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ABSTRACT Most of the previous research about unmanned surface vehicle (USV) control system just
focuses on reaching the target but not considers berthing.Moreover, computation cost is rarely concerned. For
automatic target arriving and berthing of USV in presence of multi-shape convex obstacles and disturbances,
this paper designs a composite control system including trajectory optimization and trajectory tracking.
In order to generate a smooth and optimal trajectory, two objectives including minimum running time
and energy consumption are proposed, and their priority requirement is presented. Fuzzy satisfactory
optimization is introduced to reformulate the objective functions, and the membership degree difference
is used to model priority between two objectives. The obstacle avoidance constraint is developed based
on the improved P-criterion. The comprehensive optimization model is established to obtain the maximum
membership degree. Further, the priority optimization model is proposed to expand the feasible domain by
relaxing the comprehensive optimization result. Two models are discretized by Gaussian pseudospectral
method to find the optimal solution. To achieve good trajectory tracking under disturbances, two first-order
active disturbance rejection control (ADRC) controllers are designed to follow the desired longitudinal
velocity and course angular velocity. All the velocities of USV can converge. The simulation proves the
effectiveness of the proposed co-designed system by comparing with other methods.

INDEX TERMS USV, trajectory optimization, trajectory tracking, Gaussian pseudospectral method, ADRC.

I. INTRODUCTION
Recently, many researchers are engaged in development of
unmanned surface vehicle (USV) due to its broad military
and civil application prospects. For USV, it is a challenge
to reach the desired target position automatically and berth
instantly. Most of the research focuses on path or trajectory
tracking, however, berthing at the target cannot be guaranteed
simultaneously. Therefore, establishment of a composite con-
trol system including trajectory optimization and trajectory
tracking to complete automatic target arriving and berthing
has become a potential issue for USV [1], [2].

The associate editor coordinating the review of this manuscript and
approving it for publication was Yilun Shang.

Trajectory optimization is a core module for autonomous
navigation of USV. Its goal is to generate a smooth, safe,
and feasible trajectory. However, the kinematics and dynam-
ics models of USV are nonlinear and differential so that
it is difficult for solution [3]. Many methods have been
attempted, for example, deep reinforcement learning [4],
rapidly-exploring random tree [5], genetic algorithm [6], and
gradient algorithm [7]. In addition, it is common to perform a
single-objective trajectory optimization. Mills et al. propose
the method via the least amount of energy to effectively navi-
gate to a goal point [8].Wang et al. obtain the total sailing time
ofUSVbymaking a time-optimalmaneuvering [9]. However,
single-objective trajectory optimization fails to deal with var-
ious performance requirements. Therefore, multi-objective
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optimization is applied to USV, and the weighted strategy
becomes the common technique. Kandel et al. use the scalar-
ization weight to deal the tradeoff between fuel consumption
and trip time [10]. However, weighted strategy cannot reflect
importance of every objective accurately in the case of the
non-convex multi-objective optimization.

In addition, accurate trajectory tracking is an essential
issue for USV. Generally, the reference trajectory is a time-
dependent path. That means that the USV is required to
arrive at the waypoints at a specified time. A lot of methods
have been attempted, such as backstepping [11], [12], line-
of-sight guidance [13], sliding mode control [14], [15], adap-
tive control [16], and event-triggered method [17]. In real-
ity, arriving at the desired target and berthing there steadily
is a common task for USV. However, most research just
focuses on reaching the target but not considers berthing.
Moreover, disturbances such as wind and waves, have the
severe impact on USV’s movement control. Besides, USV
control is underactuated since only surge force and yaw
moments can be used to control more motion states. Some
methods are attempted [18], [19], [20], but the difficulty and
complexity of control system design are greatly increased
as well. Thereafter, how to find an effective approach for
achieving trajectory tracking of USV is very important.

Motivated by above, a composite control system to accom-
plish automatic target arriving and berthing is developed for
USV in this paper. Fuzzy multi-objective trajectory optimiza-
tion is taken as the outer loop and trajectory tracking as the
inner loop. The kinematics and dynamics models are both
involved in trajectory optimization. The multi-objective tra-
jectory optimization (MTO) with two objectives and priority
is formulated, and fuzzy satisfactory optimization idea [21]
is introduced. The comprehensive optimization model and
priority optimization model are built respectively by relaxing
the maximum membership degree and incorporating fuzzy
membership degree difference constraint. Wherein, various
constraints are involved, and the improved P-criterion obsta-
cle avoidance constraint is designed for multi-shape convex
obstacles. Since these two optimization models are con-
tinuous and differential equations, Gaussian pseudospectral
method is incorporated for discretization at Legendre Gaus-
sian (LG) points. In trajectory tracking in presence of distur-
bances, two tracking controllers based on active disturbance
rejection control (ADRC) are designed to steer the longi-
tudinal velocity and course angular velocity of USV. Then,
the trajectory tracking and berthing of USV in presence of
obstacles and disturbances can be achieved.

The main contributions of this paper are summarized as
follows:

a) A composite control system for automatic target arriving
and berthing of USV is developed to reduce feedback cost and
facilitate controller design. The constraint of control variables
is addressed in trajectory optimization, so the control satura-
tion does not need to be taken into account during controller
design.

b) To obtain the optimal reference trajectory in pres-
ence of obstacles, the minimum running time and energy
consumption are proposed such that multi-objective opti-
mization with priority is formulated. To optimize these
objectives fully and satisfy priority requirement, fuzzy sat-
isfactory optimization is followed and fuzzy membership
degree difference constraint is presented to handle pri-
ority. Accordingly, the comprehensive optimization model
and priority optimization model are formulated to realize
tradeoff between optimization and priority by relaxing the
maximum membership degree. The P-criterion is improved
to establish the multi-shape convex obstacle avoidance
constraint.

c) To follow the desired longitudinal velocity and course
angular velocity accurately under external disturbances, two
first-order linear ADRC controllers are developed. Inspite
of USV being underactuated, the composite system can still
guarantee convergence of transverse velocity by including the
dynamics constraint in trajectory optimization.

The paper is structured as follows. Section II interprets the
target arriving and berthing task of USV and presents the
models. Section III describes the co-design methodology of
trajectory optimization and trajectory tracking. The simula-
tion is implemented in Section IV. The conclusions of the
paper are drawn in Section V.

II. PROBLEM DESCRIPTION
A. TASK DESCRIPTION
In this paper, automatic target arriving and berthing of USV
is addressed when multi-shape convex obstacles and distur-
bances exist, as shown in Figure 1. USV departs from the
specific position and moves along the trajectory. Finally it
arrives at the target point and berths there. That is, USV needs
to compute an optimal trajectory under various constraints
and obstacles. The terminal longitudinal velocity, transverse
velocity, and course angular velocity at the target point should
be zero.

FIGURE 1. The schematic of automatic target arriving and berthing.

B. KINEMATICS MODEL
The three-degree-of-freedommotionwith longitudinal, trans-
verse, and bow-swing is concerned in this paper. The
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kinematics model of USV is presented as
ẋ = u cosϕ − v sinϕ

ẏ = u sinϕ + v cosϕ

ϕ̇ = r

(1)

where x, y, ϕ indicate the position and course angle of USV.
u, v, r represent the longitudinal velocity, transverse velocity,
and course angular velocity respectively.

C. DYNAMICS MODEL
Assuming that the USV is symmetry, then its dynamics
equation is described as

MJ̇ + CJ + DJ = τ + τ d (2)

where J = [u, v, r]T . τ = [τu, 0, τr ]T indicate surge force
and yaw moments. τ d = [dX , dY , dN ]T mean the external
disturbances caused by wind and waves. M ,C,D represent
the inertial matrix, Coriolis matrix, and hydrodynamic damp-
ing matrix respectively.

M =

m11 0 0
0 m22 0
0 0 m33

 , D =

 d11 0 0
0 d22 0
0 0 d33

 (3)

C =

 0 0 −m22v
0 0 m11u

m22v −m11u 0

 (4)

Then, the dynamics model of USV can be expressed as
u̇ =

m22

m11
vr −

d11
m11

u+
1
m11

τu +
dX
m11

v̇ = −
m11

m22
ur −

d22
m22

v+
dY
m22

ṙ =
m11 − m22

m33
uv−

d33
m33

r +
1
m33

τr +
dN
m33

(5)

III. CO-DESIGN OF USV CONTROL SYSTEM
A. OVERALL CONTROL SYSTEM
The USV composite control system is shown in Figure 2.
In trajectory optimization, two objectives are proposed and
fuzzified. Various constraints are involved. By comprehen-
sive optimization model, the maximum fuzzy membership
degree can be obtained. Further, priority optimization model
realizes priority difference by relaxing the result of compre-
hensive optimization. By means of Gaussian pseudospectral
method, the two models are discretized and solved to obtain
the optimal longitudinal velocity trajectory ud and optimal
course angular velocity trajectory rd . In trajectory tracking,
two first-order linear ADRC controllers are designed to fol-
low them under the disturbances.

The system uses trajectory optimization as outer loop and
trajectory tracking as inner loop. It can be seen that the
position feedback is not used and only the speed signal
measurement is necessary in tracking control. This reduces
the feedback cost and the complexity of controller design.

FIGURE 2. Schematic of composite USV control system.

Due to the dynamic model constraint, once the longitudi-
nal velocity u and course angular velocity r converge to
the desired values, the transverse velocity v will also con-
verge. Thus, v is indirectly stabilized in the underactuated
system.

B. TRAJECTORY OPTIMIZATION
In trajectory optimization, the optimal u, v, r at each
waypoint are figured out, and their terminal values are
zero.

Firstly, USV is required to arrive at the target as soon as
possible. Assuming that USV begins to move at t0 and stops
at tf , the running time is presented as follows

ft = tf − t0 (6)

In addition, less energy consumption is important for USV,
and it mainly comes from drag forces. It is known that the
rate of energy consumption can be formulated by power, i.e.
P = FV . P is power, F is drag force, and V is the overall
velocity [22]. Drag force F = k1V 2, and k1 is a constant. The
overall velocity is expressed as V =

√
u2 + (k2r)2, where

k2 is the turning radius [10]. Based on the above, a new
energy variable e is introduced and its derivative is defined
as

ė = (u2 + (k2r)2)
3
2 (7)

Obviously, ė can denote the energy consumption rate.
Therefore, energy consumption can be formulated as

fe =

∫ tf

t0

(u2 + (k2r)2)
3
2 dt =

∫ tf

t0
ėdt = e

(
tf

)
− e (t0) (8)
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Combined with (1), (5) and (7), the entire model of USV
without considering disturbances can be rewritten as

ẋ = u cosϕ − v sinϕ

ẏ = u sinϕ + v cosϕ

ϕ̇ = r

u̇ =
m22

m11
vr −

d11
m11

u+
1
m11

τu

v̇ = −
m11

m22
ur −

d22
m22

v

ṙ =
m11 − m22

m33
uv−

d33
m33

r +
1
m33

τr

ė = (u2 + (k2r)2)
3
2

(9)

Let ξ = [x, y, ϕ, u, v, r, e]T as the state vector and c =

[τu, τr ]T as the control vector. Then, the model constraint can
be summarized as

ξ̇ = g (ξ , c) (10)

The state vector of USV needs to satisfy the constraint

ξmin ≤ ξ ≤ ξmax (11)

where ξmin is the minimum of state variables and ξmax is the
maximum.

The control vector is limited by the following constraint

cmin ≤ c ≤ cmax (12)

where cmin and cmax denote the bounds of control variables.
The initial and terminal conditions of the state vector are

respectively

ξ (t0) = ξ0

ξ
(
tf

)
= ξ f (13)

where ξ0 means the initial states and ξ f represents the termi-
nal states.

In this paper, the multi-shape convex obstacles are con-
cerned, e.g. circles, squares or ellipses, etc. In order to
describe obstacles concisely and uniformly, the P-criterion
function is often used for modeling obstacle boundary [23].
However, the traditional P-criterion function only focuses on
the position of obstacles but not takes their orientation into
account. It possibly results in the inaccurate characterization
of the obstacle bound. Therefore, the P-criterion function is
improved by introducing the orientation as

p (x, y) =


∣∣∣ (x−a) cosω+(y−b) sinω

rx

∣∣∣h
+

∣∣∣ (y−b) cosω+(x−a) sinω
ry

∣∣∣h

1/h

− 1 (14)

where rx , ry denote the proportional coefficients in the
x-direction and y-direction respectively. (a, b) indicates the
coordinates of the obstacle’s center. h is the adjustable param-
eter related to the obstacle shape. And ω means the angle of
obstacle’s orientation.

Then the obstacle avoidance constraint is summarized as

p
(
x, y, ai, bi, rxi, ryi, ωi, hi

)
≥ 0, i = 1, · · · , n (15)

where n represents the number of obstacles. The USV is just
taken as ideal point in this paper. In reality, the practical
obstacle avoidance distance should be bigger due to the sizes
of obstacles and USV.

To acquire the optimal trajectory, two objectives including
minimum running time and energy consumption are pre-
sented. Wherein, how to arrive quickly is the most important.
Simultaneously, USV is expected to travel with the smallest
energy consumption. The two objectives with priority are
presented as

L1 minimum running time: min ft (ξ , c) = tf − t0;
L2 minimum energy consumption: min fe (ξ , c) = e

(
tf

)
−

e (t0)
As traveling faster will consume more energy, these two

goals are conflicting [24]. That is, when the USV travels
fast, the short time will be spent and a great deal of energy
will be used. Furthermore, two optimization objectives are
non-normalized. Therefore, fuzzy satisfaction optimization
is introduced to reformulate the two objectives. The fuzzy
membership functions are defined as

ut (ξ , c) =


1, ft (ξ , c) ≤ f ∗

t

1 −
ft (ξ , c) − f ∗

t

f max
t − f ∗

t
, f ∗
t ≤ ft (ξ , c) ≤ f max

t

0, ft (ξ , c) ≥ f max
t

(16)

ue (ξ , c) =


1, fe (ξ , c) ≤ f ∗

e

1 −
fe (ξ , c) − f ∗

e

f max
e − f ∗

e
, f ∗
e ≤ fe (ξ , c) ≤ f max

e

0, fe (ξ , c) ≥ f max
e

(17)

where f ∗
t , f ∗

e are the expected values of two objectives, and
f max
t , f max

e are the maximum. They can be determined using
the payoff table in Table 1 through single-objective optimiza-
tion.

TABLE 1. Payoff table.

(ξ t , ct) and (ξ e, ce) represent the optimal solutions
of single-objective optimization. Accordingly, the fuzzy
multi-objective optimization model is presented as follows

max [L1 (µt (ξ , c)) ,L2 (µe (ξ , c))]

s.t. ξmin ≤ ξ ≤ ξmax

cmin ≤ c ≤ cmax
ξ (t0) = ξ0

ξ
(
tf

)
= ξ f

ξ̇ = g (ξ , c)
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p
(
ξ (1), ξ (2), ai, bi, rxi, ryi, ωi, hi

)
≥ 0, i = 1, · · · , n

ut (ξ , c) = 1 −
ft (ξ , c) − f ∗

t

f max
t − f ∗

t

ue (ξ , c) = 1 −
fe (ξ , c) − f ∗

e

f max
e − f ∗

e
(18)

where L1,L2 represent the priority factors, ξ (1) and ξ (2)
mean the first and second elements of ξ respectively.
To ensure the membership degrees being effective, the

following inequality is presented

α ≤ µt (ξ , c) ≤ 1

α ≤ µe (ξ , c) ≤ 1 (19)

where α ∈ (0, 1). In order to optimize both objectives as
much as possible, the first step is to find out the maximum
membership degree of these two objectives under relevant
constraints. Then, the comprehensive optimization model is
proposed as

maxα

ξmin ≤ ξ ≤ ξmax

cmin ≤ c ≤ cmax
ξ (t0) = ξ0

ξ
(
tf

)
= ξ f

ξ̇ = g (ξ , c)
p

(
ξ (1), ξ (2), ai, bi, rxi, ryi, ωi, hi

)
≥ 0, i = 1, · · · , n

α ≤ µt (ξ , c) ≤ 1
α ≤ µe (ξ , c) ≤ 1

ut (ξ , c) = 1 −
ft (ξ , c) − f ∗

t

f max
t − f ∗

t

ue (ξ , c) = 1 −
fe (ξ , c) − f ∗

e

f max
e − f ∗

e

(20)

Due to the principle that the higher-priority objective has
a higher-level satisfaction [21], priority can be expressed
through the comparison of membership degrees. Accord-
ingly, priority constraint in this paper can be obtained as

µe (ξ , c) ≤ µt (ξ , c) (21)

However, in some cases, the comparison inequality is too
strict to ensure optimization feasible. Variable γ is introduced
to regulate priority difference, so the following inequality is
presented.

µe (ξ , c) − µt (ξ , c) ≤ γ, −1 ≤ γ ≤ 1 (22)

To facilitate adjustment of the priority relationship, vari-
able δ is designed as an adjustment parameter for expanding
the feasible domain after comprehensive optimization. Thus,
there are

α∗
− δ ≤ µt (ξ , c) ≤ 1

α∗
− δ ≤ µe (ξ , c) ≤ 1 (23)

where α∗ is the optimization result without considering pri-
ority.

Hence, the priority optimization model can be built as

min γ

ξmin ≤ ξ ≤ ξmax

cmin ≤ c ≤ cmax
ξ (t0) = ξ0

ξ
(
tf

)
= ξ f

ξ̇ = g (ξ , c)
p

(
ξ (1), ξ (2), ai, bi, rxi, ryi, ωi, hi

)
≥ 0, i = 1, · · · , n

α∗
− δ ≤ µt (ξ , c) ≤ 1

α∗
− δ ≤ µe (ξ , c) ≤ 1

µe (ξ , c) − µt (ξ , c) ≤ γ

−1 ≤ γ ≤ 1

ut (ξ , c) = 1 −
ft (ξ , c) − f ∗

t

f max
t − f ∗

t

ue (ξ , c) = 1 −
fe (ξ , c) − f ∗

e

f max
e − f ∗

e

(24)

Although only two objectives are proposed in this paper,
the idea of fuzzy satisfactory optimization is also suitable for
more objective optimization.

It can be seen that the constraints include continuous dif-
ferential equations in the optimization model (20) and (24).
Thereby, the Gaussian pseudospectral method is introduced
to transform these models into high-dimensional nonlinear
programming formulations [25].
In Gaussian pseudospectral method, the Lagrangian basis

function is used for discrete interpolation of state vector
ξ and control vector c. Further, the differential equation
ξ̇ = g (ξ , c) is transformed into an algebraic formulation. The
terminal state ξ

(
tf

)
is approximated to discretize the terminal

constraint.
The interpolation points of the Gaussian pseudospectral

method are defined in [−1, 1], so the time domain interval
[t0, tf ] needs to be converted by the following equation

s =
2t − t0 − tf
tf − t0

, s ∈ [−1, 1] (25)

The discrete points of the Gaussian pseudospectral method
are {s1, · · · , sK }, and the initial point s0 = −1 is the
(K + 1) th discrete point. The state vector and control vector
can be approximated by the Lagrangian interpolation polyno-
mials.

ξ (s) ≈ 4 (s) =

K∑
i=0

ξ (si)Li (s) (26)

c (s) ≈ C (s) =

K∑
i=1

c (si)L∗
i (s) (27)

where 4 (s) and C (s) denote the discretized state vector
and control vector, respectively. Li (s) and L∗

i (s) indicate
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Lagrangian interpolation polynomials as

Li (s) =

K∏
j=0,j̸=i

s− si
si − sj

L∗
i (s) =

K∏
j=1,j̸=i

s− si
si − sj

Then the terminal states are approximated using discrete
interpolation

4
(
sf

)
= 4 (s0) +

tf − t0
2

K∑
k=1

εkg (4 (sk) ,C (sk)) (28)

where k = 1, · · · ,K , 4
(
sf

)
indicates the discretized termi-

nal state, and εk =
∫ 1
−1 Li (s) ds is the Gaussian weight.

The model constraint for each discrete point is obtained as

K∑
i=0

Di4 (si) =
tf − t0

2
g (4 (sk) ,C (sk)) (29)

Di = L̇i (sk) =

K∑
i=0

K∏
j=0,j̸=i

sk − sj

K∏
j=0,j̸=i

si − sj

(30)

The improved P-criterion function is discretized as

p
(
4(1), 4(2), ai, bi, rxi, ryi, ωi, hi

)
≥ 0, i = 1, · · · , n (31)

where 4(1) and 4(2) indicate the discretized ξ (1) and ξ (2)
respectively. Therefore, the discrete comprehensive optimiza-
tion model can be written as

maxα

ξmin ≤ 4 (s) ≤ ξmax

cmin ≤ C (s) ≤ cmax

4 (s0) =

K∑
i=0

ξ (si)Li (s0)

4
(
sf

)
= 4 (s0) +

tf − t0
2

K∑
k=1

εkg (4 (sk) ,C (sk))

K∑
i=0

Di4 (si) =
tf − t0

2
g (4 (sk) ,C (sk))

p
(
4(1), 4(2), ai, bi, rxi, ryi, ωi, hi

)
≥ 0, i = 1, · · · , n

α ≤ µt (4 (s) ,C (s)) ≤ 1
α ≤ µe (4 (s) ,C (s)) ≤ 1

ut (4 (s) ,C (s)) = 1 −
ft (4 (s) ,C (s)) − f ∗

t

f max
t − f ∗

t

ue (4 (s) ,C (s)) = 1 −
fe (4 (s) ,C (s)) − f ∗

e

f max
e − f ∗

e

(32)

The discrete priority optimization model can also be writ-
ten as

min γ

ξmin ≤ 4 (s) ≤ ξmax

cmin ≤ C (s) ≤ cmax

4 (s0) =

K∑
i=0

ξ (si)Li (s0)

4
(
sf

)
= 4 (s0) +

tf − t0
2

K∑
k=1

εkg (4 (sk) ,C (sk))

K∑
i=0

Di4 (si) =
tf − t0

2
g (4 (sk) ,C (sk))

p
(
4(1), 4(2), ai, bi, rxi, ryi, ωi, hi

)
≥ 0, i = 1, · · · , n

α∗
− δ ≤ µt (4 (s) ,C (s)) ≤ 1

α∗
− δ ≤ µe (4 (s) ,C (s)) ≤ 1

µe (4 (s) ,C (s)) − µt (4 (s) ,C (s)) ≤ γ

−1 ≤ γ ≤ 1

ut (4 (s) ,C (s)) = 1 −
ft (4 (s) ,C (s)) − f ∗

t

f max
t − f ∗

t

ue (4 (s) ,C (s)) = 1 −
fe (4 (s) ,C (s)) − f ∗

e

f max
e − f ∗

e

(33)

The optimal trajectory can be figured out by solving the
above discrete nonlinear programming problems.

C. TRAJECTORY TRACKING
ADRC is proposed by Han [26] to eliminate the external
disturbances. It does not rely on the precise models, and
shows high engineering application prospect. To reject distur-
bances, two first-order linear ADRC controllers are designed
to follow ud and rd . v will converge to the desired value
as well since the constraint relationship of u, v, r has been
established in trajectory optimization.

According to the dynamics model (5), the total disturbance
fu is lumped as

fu = −buτu +
1
m11

τu +
m22

m11
vr −

d11
m11

u+
dX
m11

(34)

where bu is estimation of the gain factor 1/m11. It can be
seen that the total lumped disturbance consists of the internal
disturbances, external disturbances, and estimation errors.

Therefore, the first equation in model (5) can be rewritten
as

u̇ = buτu + fu (35)

In order to estimate the longitudinal velocity and lumped
disturbance, the linearly extended state observer (LESO)
via (35) is designed as{

ˆ̇u = f̂u + buτu − βu1
(
û− u

)
ˆ̇fu = −βu2

(
û− u

) (36)
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where û and ˆ̇u denote the estimation of the longitudinal
velocity and acceleration, f̂u and ˆ̇fu denote the estimation of
total lumped disturbance and its differentiation. βu1, βu2 are
two adjustable parameters of LESO for u.
The control law is designed by

τu =
ku

(
ud − û

)
− f̂u

bu
(37)

where ku is the gain.
Similarly, the following equation can be obtained from (5)

ṙ = brτr + fr (38)

where br is the estimation of the gain factor 1/m33, and fr
denote the lumped disturbance.

The corresponding LESO for r is designed as{
ˆ̇r = f̂r + brτr − βr1

(
r̂ − r

)
ˆ̇fr = −βr2

(
r̂ − r

) (39)

where r̂ and ˆ̇r mean the estimation of the course angular
velocity and acceleration. ˆ̇fr and ˆ̇fr mean the estimation of
total lumped disturbance and its differentiation. βr1, βr2 are
two adjustable parameters of LESO for r .The control law is
described as

τr =
kr

(
rd − r̂

)
− f̂r

br
(40)

where kr is the gain. Since the tracking error of LESO can
converge to zero, the closed-loop control system using these
linear ADRC controllers is stable. The proof can refer to [27].
The algorithmic steps are shown in Table 2.

TABLE 2. Algorithm steps.

IV. SIMULATION
Suppose the USV starts to move from (0,0) and stop-
ping at (190,190). The constraints of state and control
variables are shown in Table 3. The turning radius k2
is 0.875 m. In the dynamics model of (5), the distur-
bances caused by wind and waves are denoted by τ d =

τwind + τwave = [dX , dY , dN ]T . τwind denotes the
wind forces and moments. It is expressed as τwind =

0.5ρaV 2
r [CX (ε)AF ,CY (ε)AL ,CN (ε)ALL]T . Vr is the relative

wind speed. ρa is air density and CX ,CY ,CN are the wind
coefficients. AF and AL are the frontal and lateral projected
wind areas of USV, and L is the length [28]. τwave indicates
the wave-induced forces and moments, expressed as τwave =

0.5ρwLd2[cosχDX (λw), sinχDY (λw), sinχDN (λw)]T . ρw is
water density. d denotes amplitude. χ indicates encounter
angle. λw is wave length. DX ,DY ,DN represents the
second-order wave drift force coefficients. The parameters
of the above models are time-varying and dependent on the
real ocean environment. Moreover, acquiring accurate distur-
bance models is difficult and not necessary in this paper since
verifying the proposed method’s validity is the main concern.
Accordingly, the disturbances of USV are replaced by the
time-varying functions as dX = 65 cos(0.4t) + 45 sin(0.2t),
dY = 4 cos(0.2t) + 4 sin(0.6t), dN = 35 cos(0.3t) +

25 sin(0.5t) respectively in the following simulations [29].

TABLE 3. The constraints of state and control variables.

Case 1: There are four obstacles centered at (25,28),
(46,65), (90,80), and (145,130).

Implement the proposed algorithm. In order to build the
fuzzymembership functions of two objectives, payoff table in
Table 4 is used. We can know that f ∗

t = 7.88, f max
t = 380.02,

f ∗
e = 414.9, f max

e = 382573.9. Furthermore, the maximum
membership degree is calculated as α∗

= 0.8623 by solving
the comprehensive optimization model.

According to the priority optimization model, the adjust-
ment parameter is regulated to obtain the optimization results
shown in Table 5. It can be seen that all the results satisfy
the optimization and priority requirement. Meanwhile, the
priority deviation of these two objectives becomes larger as δ

increases. The membership degree of running time increases
while that of energy consumption decreases. The simulation
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TABLE 4. Payoff table for running time and energy consumption.

result validates they are in conflict. Thus, a balance between
objective optimization and priority is achieved. Finally,
δ = 0.12 is selected as the optimal trajectory.

TABLE 5. Optimization results with different adjustment parameters.

The parameters of two ADRC controllers are shown in
Table 6. The tracking results of USV are shown in the
Figure 3. The obstacles are in grey, the desired path is in
bule, the tracking path is in red, and the pentagram represents
the target point. With the relevant constraints, the proposed
algorithm computes a smooth trajectory from initial point to
terminal point. It can be seen that the real trajectory effec-
tively avoids obstacles and the USV stops exactly at the target
point. Further, it is obvious that the tracking path almost
coincides with the desired path.

Figure 4 shows the optimization and tracking results of
u and r . It can be seen that the real values of u and r
precisely approach the desired values, and these two veloc-
ities converge strictly to zero when USV reaches the target
point. Moreover, the absolute control errors for u and r are
always kept within 0.1 and 0.05 respectively, which reflects
the controller’s good immunity against disturbances.

TABLE 6. Parameters of ADRC controllers.

Figure 5 shows the optimization and real results of v and
ϕ. It can be seen that their real values get closely to the
desired values. The errors between them are obviously within
reasonable range. The results of ϕ provide further evidence
that r is well controlled. It should be noted that since the
dynamics model is incorporated into the optimization solu-
tion, v establishes a constraint relationshipwith u and r .When
u and r is precisely controlled, v also converges to the desired
value. The control variables are shown in Figure 6.

FIGURE 3. Tracking results by the proposed algorithm in case 1.

FIGURE 4. Optimization and tracking results of ud and rd by the
proposed algorithm.

FIGURE 5. Optimization and real results of v and ϕ by the proposed
algorithm.

In order to further demonstrate effectiveness of the pro-
posed algorithm in this paper, two algorithms are carried out
as comparative simulations. The first comparative method
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FIGURE 6. Control variables by the proposed algorithm.

consists of trajectory optimization based on artificial poten-
tial field (APF) and trajectory tracking based on PID control.
The APF is a virtual force method proposed by Khatib, which
is widely used for obstacle avoidance. It is designed based on
the repulsive force field in obstacles area, and the attractive
force field at target point [30]. USV avoids obstacles and
reaches the target point under the two force fields. The second
comparativemethod uses trajectory optimization byweighted
multi-objective optimization (WMO) and trajectory tracking
by linear quadratic regulator (LQR).

FIGURE 7. Tracking results by two comparative methods.

The tracking results by two comparative methods are
shown in Figure 7. The grey area represents the convex
obstacles and the pentagram represents the target point. The
cyan curve is the result of APF+PID, and the magenta curve
represents the result of WMO+LQR. Compared with the
proposed algorithm, it is clear that longer distance is gener-
ated in APF+PID. Firstly, the USV travels only by attractive
force in a nearly straight path in APF+PID. In the vicinity
of (17.6, 17.4), the USV is subjected to the repulsive force of
the first obstacle and avoids it by a combination of repulsive
and attractive force. The USV is repulsed by the second
obstacle at (97.6, 56.4) and its direction changes. A similar
change occurs at (147.1, 106.8). It can be noticed that the
USV trajectory becomes choppy while approaching the target
point. In WMO+LQR, the trajectory of USV seems like a

broken line. It is obvious that two irrational turns happen
at (11.5,10.4) and (158.7,114.3), which does not conform to
the actual navigation of USV. Due to the poor disturbance
rejection of LQR, the USV does not reach the target point
accurately but stops at (191.5,189.7).

TABLE 7. Comparison of optimization objectives.

As shown in Table 7, running time in the proposed
algorithm is 15.27 and energy consumption is 9.83 × 104,
by which a good balance between the two objectives is
achieved. In APF+ PID, running time is 118.62 and energy
consumption is 3.11 × 104. The APF method only considers
obstacle avoidance. It takes too much time and is not accept-
able in real sailing. In WMO+LQR, running time is 14.41,
similar to the proposed algorithm. However, it consumes
almost twice energies as much as the proposed algorithm.
This shows that fuzzy optimization is better than weighted
optimization.

Figure 8 shows the optimization and tracking results of
u and r by APF+PID. The attractive force is smaller when
the USV is closer to the target. Therefore, the velocities of
USV become extremely low when approaching the target
position. Figure 9 shows the transverse velocity, course angle
and control variables.

FIGURE 8. Optimization and tracking results of u and r by APF+ PID.

Figure 10 shows the optimization and tracking results of
u and r by WMO+LQR. Compared with Figure 4, it is
clear that the tracking performance is inferior to the proposed
algorithm. The control variables are shown in Figure 11.
They are both larger than the proposed method so that energy
consumption increases.

Case 2: There are four obstacles centered at (45,45),
(70,110), (105,80), and (130,140). Other conditions are the
same as in Case 1.
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FIGURE 9. Transverse velocity, course angle and control variables by
APF+PID.

FIGURE 10. Optimization and tracking results of u and r by WMO+LQR.

FIGURE 11. Transverse velocity, course angle and control variables by
WMO+LQR.

The tracking results are shown in the Figure 12. It can
be seen that the proposed method is still able to compute
an optimal trajectory when the positions and orientation of
the obstacles change. Moreover, USV is able to track the
trajectory with high accuracy. Running time is 14.79 and
energy consumption is 1.21 × 105.

FIGURE 12. Tracking results by the proposed algorithm in case 2.

V. CONCLUSION
This paper proposes a co-design method of control sys-
tem to accomplish the task of automatic target arriving
and berthing for USV. For trajectory optimization, fuzzy
satisfactory optimization is adopted and fuzzy membership
degree difference is used to model priority. The model con-
straint includes both kinematic and dynamic models. More-
over, the obstacle avoidance constraint is designed based on
the improved P-criterion. The comprehensive optimization
model and priority optimization model are built such that
balance between optimization and priority can be realized
by relaxing the maximum membership degree. By using the
Gaussian pseudospectral method, the continuous differential
constraint is converted into discrete algebra constraint. The
optimal trajectory is obtained by solving these two models.
For trajectory tracking, the longitudinal velocity and course
angular velocity are respectively steered by two first-order
linear ADRC controllers. Such a design can reduce feedback
cost and facilitate controller design. The simulation proves
that the system is able to accomplish the task of automatic
target arriving and berthing in presence ofmulti-shape convex
obstacles and disturbances. In the future, motion obstacles
will be concerned in trajectory optimization and tracking of
USV.

APPENDIX
GLOSSARY
USV unmanned surface vehicle.
ADRC active disturbance rejection control.
LG Legendre Gaussian.
u longitudinal velocity.
v transverse velocity.
r course angular velocity.
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ϕ course angle.
τ surge force and yaw moments.
τ d external disturbances.
M inertial matrix.
C Coriolis matrix.
D hydrodynamic damping matrix.
ξ state vector.
c control vector.
rx proportional coefficient in the x-direction.
ry proportional coefficient in the y-direction.
(a, b) coordinates of the obstacle’s center.
h adjustable parameter for obstacle shape.
ω obstacle’s orientation angle.
n number of obstacles.
k2 turning radius.
α∗ maximum membership degree.
γ priority difference.
δ adjustment parameter.
fu lumped disturbance for u.
bu estimation of the gain factor 1/m11.
fr lumped disturbance for r .
br estimation of the gain factor 1/m33.
τwind wind forces and moments.
τwave wave forces and moments.
Vr relative wind speed.
ρa air density.
ρw water density.
LESO linearly extended state observer.
APF artificial potential field.
LQR linear quadratic regulator.
WMO weighted multi-objective optimization.
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