dataset and allocate
each data instance d ∈ D into categories based on their
corresponding intervals. We set theK uniformly divided non-
overlapping intervals as follows: the i-th interval is ( iK , i+1K ),

1In our experiments, the value of p is set to be 0.9.

where the representative value of each interval bin is the
midpoint of the interval. The set of the representative values
is denoted as K. Through data categorization, the dataset can
be represented in the form of a histogram. Segmenting data
instances into distinct bins offers an advantage, as it allows
certain data instances to inherently ensure a non-infinite ϵ,
while the original continuous dataset cannot.2

B. DEFINITIONS OF PLAYERS, STRATEGIES, AND PAYOFFS
Here, we introduce the NVO game following data preprocess-
ing. In this game, every data instance possesses data values
within the range [0, 1]. The proposed NVO game is classified
as: i) sequential game, ii) fully-cooperative game, and iii)
potential game.

1) PLAYERS
In this study, each data instance, acting as a player,
collaboratively and sequentially participates in the NVO
game. The goal of them is to establish ϵ-pDP (their respective
payoffs) by designing their strategies (variance optimization),
simultaneously maximizing the preservation of original
statistical features. We note that the player of the NVO game
is represented by I = {1, 2, . . . , |D|}.

2) STRATEGIES
With data instances cast as players, the strategy for player i
is defined by the additive noise applied to data di. Denoting
the variance of additive noises to the i-th data instance di as
bi, the action of the player i is written by bi. That is, from
the random sampling query in Definition 4, the per-instance

2Once categorized, if a category contains three data points, the inherent
ϵ-pDP assurance for these instances is given by log 3/2 ≈ 0.4.
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Laplace mechanism is expressed as

M(di) = di + yi, (6)

where yi is a random variable drawn form Lap(bi). Typically,
games with strategy sets of uncountable infinity might not
always have an NE solution. As a result, we confine these
strategy sets to a discrete domain. In other words, the added
variance is chosen from a discrete set V = {v1, v2, . . . , vn}.

3) PAYOFFS
In the context of the NVO game, the payoff should induce
the player to primarily uphold ϵ-pDP and secondarily
preserve the dataset’s statistical features. In this domain,
there is a trade-off between data statistics and privacy.
Emphasizing robust privacy can reduce query output quality,
while maximizing the preservation of statistical features
might compromise privacy. The goal is to optimize the
preservation of statistical features without violating the
ϵ-pDP constraint, achievable by carefully adjusting noise
variance on query results. With this in mind, we express the
overall payoff P(M,D) as a composite of two objectives:
privacy assurance PE(M,D), and minimizing utility that
measures the statistical difference between the original
dataset and the randomized dataset PU(M,D). We note
that the players in the proposed NVO game cooperate
to benefit from the shared payoffs. Simply, the NVO
game is characterized as a kind of common interest
game.

4) PRIVACY ASSURANCE PAYOFF
The payoff related to privacy assurance, denoted as PE,
functions as an indicator of how effectively ϵ-pDP is met
for a dataset, assessed from the perspective of pDP. Let us
define pϵ,i as an indicator for representing whether the i-th
data instance’s pDP is satisfied or not, i.e.,

pϵ,i(M,D) =
{
1, if d ∈ D satisfies the ϵ-pDP condition.
0, otherwise.

(7)

Then, the privacy assurance payoff PE is defined as the
number of data instances satisfying the ϵ-pDP condition as

PE(M,D) =
|D|∑
i=1

pϵ,i(M,D). (8)

After establishing the privacy assurance payoff, two
subsequent questions arise: one regarding the preservation of
statistical features, and the other addressing the assurance of
privacy at the NE point.
• Q1: How can we define the payoff related to the
preservation of statistical features?

• Q2:Does the NVO game truly ensure ϵ-pDP for all data
instances using the privacy assurance payoff of (8)?

C. UTILITY PRESERVATION PAYOFF (ANSWER TO Q1)
In response to Q1, we formulate the utility preservation
payoff PU(M,D) to measure the statistical difference
between the original dataset D and the randomized dataset
M(D). Here, a higher value indicates a smaller difference.
Furthermore, we ensure the utility preservation payoff does
not compromise the assurance of ϵ-pDP by scaling the
targeted utility functionU into the range [0, 1]. It is important
to note that various statistical features can be incorporated
into the utility function, encompassing metrics like the
difference of n-th order momentum, Kullback-Leibler (KL)
divergence, and Jensen-Shannon (JS) divergence, among
others.

In this paper, for example, U (q(D)||q(M(D))) =

DKL(q(D)||q(M(D))), i.e., we set the utility function by
using KL divergence as in the following remark.
Remark 2 (Examples of the Utility Function): For a dataset

D, the output probability distribution q(D) of a query q, and
a randomized function M, the utility preservation payoff is
defined as

PU(M,D) = 1−
DKL(q(D)||q(M(D)))

log(K )
∈ [0, 1], (9)

where the utility function DKL(q(D)||q(M(D))) is bounded
in [0, log(K )]. The minus sign is used since the KL-
divergence is a measure of information-theoretic distance
between two probability distributions, where a smaller value
indicates greater similarity between the distributions. The
bound can be obtained by the fact that log(K ) ≥ log q(D)

q(M(D)) .

D. GUARANTEE OF THE ϵ-PDP (ANSWER TO Q2)
Regarding the earlier question, we present proof illustrating
that the NE strategy in the proposed NVO game consistently
guarantees ϵ-pDP for a dataset.
Theorem 1: Let us define the minimum variance in the set

of possible action V as bmin ̸= 0. Then, ϵ-pDP for all data
instances upholds if the following condition is satisfied:

bmin ≥
1

log (1+ (|D| − 1)(exp(ϵ)− 1))
. (10)

In Theorem 1, we show that an NE point for the NVO game
guarantees the ϵ-pDP for all d ∈ D if the condition in (10)
holds. In the theorem, there always exists a value bmin that
makes the NE point of the NVO game ensure the ϵ-pDP for
all ϵ ≥ 0.
Remark 3 (Intuition of Theorem 1): In Equation 10,

if there are more data instances in the dataset, the influence
of the individual data point diminishes, thereby allowing
us to guarantee ϵ-pDP easily. That is, if the value of
|D| increases, we can guarantee ϵ-pDP with smaller
variance noise. On the other hand, if ϵ decreases to zero,
query output with and without a data point should be
statistically the same. Thus, the variance of the added
noise becomes infinite, resembling a uniform query output
distribution.
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V. ALGORITHM FINDING THE NASH EQUILIBRIUM OF
THE NVO GAME
In this section, we delve into an algorithm designed to
secure an NE strategy within the framework of the NVO
game. We begin by showcasing the BRD algorithm, adapted
specifically for this game.

Algorithm 1 BRD for NVO game
Input dataset D = {di|i = 1, . . . ,m}, variance space V =
{vi|i = 1, . . . , n}, target epsilon value ϵ

i← 1 and p∗← 0
▷ Initialize data index and the best payoff

V[l]← randomly initiates v ∈ V , for l = 1, . . . , |D|
▷ Initialize the best variance set

while p∗ converges over the dataset do
PAYOFF[l]← 0, for l = 1, . . . , |V|
for j← 1 to |V| do

V_temp← V
V_temp[i]← vj
PAYOFF[j]← GET_PAYOFF(D, V_temp, ϵ)
▷ Explore and store payoffs for all variance options

end for
end while
p∗← max PAYOFF and j∗← argmax PAYOFF
V[i]← vj∗

▷ Get the best variance for a current instance
i← (i+ 1) mod |D|
return V ▷ Nash equilibrium

*GET_PAYOFF() is a function of the proposed payoff by
summing up Equations (8) and (9).

A. BRD ALGORITHM
The BRD algorithm is a concept in game theory where
players, taking into account the current strategies of their
opponents, opt for their most favorable response. During
this iterative process, players sequentially decide on their
best actions, which is presented in Alg. 1. The choice of
values within the variance space can be tailored to encompass
all the possible noise variance values. As the cardinality of
the variance space V expands, the algorithm’s performance
improves, but there is a significant increase in computational
complexity. Therefore, it is crucial to define the variance setV
considering the trade-off between computational complexity
and utility.

B. COMMON INTEREST GAME AND POTENTIAL GAME
In a common interest game, participants share a unified
payoff. A player’s strategy change directly impacts both
the potential function and their own payoff, classifying
it inherently as a potential game. Essentially, every data
point acts as a cooperative player aiming for a joint goal.
By crafting a shared payoff to maximize and iteratively
selecting the optimal noise for each data instance’s output,
achieving an NE is feasible.

C. CONVERGENCE OF BRD TOWARD NE
As shown by [32], the BRD algorithm always converges into
anNE point, if the target game belongs to one of the following
games: potential games, weakly acyclic games, aggregative
games, and quasi-acyclic games. As noted above, the NVO
game is a potential game; thus, the BRD algorithm can obtain
an NE point of the NVO game.

From the proof of Theorem 4.1 in the Appendix A, when
every variance option exceeds bmin, there always exists a
choice that consistently increases one pDP assurance at each
round. Hence, guaranteeing ϵ-pDP for all data instances
is feasible after |D| rounds. Intuitively, as players choose
their optimal responses, either sequentially or simultaneously,
the value of the potential function increases, reaching its
maximum at some point. The strategy at this peak is the
game’s NE.

VI. EXPERIMENTS
In this section, we evaluate the NE strategy of the NVO
game. Our primary focus is to observe if the proposed NVO
game achieves superior preservation of the dataset’s statistical
features compared to the conventional Laplace mechanism
while maintaining the same level of ϵ-pDP. To assess this,
we conduct simulations on three publicly available datasets:
1) NBA player dataset [33], 2) personal income dataset [34],
and 3) credit profile dataset [35].
Experimental Detail: In our experiments, we configure the

target ϵ values in {1, 2, 4, 8}. Additionally, we experimented
on the NBA player’s height dataset with extremely low
target epsilon values of {0.1, 0.3}. After normalization and
discretization, the height and weight values belong to 101 cat-
egories, i.e., K = 101. For the action of the players, variance
set V is defined by {3 × 1q/ϵ, 2 × 1q/ϵ, 1q/ϵ, 0.33 ×
1q/ϵ, 0.2×1q/ϵ}. From Theorem 1, ϵ-pDP for the smallest
ϵ is achievable with the configured variance set V , since
bmin ≈ 0.129. That is, the NE points in the proposed
NVO game ensure ϵ-pDP. For comparison, we additionally
implemented an approximated enumeration (AE) algorithm
based on the genetic algorithm, with excessive generations.
For more details, please refer to Appendix B.
Metrics of Data Statistics: In the experiments, we use the

following metrics related to data statistics:
• KL divergence: We measure the KL divergence
between the probability distribution of the original
dataset and the randomized dataset. The lower KL diver-
gence indicates better preservation of the information of
the original dataset.

• L1 loss of standard deviation (SD): This metric
measures the ℓ1 error between the standard deviation of
the original dataset and the randomized dataset.

• Jaccard index: The Jaccard index is calculated by
representing values in a probability distribution exceed-
ing a certain threshold as sets and then computing the
intersection over the union (IoU) of the two sets. This
measure quantifies the similarity between two proba-
bility distributions, where a value closer to 0 indicates
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FIGURE 4. Comparison of query output probability distributions for the
height data with each algorithm, when ϵ = 0.1, 0.3, 1, and 2. The x-axis
represents the index of the categorization bins from 0 to 100 (K = 101).

dissimilarity, while a value closer to 1 signifies similarity
between the distributions. We set the threshold to
0.001 to examine the probability distribution of query
output during experiments and select significant values.

• Cosine similarity [36]: The probability mass function
can be viewed as a vector with probability values.
We leverage the cosine similarity to measure the simi-
larity between two probability distributions represented
as vectors.

A. EXPERIMENTAL RESULT 1: HEIGHT DATA
1) DATASET
In the NBA players dataset, we employ 1,307 data instances
with the tuple of (height and weight) for players who joined
five teams from 1963 to 2021:Atlanta Hawks,Boston Celtics,
Charlotte Hornets, Chicago Bulls, and Cleveland Cavaliers.

2) ANALYSIS 1: PRESERVATION OF STATISTICAL FEATURES
Here, we first analyze the preservation of statistical features
after executing randomizedmechanisms for the height feature

FIGURE 5. Distributions of average noise standard deviation for the
height dataset for ϵ = 0.1, 0.3, 1, and 2.

of the NBA player dataset. In Fig. 4, we compare the
probability distribution of the randomized mechanisms’
output.

As shown in the figure, the proposed NVO game (BRD and
AE) has more similar shapes of distribution to the original
one than the conventional Laplace mechanism, by executing
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TABLE 1. Each algorithm’s average computation time, KL divergence, L1 loss of SD, Jaccard index with a threshold 0.001, and cosine similarity are
evaluated for the height data, for ϵ = 0.1, 0.3, 1, 2, 4, and 8. The modified query output distributions for all algorithms satisfy ϵ-pDP.

FIGURE 6. Linear regression result of 500 sampled data for each
algorithm for ϵ = 0.1, 0.3, 1, and 2.

per-instance noise optimization. We can observe that the
probability distribution of the Laplace mechanism is getting
similar to the original query output distribution as ϵ increases;
however, the proposed NVO game better preserves the shape
than with only using ϵ = 0.1 than the Laplace mechanism
of ϵ = 8.

In Table. 1, we quantitatively measure various statistical
utility functions: 1) KL divergence, 2) L1 loss of standard
deviation (SD), 3) Jaccard index, and 4) cosine similarity

of the distribution. In the table, the NVO game-related
algorithms have superior statistical utility than the Laplace
mechanism at 99.53%. Despite its superior performance, the
AE algorithm requires a much longer computation time than
the BRD algorithm.

In Fig. 5, the SD of the added noise in each categorization
bin is depicted. As we can observe, compared to the conven-
tional Laplace mechanism, the BRD and AE algorithms add
relatively small variance noises, thereby achieving superior
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TABLE 2. The average RMSE loss for regression task for the entire
dataset, where the samples were generated using the noise associated
with the pDP/DP algorithms.

preservation of statistical features. Furthermore, we note that
as the guaranteed ϵ value decreases, significant noise is
introduced into the query outputs of rare data, specifically
statistical outliers.

3) ANALYSIS 2: REGRESSION TASK
In order to evaluate the practical usefulness of the randomized
mechanisms, we conduct a simulation of a regression task
to estimate the weight feature from the height feature of the
NBA player dataset. For the regression task, we configure
a multi-layer neural network, which consists of three layers
with ten parameters activated by the Rectified Linear Unit
(ReLU) function. There are three different neural networks
trained with 1) the original dataset, 2) a randomized dataset
with the NVO game, and 3) a randomized dataset with the
conventional Laplace mechanism. In Fig. 6, we show the
scatter diagram of the preprocessed original dataset, and the
height-weight regression curve of the datasets. Compared to
the conventional Laplace mechanism, the regression curve of
the NVO game is more similar to that of the original data.

Quantitatively, as shown in Table 2, even with the case of
low epsilon, 1-DP, the average RMSE of the BRD algorithm
is apart from only 8.6% from that of the original dataset.
For 8-DP, the average RMSE for the prediction of the BRD
algorithm and original regression are almost the same.

B. EXPERIMENTAL RESULT 2: INCOME DATA
Dataset: We utilize the test dataset of the personal income
dataset, crafted by UC Irvine. The number of data in the test
dataset is 899. Similar to the NBA player dataset, the income
values belong to one of the 101 categorization bins. We note
that the single feature analysis is conducted here because
there is no continuous feature in the dataset except income.

The qualitative results can be found in Table 3. The AE
algorithm can preserve nearly equivalent data statistics but at
a computational cost around 100-150 times higher, involving
approximately 270 generations. The BRD algorithm achieves
similar performance much more efficiently. The BRD
algorithm achieved up to a 99.71% improvement inKL utility
than the Laplace mechanism, while guaranteeing 4-DP for
every element, on the income dataset.

For the comparison of the per-instance noise variance,
we depict the average standard deviation of the added noise
in Fig. 7. As similar to the results in the NBA player dataset,
the proposed NVO game allocates different amounts of noise

FIGURE 7. Distributions of average noise standard deviation for the
income dataset for ϵ = 1 and 2.

by considering its probability mass, thereby having better
statistical utility.

From these results, we confirm that the proposed NVO
game concisely outperforms the conventional Laplace mech-
anism.

VII. CONCLUSION
In conclusion, our research optimizes noise on a per-instance
basis to achieve ϵ-pDP using a Laplace distribution, enhanc-
ing statistical utility over traditional methods. This approach
is framed as an NVO game, proving that the Nash equilibrium
point assures ϵ-pDP for all instances. Our experiments
validate that this method significantly outperforms conven-
tional Laplace mechanisms across various utility metrics.
This framework can be universally applied to all statistical
queries under differential privacy, as demonstrated by its
extension to random sampling queries. However, the method
has limitations, such as reliance on the Laplace distribution
and computational constraints due to large datasets. The
choice of noise variances is confined to discrete options,
even though we demonstrate convergence to ϵ-pDP. Future
research should focus on optimizing noise variances within
discrete spaces, exploring alternative noise distributions,
and extending the applicability of NVO games to various
domains. Additionally, to apply our proposed mechanism to
high-dimensional data used in machine learning, research to
reduce computational complexity is essential.
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TABLE 3. Each algorithm’s average computation time, KL divergence, L1 loss of standard deviation, Jaccard index with a threshold of 0.015, and cosine
similarity are evaluated for the income data. The modified query output distributions for all algorithms satisfy ϵ-pDP.

APPENDIX A PROOF OF THEOREM 1
Theorem 1. Let us define the minimum variance in the set of
possible action B as bmin ̸= 0. Then, ϵ-pDP upholds if the
following condition is satisfied:

bmin ≥
1

log (1+ (|D| − 1)(exp(ϵ)− 1)/K )
. (11)

For simplicity of the proof, we tackle the situation for the
scalar dataset case of the NVO game, i.e., d = 1.We note that
the proof can be extended to the vector version by considering
each element separately.

A. NOTATIONS
In this proof, we use the following notations:
• bi: Action of the player i, the variance of noise added to
data di.

• (bi, b−i): Set of each players’ strategy.
• b∗ = (b∗i , b

∗
−i): An NE point of the NVO game.

• bmin = argminb∈B b.
• K: The set of possible query output values, s.t. K ⊂
[0, 1].

• mi,x : The overall probability mass added to x ∈ K by the
noise assigned to the i-th data instance.

• M−i,x =
∑

j∈[|D|]\{i} mj,x
• vmin, vmax: The minimum and maximum values of the
probability mass mi,x added to x ∈ K by additive noise
to the i-th data instance.

• 5i(bi, b−i): The i-th player’s payoff for the strategy
(bi, b−i).

• Pi,E, Pi,U: The i-th player’s PE and PU for the strategy.
• 1Pi,E, 1Pi,U: The change of PE and PU values for the
i-th player, s.t. 1Pi,E = Pi,E − Pi−1,E and 1Pi,U =
Pi,U − Pi−1,U.

B. ASSUMPTION
Let us assume that we implement the NVO games with a
continuous variance space B = [bmin,∞) for bmin ̸= 0 and
the set of possible query output values X = [0, 1]. We do not

add noise with a probability of occurring outside the target
range of the integration (i.e., [0, 1]); thus, the probability
density function of the Laplace noise is normalized as in (16).

C. PROOF
1) THE WORST CASE TO ENSURE ϵ-PDP FOR AN DATA
INSTANCE
For the proof of the theorem, we start with the worst case of
the ϵ-pDP of an arbitrary data instance. In order to satisfy
ϵ-pDP for an element di, the following condition should be
satisfied:

max
x

mi,x +M−i,x

M−i,x ·
|D|
|D−1|

< max
x

mi,x +M−i,x
M−i,x

≤ exp(ϵ) (12)

⇒ max
x

mi,x +M−i,x
M−i,x

≤ max
x

mi,x +minM−i,x
minM−i,x

(13)

= max
x

mi,x + (|D| − 1)vmin

(|D| − 1)vmin
(14)

=
mi,q(di) + (|D| − 1)vmin

(|D| − 1)vmin
≤ exp(ϵ), (15)

where (12) is initialized from the definition of ϵ-pDP.

2) FIND THE VMIN
The minimum value of the mi,x , represented by vmin is
obtained by

vmin = min
i,x

mi,x = min
µ,x∈[0,1]
b≥bmin

1
2b exp(−

|x−µ|
b )∫ 1

0
1
2b exp(−

|t−µ|
b )dt

(16)

= min
µ,x∈[0,1]
b≥bmin

1
2b exp(−

|x−µ|
b )

1− 1
2 exp(

µ−1
b )− 1

2 exp(
−µ
b )

(17)

= min
µ,x∈[0,1]
b≥bmin

V (µ, b, x). (18)

In (16), the definition of vmin is rewritten by the Laplace
distribution f (x|µ, b) = 1

2b exp(−
|x−µ|
b ). For brevity, in (18),

we newly define a function V (µ, b, x).
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Then, our focus is to find a value of µ for the vmin, and
check the critical points with following conditions:

∂V
∂µ
= 0 (19)

⇒
1
2b2

exp(
µ− x
b

)
[
1−

1
2
exp(

µ− 1
b

)+
1
2
exp(
−µ

b
)
]

(20)

−
1
2b

exp(
µ− x
b

)
[
−

1
2b

exp(
µ− 1
b

)+
1
2b

exp(
−µ

b
)
]
(21)

=
1
2b2
= 0, (22)

where (21) holds because of the Laplace distribution’s
symmetry, thereby making us consider x ≥ µ. Then, from
the result of (22), we confirm that there is no critical point
that makes ∂V/∂µ = 0. Also, when x ≥ µ, we confirm that
the sign of ∂V/∂µ is always positive; thus, the minimizer µ

of the function V (µ, b, x) is zero as follows:

sign
(

∂V
∂µ

)
= sign

(
1
2b

)
=

1
2b2
≥

1

2b2min

> 0 (23)

⇒ argmin
µ
V (µ, b, x) = 0. (24)

Then, by substituting µ = 0 into V (µ, b, x), we confirm
that the minimizer x of the function is one as follows:

∂V
∂x
=
−

1
b2

exp(− x
b )

1− exp(− 1
b )

< 0⇒ arg min
x∈[0,1]

V (0, b, x) = 1.

(25)

Up to here, we obtained the minimizers µ = 0 and x = 1.
By substituting the minimizers, we can obtain the minimizer
b as

arg min
b≥bmin

V (0, b, 1) = arg min
b≥bmin

1

exp( 1b )− 1
(26)

= arg max
b≥bmin

exp(
1
b
) = bmin (27)

∴ vmin =
1

exp( 1
bmin

)− 1
. (28)

3) SUBSTITUTE THE OBTAINED VMIN FOR GETTING THE
WORST CASE
From the result of (28) and (15), we have the bound of ϵ,
which always guarantee ϵ-pDP. Here, we assume the case the
i-th player does his best to guarantee ϵ-pDP and choose bi =
∞. Then, we have

min
(
mi,q(di)

)
+

|D|−1
exp(1/bmin)−1

|D|−1
exp( 1

bmin
)−1

=

1+ |D|−1
exp(1/bmin)−1
|D|−1

exp(1/bmin)−1

(29)

≤ exp(ϵ) (30)

∴ ϵ ≥ ln

1+ |D|−1
exp(1/bmin)−1
|D|−1

exp(1/bmin)−1

 , (31)

which can be equivalently written by

bmin ≥
1

log (1+ (|D| − 1)(exp(ϵ)− 1))
. (32)

In (31), we have mi,q(di) ≥ 1, where the equality holds when
bi = ∞ and the PDF is uniform. Finally, there always exists
at least one choice to improve the DP guarantee payoff for all
elements.

4) THE STRATEGY IS IMPROVED TO FINALLY GUARANTEE
ϵ-PDP FOR ALL ELEMENTS
Before the strategy set satisfies the ϵ-pDP for all elements,
we have

min
bi

1Pi,E ≥ 1 > max
bi

1Pi,U. (33)

(33) proves that there exists at least a choice to improve
the ϵ-pDP guarantee for an element, when the ϵ is bounded
like (31), and by the definition of PU. Therefore, players
choose a strategy to improve ϵ-pDP until guaranteeing for all
elements.

5) THE NASH EQUILIBRIUM ENSURES ϵ-PDP FOR ALL
ELEMENTS
Assume that the Nash equilibrium point

(
b∗i , b

∗
−i

)
does not

satisfy the ϵ-pDP for all elements,

5i(b∗i , b
∗
−i) ≥ 5i(bi, b∗−i) (34)

⇒ |D|>5i(b∗i , b
∗
−i) ≥ max5i(bi, b∗−i) = max

bi

(
Pi,E + Pi,U

)
(35)

= max
bi

(
Pi−1,E + Pi−1,U +1Pi,E +1Pi,U

)
(36)

= Pi−1,E + Pi−1,U +max
bi

(
1Pi,E +1Pi,U

)
(37)

≥ Pi−1,E + Pi−1,U + 1 ≥ Pi−2,E + Pi−2,U + 2 ≥ . . .

≥ min
i,(bi,b−i)

(
Pi,E + Pi,U

)
+ |D| = |D|, (38)

where (35) follows the definition of Nash equilibrium and
the definition of NVO game’s payoff. Because the result in
Equations 33 to 38 contradicts (|D| > |D|), we show that
the assumption in this paragraph is false. That is, the Nash
equilibrium point

(
b∗i , b

∗
−i

)
must satisfy the ϵ-pDP for all

elements.

APPENDIX B APPROXIMATED ENUMERATION FOR NVO
GAME VIA GENETIC ALGORITHM
Enumerating the proposed game precisely proved to be
computationally challenging. Instead of that, we adopted an
approach grounded in evolutionary game theory. We con-
ducted an approximated enumeration (AE) algorithm by
running simulations across numerous generations. This
technique monitors strategy evolution over time, revealing
promising approaches without the need for an exhaustive
exploration of every possible option.
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FIGURE 8. AE for the NVO game via genetic algorithm to find an NE point.

A. CHROMOSOME
Chromosomes typically symbolize solutions to the specific
optimization challenge being addressed. In the framework of
the NVO games, each gene is representative of the variance
variable bi tied to the noise introduced to the query output for
every sequential element.

B. FITNESS FUNCTION
Fitness function serves as the criterion for selecting the most
suitable chromosomes that fulfill the specified criteria and
can pass down their traits to offspring. Hence, we adopt the
payoff P(MI,D) as our fitness function.

The initial generation’s chromosomes are created by
randomly selecting values within the variance space V for
each gene. A larger population broadens the solution search
space, minimizing the risk of local optima. Some high-
fitness parents are retained in the offspring generation to
avoid local optima. During offspring generation, random
crossover points are used, and their optimal number can be
determined via simulation. Mutation probability is set to
balance between avoiding local optima and ensuring trait
transfer. If the best fitness value remains constant across
generations, it suggests an NE approximation. The current
chromosome may be optimal, but due to randomness, other
solutions might emerge.

With ample time, the AE algorithm has the potential to
match the performance of the exact enumeration algorithm
and attain an NE point. Our experiments continued for an
extended period to ensure convergence. Nevertheless, there is
no theoretical guarantee that an NE point is achievable within
polynomial time.

C. HYPERPARAMETERS
Our proposed BRD algorithm does not require specific
hyperparameter settings. In the AE, we initially set the
number of chromosomes in the population to 500, and for
each generation, we involve 10 chromosomes in the mating
process. We randomly designate 2 crossover points, and
we introduce a 5 % probability for each gene to undergo
mutation. We employ a steady-state selection approach,
retaining the top 5 parents with the highest fitness values for
the next generation. We utilized PyGad [37] library for the
implementation.

FIGURE 9. Comparison of query output probability distributions for the
large income data with each algorithm, when ϵ = 1 and 2.

D. HARDWARE ENVIRONMENT
We conduct experiments using an AMD Ryzen Threadripper
1920X 12-Core Processor and 32 GB of RAM. Since
there is no need for extensive parallel computations, GPU
utilization is not required. To conserve computing resources
and facilitate a fair comparison in terms of execution time on
the same evaluation criteria, we exclusively relied on CPU
computations.

APPENDIX C ADDITIONAL EXPERIMENTAL RESULTS
A. EXPERIMENTAL RESULT 3: LARGE INCOME DATA
Essentially, individual privacy is harder to guarantee with
smaller datasets due to the increased significance of a data
point. Hence, opting for smaller datasets makes privacy assur-
ance more challenging. As datasets grow larger, ensuring
privacy becomes comparatively easier. For these reasons,
we conduct experiments on a dataset of approximately
1000 in size, but to demonstrate scalability, we also perform
experiments on a dataset ten times larger, comprising 10,000
instances.

1) DATASET
We utilize the test dataset of the credit profile dataset.
We conduct our experiments by randomly sampling a cohort
of ten thousand individuals. We note the correlation between
age and income, and we exploit those two features in our
experiments. Similar to the NBA player dataset, the income
and age values belong to one of the 101 categorization bins.

2) ANALYSIS 1: PRESERVATION OF STATISTICAL FEATURES
In Fig. 9, the random sampling query output of the original
data, conventional Laplace mechanism, and NVO game
(BRD) is depicted. As similar to the result of the main
manuscript, the NVO game better preserves the probabil-
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TABLE 4. Each algorithm’s average computation time, KL divergence, L1 loss of standard deviation, Jaccard index with a threshold 0.001, and cosine
similarity are evaluated for the large income data, for ϵ = 1 and 2. The modified query output distributions for all algorithms satisfy ϵ-pDP.

FIGURE 10. Distributions of average noise standard deviation for the
large income dataset for ϵ = 1 and 2.

ity distribution than the conventional Laplace mechanism,
by executing per-instance noise optimization. As the dataset
size increased, the AE took an excessively long time to
converge, preventing us from confirming its convergence
within a reasonable timeframe. Consequently, we omitted its
results from our findings.

In Table 4, the proposed NVO game and the Laplace
mechanism are quantitatively evaluated in various statistical
metrics. Similar to the results in the main manuscript, the
proposed NVO game-based algorithm (BRD) outperforms
the Laplace mechanism. Furthermore, for larger datasets, due
to the lower individual instance contribution, privacy is better
preserved, allowing us to ensure a more robust statistical
utility while maintaining the same ϵ-pDP guarantee.
For extremely large datasets, our proposed method incurs

high-order computational complexity for the ϵ-pDP guaran-
tee, scaling as O(|D|2). To mitigate this, one approach could
be to group data points with identical query outputs, allowing
for computational reduction through the addition of uniform
noise.

In Fig. 10, we compare the average standard deviation of
the added noise to each categorization bin of the conventional

FIGURE 11. Linear regression result of 500 sampled data for each
algorithm for ϵ = 1 and 2.

Laplace mechanism and the NVO-game-based algorithm
(BRD). As depicted in the figure, the NVO game adds lower
variance at all bins, thereby having better data statistical
utility.

3) ANALYSIS 2: REGRESSION TASK
To evaluate the regression task of the proposed NVO game,
we run the regression network with three layers. Similarly to
the main manuscript, the network consists of ten parameters
and ReLU activation functions. Figure 11 depicts the scatter
diagram of the original dataset and the trained regression
line, where the neural network input is age and the output
is income. For the value of ϵ = 1 and 2, the proposed NVO
game closely preserves the regression line after applying the
randomized algorithm (BRD). In regression tasks as well,
we observe improved data characteristics for the same ϵ-pDP
when dealing with larger dataset sizes.
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