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ABSTRACT Camouflaged object detection and segmentation is a new and challenging research topic in
computer vision. There is a serious issue of lacking data on concealed objects such as camouflaged animals
in natural scenes. In this paper, we address the problem of few-shot learning for camouflaged object detection
and segmentation. To this end, we first collect a new dataset, CAMO-FS, for the benchmark. As camouflaged
instances are challenging to recognize due to their similarity compared to the surroundings, we guide our
models to obtain camouflaged features that highly distinguish the instances from the background. In this
work, we propose FS-CDIS, a framework to efficiently detect and segment camouflaged instances via two
loss functions contributing to the training process. Firstly, the instance triplet loss with the characteristic
of differentiating the anchor, which is the mean of all camouflaged foreground points, and the background
points are employed towork at the instance level. Secondly, to consolidate the generalization at the class level,
we present instance memory storage with the scope of storing camouflaged features of the same category,
allowing the model to capture further class-level information during the learning process. The extensive
experiments demonstrated that our proposed method achieves state-of-the-art performance on the newly
collected dataset. Code is available at https://github.com/danhntd/FS-CDIS.

INDEX TERMS Camouflaged animals, camouflaged instances, few-shot learning, object detection, instance
segmentation.

I. INTRODUCTION
Camouflage is a defense mechanism that animals use to
conceal their appearance by blending in with their envi-
ronment [1]. Autonomously detecting camouflaged animals
is helpful in various applications, e.g., search-and-rescue
missions [2]; wild species discovery and preservation activ-
ities [2]; and media forensics [3], [4], [5], [6](manipulated
image/video detection and segmentation [7]). By leveraging
camouflage recognition at object detection or instance

The associate editor coordinating the review of this manuscript and
approving it for publication was Nadeem Iqbal.

segmentation level autonomously, these practical applica-
tions can be done with minor efforts from humans while
maintaining work performance. To be specific, utilizing a
drone flying around the mountainous area to collect images
and videos for a system to detect and segment the target
object in danger is more effective than sending a group of
humans manually scanning the zone. By this means, this
process can support biological scientists in identifying and
preserving endangered species effectively. Further related
applications can be considered in different important fields
including healthcare, agriculture, or military, where exist
the concept of finding objects with camouflaged features.
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TABLE 1. Statistics of camouflage datasets (without non-camo images).

Indeed, camouflage detection and segmentation tasks can
provide further applications such as assisting doctors in
medical imaging understanding, supporting modern farmers
in managing the vast fields of crops via visual information or
even detecting hidden enemies in nature. These applications
can be potential via the development of camouflaged research
via image understanding at detailed levels of object detection
and instance segmentation.

Although image segmentation methods have been pro-
posed for a long time, general detectors cannot deal with
camouflaged animals [14], [15], [16], [17] due to their
specific camouflaged features. The detectors initially devel-
oped for camouflage detection [18], [19], [20], [21], [22],
[23], [24], [25], which use handcrafted low-level features,
are effective only for images with a simple and uniform
background. More recently developed deep learning-based
detectors [2], [10], [11], [12], [26], [27], [28], [29], [30] for
camouflaged object segmentation. Most previous methods
are trained on large-scale datasets to perform computer
vision tasks. Nevertheless, building such standard datasets for
camouflaged objects is labor-intensive due to the ambiguity
between the objects and their backgrounds, which leads to
more time and cost in the labeling procedure. To address
the problem, we consider the camouflaged object detection
and instance segmentation under the few-shot learning which
shows potential results when utilizing limited labeled samples
to classify [31], [32], [33], [34], [35], [36], [37], [38],
detect [39], [40], [41], [42], [43], [44], [45], [46], [47],
[48], or even segment [49], [50], [51], [52], [53] new
objects. However, to the best of our knowledge, there is a
lack of camouflaged datasets supporting few-shot learning
in camouflaged research. Therefore, we introduce a new
benchmark, CAMO-FS, for camouflaged few-shot object
detection and instance segmentation under the few-shot
settings. The new benchmark is mainly reconstructed from
the CAMO++ dataset [13] due to its diversity. The new
benchmark consists of 197 camouflaged images for training
and 2, 655 camouflaged images for performance evaluation
as described in Table 1.

There are several approaches for few-shot learning.
Beginning with few-shot classification (FSL), many works
are based on meta-learning [31], [32], [33], [34], [54]
or transfer-learning [35], [36], [37], [38] approaches to
leverage a few labeled data to classify new objects and
achieve incredible results. The former approaches compute

the similarity between query and support images to pinpoint
novel objects while the latter involves utilizing knowledge
from the source domain to adapt a different but related target
domain. Fueled by these successes, most existing works on
few-shot object detection (FSOD) and few-shot segmentation
(FSS) which are recently developed to tackle the problem
through meta-learning [42], [43], [44], [45], [46], [47], [48],
[51], [52], [53], [55], [56], [57] and transfer-learning [39],
[40], [41], [49], [50], [58], [59] methods. Nonetheless, such
methods focus on the general domain and thus fail to
generate effective features for camouflaged objects due to the
ambiguity between backgrounds and foregrounds.

To overcome the specific issue of camouflage objects,
we propose a novel framework for few-shot camou-
flaged object detection and instance segmentation, dubbed
FS-CDIS, which is based on the transfer-learning approach.
The model is trained on two stages of processing:
(1) one base phase training for the model to gain concept
knowledge of general domains with abundant data, and
then (2) performing a novel phase that can do the specific
task on the few-shot data. To be specific, in the base training
stage, we train our model on generic object detection and
instance segmentation dataset (e.g. COCO [60]) and focus
on improving the model in the novel fine-tuning stage.
Because of the similarity between camouflaged objects and
their surroundings, we aim to guide our few-shot models
to obtain camouflaged features that highly distinguish the
instances from the background. To achieve that target,
we introduce two loss functions contributing directly to the
novel fine-tuning process. Firstly, the instance triplet loss
with the characteristic of differentiating the anchor, which
is the mean of all camouflaged foreground points, and the
background points are employed to work at the instance
level. Secondly, to consolidate the generalization at the class
level, we present instance memory storage with the scope of
storing camouflaged features of the same category, allowing
the model to capture further class-level information during
the learning process.

To summarize, our contributions in this work are two-fold:
• First, we build a new benchmark dataset, CAMO-FS,
which is among the first datasets to support detection
and instance segmentation on camouflaged instances in
nature under the few-shot concept.

• Second, we propose a framework to detect and seg-
ment camouflaged instances efficiently, named after
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FS-CDIS, given a small shot of training data for novel
classes utilizing the idea of instance triplet loss and
instance memory storage.

The remainder of this paper is organized as follows.
Section II summarizes related work. Next, Section III
introduces the newly constructed CAMO-FS dataset and
presents our proposed framework for few-shot camouflaged
object detection and segmentation. Section IV presents the
experimental results and comparison among baselines and
our proposals on the newly constructed dataset. Finally,
Section V summarizes the key points and mentions future
work.

II. RELATED WORK
A. CAMOUFLAGE RESEARCH
Given any region (i.e. bounding boxes or polygon masks)
presented for an object of interest (i.e. animals or artificial
objects) in an image and then they tend to be classified
as background, contents in that region can be qualified as
camouflaged objects. Thus, a camouflaged object is defined
as a set of bounding boxes or camouflaged pixels in an image
without any further detailed information such as the number
of objects or the semanticmeaning [2]. Although tasks related
to camouflaged animals can be performed in a wide range
of applications such as security systems [3], [4], pollution
detection [5], watermark detection [6], this research field has
not been well explored in the literature, especially few-shot
learning which is practically suitable to the context of scare
data as camouflaged animals.

1) BINARY CAMOUFLAGE SEGMENTATION
Prior to the advancement of deep neural networks, most of
the work exploits identical regions between camouflaged
regions and the background by handcrafted or low-level
features, specifically based on external characteristics (e.g.,
color, shape, orientation, and brightness). Particularly, early
camouflage detection works had attention on the foreground
region even when some of its texture was similar to the
background [18], [19], [20]. The foreground was distin-
guishable from the background via simple features, such as
color, intensity, shape, orientation, and edge [18], [19], [20],
[61], [62]. A few methods [21], [22], [23], [24], [25] based
on handcrafted low-level features have been proposed for
tackling the problem of camouflage detection. However, they
are effective only for images with a simple and uniform
background. Thus, their performances are unsatisfactory
in camouflaged object segmentation due to the substantial
similarity between the foreground and the background.

Until now, the convention of binary prefers binary ground
truth camouflaged object datasets [2], [10], [11]. Existing
methods for camouflaged objects [2], [11], [12], [26], [27],
[28], [29], [30] based on binary ground truth are consid-
ered as the binary camouflage segmentation. For example,
Le et al. [2] proposed an end-to-end Anabranch Network,
dubbed ANet which includes two streams of classification
and segmentation. The outputs of both streams are fused

to improve the segmentation performance of camouflaged
objects. This proposed network was also flexibly applied to
any fully convolutional networks. Similarly, motivated by the
way of hunting strategies of predators, Fan et al. [11] designed
Search Identification Network (SINet) with two main mod-
ules to simulate this hunting behavior, namely a search
module searching for targets and an identification module
identifying the existence of targets then catching them.
Yan et al. [29] recently introduced MirrorNet, a dual-stream
network comprising a mainstream and a mirror stream.
This mirror stream aimed to capture instinct information
by horizontally flipping camouflaged objects to break their
camouflaged nature and make them more distinguishable.
Zhu et al. [30] presented the TINet, which interactively
refines multi-level texture and segmentation features and
thereby gradually enhances the segmentation of camouflaged
objects. Lv et al. [12] simultaneously worked on ranking and
localization to well-present camouflaged objects. As a result,
they formed a triplet task with localizing, segmenting, and
ranking the camouflaged objects. Besides, the authors also
introduced the NC4K dataset for camouflaged segmentation.
Such methods reveal the presence of the camouflaged objects
with the high level of bounding boxes and contain corre-
sponding pixel-wise ground truth belonging to camouflage.
Further understanding of the camouflage level may help
us to give comparative analyses, finding evidence for links
between camouflage and other defensive strategies with
aspects of habitat and life-history [63].

2) CAMOUFLAGE INSTANCE SEGMENTATION
Although several works have been proposed, there is still
a difficulty in efficiently exploring the information of
camouflage animals, especially at the instance level with
more challenging detailed masks. Therefore, for ease of
training methods with the challenging task of camouflaged
instance segmentation, Le et al. [64] introduced a framework
with several state-of-the-art methods and proposed a tool
with user interactive cues to tune the segmentation mask on
a website. Realizing that the semantic level is not detailed
enough, Le et al. [13] introduced a camouflage fusion
learning (CFL) to utilize the strength of different instance
segmentation methods by fusing various models via learning
image contexts.

3) CAMOUFLAGE DATASETS
CamouflagedAnimals [8] and CHAMELEON [10] were the
first two camouflage datasets with mask annotations. The
two datasets do not contain enough images to train deep
learning methods. Le et al. [2] created the CAMO dataset,
the first camouflage dataset with more than 1, 000 annotated
images. It contains 1, 250 annotated images, which is a
limited number of samples to train and evaluate deep
learning methods. Then, Fan et al. [11] collected the COD
dataset, which comprises 10, 000 images (both camou-
flage and non-camouflage) divided into 5 meta-categories.
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However, they annotated only 5, 066 camouflage images.
Lamdouar et al. [9] recently developed the MoCA dataset
for the camouflage object detection task; it contains only
bounding box ground truths. Hence, these datasets limit
their annotations at binary ground truth datasets which
have a shortage of intensive annotations for multi-task
camouflage problems. CAMO++ [13] is different from the
aforementioned datasets providing a benchmark for cam-
ouflaged instance segmentation with more comprehensive
annotations and diverse meta-categories of 10. The dataset
comprises 5, 500 images with superiority over other datasets
on instances including 32, 756 instances for both camo
and non-camo objects. Different from the existing work,
we address camouflage research under the few-shot learning
concept to detect objects and segment camouflaged instances.
Therefore, we introduce a new benchmark, dubbed CAMO-
FS, to support the evaluation process of this specific task.
Accordingly, our CAMO-FS comprises 2, 852 images as
a result of the inheritance from CAMO++ [13] and our
further collection. This specific dataset serves 93, 1% of the
annotated images for the evaluation process while the rest few
samples are provided for training (i.e. 197 images for training
and 2, 655 images for testing).

B. FEW-SHOT LEARNING
1) FEW-SHOT OBJECT DETECTION (FSOD)
When having some available samples of given classes with
their corresponding bounding boxes, FSOD aims to learn
from these limited data in order to help models adapt
to the new classes. To date, several works [39], [42],
[43], [44] have been proposed to deal with FSOD. Early
works [42], [43] mainly prefer to overcome the difficulties
of the data scarcity of FSOD via meta-learning approaches
by combining supportive information from meta-based
streams with their main streams. Particularly, Bingyi [42]
proposed a Feature Reweighting framework that leverages the
free-proposal approach of awell-known one-stage framework
such as YOLO [65] to boost FSOD performance. The
network integrated a meta-model that aims to generate
reweighting vectors from support samples for highlighting
the attention to features from the YOLO network. Con-
versely, Meta RCNN [43] based on the two-stage proposal
approach as Mask RCNN [66] and fed available annotations
such as bounding boxes and segmented masks to train a
meta-network called Predictor-head RemodelingNetwork for
inferring attention features. Fan et al. [44] recently proposed
to take advantage of support images from a massive FSOD
dataset to generate significant results combined with their
proposed network called Attention-RPN, Multi-Relation
Detectors. The Attention-RPN directed the trained model to
look at the image for the task of object detection. Differently,
Wang et al. [39] simply adopted Faster RCNNwith two-stage
finetuning to transfer massive knowledge from abundant data
in the base model to fine-tune the novel one by freezing
the whole network except for the fully connected layer for

FIGURE 1. Exemplary images with instance-level mask annotations from
our proposed CAMO-FS dataset.

TABLE 2. Number of instances per image of CAMO-FS.

object classification. Through this simple straightforward
mechanism, this model significantly improved few-shot
performance without a complex pipeline of training the
model. Further, such works [48], [56], [67], [68], [69]
presented advanced methods by applying class max-margin,
multiple scale proposals, or feature alignment in FSOD.
Other ones were based on transformed inputs [57], [70],
transformer approaches [45], [46], contrastive method [55],
or kernels design [71]. Other methods [39], [40], [41], [72]
relied only on query images to deal with FSOD via extra
text data [41], unlabeled image [73], generated samples [72],
gradient scaling [40].

2) FEW-SHOT OBJECT SEGMENTATION (FSS)
Recently, the field of few-shot segmentation gained attention
from the community. As mentioned above, the first work
Meta RCNN originated from Mask RCNN, therefore, Meta
RCNN simultaneously performed detection and segmen-
tation. Liu et al. [74] utilized a cross-reference network
for generic image segmentation. The authors proposed a
cross-reference mechanism and a mask refinement module
to specifically support the task of segmentation. Before,
Dong et al. [75] proposed a prototype learning component
in a framework of semantic segmentation that learned to
take discriminative information from features to help segment
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TABLE 3. Extra collected number of images and instances in CAMO-FS dataset.

FIGURE 2. Hierarchical taxonomic structure of our CAMO-FS dataset.

objects better. Also, Wang et al. [76] introduced a prototype
align method that learns class-specific prototype represen-
tations from a few image samples to perform segmentation
over the query images. Lately, Liu et al. proposed a dynamic
prototype convolution network to address few-shot semantic
segmentation. The work of [77] proposed context-aware
prototype learning. Reference [78] introduced generative
models approach for this task. Recently, Nguyen et al. [79]
came up with iFS-RCNN, an instance segmenter via an
incremental approach. Gao et al. [80] proposed the DCFS
framework, an effective decoupling classifier that boosted
the performance of object detection and segmentation heads.
Han et al. [81] suggested a reference twice transformer-based
framework (RefT) to enhance features in segmentation tasks.
Also in the transformer approach, Wang et al. [82] introduced
DTN to directly segment the target object instances from
arbitrary categories given reference images.

In common, these aforementioned methods of the two
approaches including FSOD and FSSmostly focus on generic
objects, which cannot create effective distinguished features
and fail to recognize camouflaged objects. In our case,
our proposed methods aim at highlighting the differences
between backgrounds and foregrounds which we considered
as the key feature to detect or segment camouflaged objects.
Furthermore, our proposed approaches contribute directly to
the training process of such models via loss functions.

III. PROPOSED METHOD
A. CAMO-FS BENCHMARK DATASET
Camouflaged data tends to be more difficult to collect in
the real world rather than non-camouflaged ones. Generating

FIGURE 3. The distribution of CAMO-FS dataset. The categories are sorted.

intensive annotations with multi-task or hierarchical labels
for camouflaged objects is also costly and complicated, espe-
cially with the pixel level as polygon masks. Particularly, the
visual characteristics of a camouflaged object are extremely
identical to the background. The external appearances (i.g.
the intensity, color, and textures) are close to their surround-
ing environment, the boundary between camouflaged objects
and the background or other identical-type camouflaged
objects in case of being nearly or partly overlapped. Thus, it is
really tough to provide the concurrence between annotators
due to ambiguity in verifying camouflaged regions blended in
surroundings. For ease of data preparation such as collections
and annotations, one of the most common ways is to inherit
existing camouflaged datasets and CAMO++ [13] is our
selected dataset since it is a high-diversity dataset with
a variety of camouflaged object categories. Furthermore,
the key to few-shot learning lies in the generalization
ability of the pertinent model when presented with a few
available samples. The context of camouflaged objects
inherently matches this understanding because the number of
camouflaged images is often scarce in practice.

1) CAMO++ DATASET
CAMO++ generally contains camouflaged and non-
camouflaged images with a total of 5,500 images corre-
sponding to 32,756 instances [13]. The dataset contains
93 fine-grained classes assigned to 13 coarse-grained classes.
However, in the case of camouflaged objects, there are
47 fine-grained classes designed with a hierarchical structure
and assigned into 10 coarse-grained classes. In detail,
CAMO++ contributes 2,695 camouflage images including
1,250 existing camouflage images in the previous CAMO
dataset with 1,450 newly collected camouflage images for
CAMO++. In this scope of our paper, 2,800 remaining
non-camouflage images are ignored. CAMO++ especially
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FIGURE 4. Distribution of camouflage image resolution. Best viewed
online in color and zoomed in.

provides common ground truths such as bounding boxes,
object masks, and instancemasks which are suitable for many
tasks of camouflage research.

2) CAMO-FS DATASET
In general, there are three steps to construct the CAMO-FS
dataset: inheritance, collection, data splitting.

In the inheritance step, we leverage the available
CAMO++ to build our CAMO-FS dataset. In this way,
we inherit the biology taxonomic and vision taxonomic
structure of CAMO++ which helps us to reduce the burden
of data collection. Table 1 provides an overview of previous
works done on camouflage, which is mentioned in the
related work, and our proposed CAMO-FS in terms of main
characteristics. We exploit the diversity of CAMO++ by
its 10 meta-categories to build up the few-shot concept for
instance segmentation. To this end, our CAMO-FS not only
keeps a good ratio of instances per image of 1.172 but also
contributes as the very first dataset specific for few-shot
research on camouflaged animals. Note that the large amount
of images in some datasets does not mean they are all
camouflaged images.

In the collection step, as CAMO++ faces issues such as
imbalanced data and a shortage of the number of images of
some classes, which cause evaluation problems for few-shot
tasks. Particularly, there are 11 classes (e.g. Camel, Dolphin,
Elephant, Horse, Kangaroo, Monkey, Penguin, Bat, Bear,
Squirrel, and Rhino) having a shortage of images that are
needed to train a few-shot model. Hence, we hardly perform
training or testing on these classes. As a result, we manually
collect more data for these classes with 163 total images

FIGURE 5. Instance center bias camouflaged datasets. Best viewed online
with color and zoomed in.

corresponding to 181 instances (an average of 15-16 instances
per class) on Google Image Search Engine with their class
names as the search query. We also remove images with
mistakes in the original dataset. The statistics of collected
data are shown in Table 3. By gathering more camouflaged
animals and combining them with the CAMO++ dataset,
we conduct our CAMO-FS dataset for few-shot camouflaged
animal detection and segmentation with 2, 852 total images
corresponding to 3, 342 instances. Figure 2 shows the vision
taxonomic structure of coarse-grained and corresponding
fine-grained classes and illustrates the ratios of 10 coarse-
grained classes in our proposed CAMO-FS dataset. We also
show the distribution of 47 camouflaged classes in Figure 3,
which indicates that CAMO-FS is a diverse and long-
tailed dataset. Figure 1 shows exemplary images with mask
annotations from our proposed CAMO-FS.

In Table 2, we report the aggregated number of instances
per image. The number of instances per image ranges
from 1 to 25 and commonly falls into 1, then 2 and 3 while
the remaining is beyond 3 instances. As can be seen, the
number of images that contain 1 to 3 instances takes up a
large proportion of the entire dataset. This also illustrates
the problem of data imbalance between the number of
instances and the ratio of images in the dataset, which
reflects a problem that the presence of camouflaged animals
captured in photos is often limited, i.e. mostly one animal
per image. Additionally, although being claimed in [13] that
camouflaged objects in CAMO++ were localized over the
entire image, after removing non-camouflage objects and
adding new camouflaged images, we have the distributions
of object centers in normalized image coordinates over all
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FIGURE 6. Our general FS-CDIS framework for few-shot camouflaged detection and instance segmentation.

images in the CAMO-FS dataset as in Figure 5-a. This means
camouflaged animals tend to be located in the center of
images. Indeed, to capture images of camouflaged animals
in the wild, photographers need to carefully focus on the
animals, which leads to the central layout of collected images.
Also in Figure 5, we illustrate the center bias of camouflaged
images in other CAMO [2] and COD [11] datasets for
better visual comparison. In Figure 4, we present the image
resolution among camouflage datasets. As we only consider
camouflaged images of CAMO++ [13] and COD [11], the
density of our CAMO-FS is slightly higher than CAMO++

as a result of our extra collection of images presented in
Table 3. In comparison with the previous COD [11] and
CAMO [2], our CAMO-FS image resolution distribution is
more satisfying in diversity.

In the data splitting step, to effectively create the data
for the few-shot problem, we randomly get M instances
for each camouflaged class from the CAMO-FS dataset
to create training sets. In our setup, M equals 5 for
47 classes and thus there are 197 training images containing
235 camouflaged instances and the remaining 2, 655 images
with 3, 107 instances are used for testing. We only remove
some objects of the higher-level training set if they exist to
create the other few-shot settings. For example, we get all
elements to generate 5-shot training data and discard 2 in
5 objects to make a 3-shot one. In this way, the 5-shot
benchmark contains objects of the 3-shot dataset and the
3-shot setting contains the objects of the 2-shot one.

To the best of our knowledge, this is among the first works
to address few-shot camouflaged instance segmentation and
detection. Given the lack of a large-scale dataset for training
and testing purposes on camouflaged animal issues, we build
a benchmark for the task of few-shot camouflaged instance
segmentation and detection.

B. GENERAL FRAMEWORK
1) FEW-SHOT INSTANCE SEGMENTATION FORMULATION
In few-shot learning, we have one set of base classes denoted
Cbase with a large amount of available training data, and

one disjoint set of novel classes denoted Cnovel containing
a small amount of training data. This amount is small to
a few samples. The ultimate goal is to train a model to
predict well on the novel classes Ctest = Cnovel [31], [83]
or on both base and novel data Ctest = Cbase ∪ Cnovel
[84]. In few-shot classification, this work [31] introduces the
method of episodic training. The method sets up a series
of episodes Ei = (Iq, Si) where Si is a support set that
contains N classes from Ctrain = Cnovel ∪ Cbase along with
K examples per class (so-called N -way K -shot). A network
is then trained to classify an input image Iq, termed query
image, out of the classes in Si. The key idea is that solving
a different classification task for each episode leads to better
generalization and results on Cnovel . The extended versions
of this method are FSOD [42] and FSIS [43], [85]. Those
proposals consider all objects in an image as queries and
they have a single support set per image instead of per
query. However, there exist challenges in FSIS which are
not only classification tasks but also how to determine their
localization and segmentation. Use an image Iq to query, FSIS
returns labels yi, bounding boxes bi, and segmentation masks
Mi for all objects in Iq that belong to the set of Ctest .

2) GENERAL FRAMEWORK
Originated from TFA [39] which uses Faster R-CNN [86],
MTFA [49] employs a mask prediction branch to return the
pixel-wise mask for the segmentation task. In this work,
we leverage the architecture of MTFA model [49] based on
Mask R-CNN [66] which is a two-stage training and fine-
tuning mechanism. We train the first stage of the framework
on 80 classes from the COCO dataset. This stage results in the
base model weights for the second stage of novel fine-tuning.
In the fine-tuning stage, we apply the few-shot technique
to learn the novel concepts of camouflaged instances in our
proposed CAMO-FS dataset.

Similar to Mask R-CNN, the input images are fed into a
feature extractor F consisting of backbone B, RoI Align, RoI
feature extractor modules, and a region proposal network.
There are three heads specifying three tasks that this scheme
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FIGURE 7. Visualization of instance triplet loss and instance memory loss for region proposal.

supports: a classification head C , a box regression head R,
and a new attached mask prediction headM . In the first stage,
the network is trained on the base classes Cbase. Then in the
second stage, we froze the backbone network B of the feature
extractor F and only perform training on the prediction
heads. Thus, only RoI classifier C , box regressor R, and
mask predictor M are fine-tuned in the second stage. In
Figure 6, there exists a branch called mask predictor M .
We apply similarly to Ganea et al. [49] by using this two-
stage fine-tuning approach. Firstly, the network is trained on
base classes with lots of abundant data and then fine-tuning
all predictor heads C , R, and M on novel data of K shots for
each class.

Not a simple mask predictorM that we use, we enhance the
performance of the instance segmentation task by employing
the two concepts of instance triplet loss and instance memory
storage which are clearly described in the next section. The
two improvements are inspired not only by the instance
segmentation task in general but also by the camouflaged
instance segmentation specifications.

C. FRAMEWORK IMPROVEMENT
One of the characteristics of camouflage instances is the
camouflage texture similar to the background. This makes
the precise identification of the boundary areas difficult. It is
more critical in the context of few-shot learning where the
concepts of a class are represented by only a few samples.

In this work, we thus propose improvements to enhance
distinguishable features between background and foreground
areas. In particular, we explore two approaches that focus
on loss functions. The first one is the triplet loss function
which was known as a strong metric to support the network
in creating discrimination features between anchor and
negative. The second approach is the idea of memory bank,
which is used to enhance the distance between foreground
and background not only for individual instances but also
for each novel class. To this end, our framework is named
after FS-CDIS.

To calculate the loss function, we employ the mask
annotation for RoI features to collect the Fbg background and
Ffg foreground features by location on each RoI. Both Fbg
and Ffg for each proposal are used to calculate the respective
loss functions which are presented in the following sections.

1) INSTANCE TRIPLET LOSS
With the idea of enhancing the discrimination between
camouflaged instances and their backgrounds, we leverage
the power of the triplet loss function [87]. Specifically,
we treat the pixels of an object as positive points and
the background as negative ones. Accordingly, we force
the model to learn the distinguished features among the
foreground and background representatives. The more distin-
guished among features, the better a model can do to detect or
segment camouflaged instances. In this way, we highlight the
camouflaged instances so that the model is able to recognize
them.

For each RoI, we consider the average foreground features
Favg =

1
|Ffg|

∑
Ffg as anchors with the foreground feature

Ffg as positive and the background feature Fbg as negative to
apply the triplet loss function [87]. In this way, the model tries
to learn to minimize the distance between foreground rep-
resentatives and maximize the distance between background
representatives as shown in Figure 7.We use cosine similarity
to calculate the distance instead of Euclidean distance. The
loss function is defined as:

Ltriplet = max{d(Favg, Ffg) − d(Favg, Fbg) + margin, 0}

d(x, y) = 1 −
x·y

∥x∥·∥y∥
, (1)

where margin controls the discrimination between fore-
ground and background features. In our experiments, we set
margin of 0.5.

2) INSTANCE MEMORY STORAGE
The memory bank is designed to store information within
a class and the class information is updated during the
training. Still, the model can learn information at a global
level and has high consistency for each class. On the other
hand, storing and updating the features in the memory
bank for each iteration during training also creates more
variants. By leveraging these advantages, we propose the
memory bank for few-shot camouflage instance segmenta-
tion. To be specific, we use the memory bank to contain
the background and foreground features per each class
and make use of features to calculate the discrimination
between areas of object and no object in region proposals
(shown in Figure 7).
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TABLE 4. State-of-the-art comparison on CAMO-FS dataset among the baseline model of MTFA [49], Mask RCNN† [66], iFS-RCNN [79], and our proposed
methods FS-CDIS with instance triplet loss (ITL) and instance memory storage (IMS). Our performance improves over the utilized baselines.

a: STORING AND UPDATING
The memory bank for each class contains 2N features
including N of foreground features and N of background
features. While the memory bank receives new features, the
module concatenates them with existing old features. In case
the number of features is greater than the given N features,
the memory bank releases the oldest features to maintain the
number of features to N. This process updates the features in
the memory bank and keeps the quantity of the stored features
appropriate to the memory size (also known as the memory
capacity).

b: SAMPLING
To calculate the loss value, the memory bank has to provide
three elements Ffg, Fbg, and Fgeneral . Ffg and Fbg are all
foreground and background features that module storing. The
Fgeneral is the general foreground feature, and it is created for
each class by averaging the Ffg.

Let Fifg be the i-th foreground feature and τ be a

temperature hyper-parameter in [88]. In our experiments,
we set τ as 1. The memory loss function for camouflaged
instances is introduced as follows:

Lmemory

= − log
exp(Fgeneral ·Fifg/τ )∑|Fbg|

j=0 exp(Fgeneral ·F
j
bg/τ ) + exp(Fgeneral ·Fifg/τ )

(2)

To this end, the final loss of our training process, which
contains an instance triplet loss and memory storage is
defined as follows:

Lfinal = Lmrcnn + αLtriplet + βLmemory. (3)

Here, the parameter α of Ltriplet and β of Lmemory are used
during the training process to keep the balance between the
two loss functions. Details of these functions are mentioned
in the following section.

TABLE 5. The number of instances for each camouflaged class in the test
set of our CAMO-FS.

IV. EXPERIMENTS
We first overview the metrics and the experiment settings
and the implementation details in Section IV-A and then
we evaluate and discuss our improvement on the general
framework, as well as ablation study for our core proposed
methods in Section IV-B.

A. OVERVIEW
As specified in this work, we utilize the proposed CAMO-FS
dataset containing images of camouflaged animals in the
wild to establish the evaluation of our baseline and proposed
improvement. We follow the concept procedure published in
FSOD [39], [42], [43]. We employed theMTFA baseline [49]
implemented using Detectron2 framework [89]. The back-
bone is ResNet-101 [90] with Feature Pyramid Network [91].
The models are trained in two stages: base training and novel
fine-tuning stage.

In the first stage of the base phase, we train our model
with abundant data from 80 classes with 118K images in
the train2017 set of the COCO dataset. The training
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TABLE 6. The improvement of our proposed instance triplet loss (ITL) and instance memory storage (IMS) over the baseline MTFA [39]. The best
performances are marked in bold. # denotes the number of shots.

hyper-parameters of the base phase are set according to
Detectron2 settings [89].

In the second stage of the fine-tuning phase, we evaluate
the performance of having K = {1, 2, 3, 5} shots per each
novel class. Specifically, in the 5-shot setting, we train the
novel detector on 47 camouflaged classes with 197 images of
the CAMO-FS dataset. The training set for other settings is a
subset of the 5-shot setting (as presented in Section III-A).
The novel phase has a learning rate of 0.00125 inferred
from the MTFA configuration. We set the balance parameters
α = 1 × 10−1 and β = 1 × 10−2 when we train the
model with instance triplet loss and instance memory storage,
respectively. Other training hyper-parameters of the novel
phase are set following TFA [39] settings. Then, the novel
models are assessed in a test set including 2, 655 images with
3, 107 instances of 47 camouflaged classes to obtain results.
The number of instances for each class is detailed in Table 5.
Please visit [39] or [89] for more details on other parameters
of both the training and testing phases. Ourmodels are trained
and tested on a single GeForce RTX 2080 Ti GPU. The frame
per second (FPS) is approximately 15.

To report our results on detection and instance segmen-
tation tasks, we use average precision (AP) and average
recall (AR). To be detailed, we report AP@50 and AP@75,
along with AR@10. Besides, we also report AP and AR at
small, medium, and large scales of the instances to further
understand the model performance. For more details, readers
can visit the homepage of the COCO dataset for detection and
segmentation evaluation metrics.1

B. RESULTS AND DISCUSSION
1) STATE-OF-THE-ART COMPARISON
To prove the effectiveness of our proposed methods,
we conducted experiments on our proposed CAMO-FS
dataset. We tested with K = {1, 2, 3, 5} shots, respectively.
Since several recent work have not published their source
code [81], [82], we adopted the typical models addressing
both detection and instance segmentation tasks to compare
with our proposed methods. Table 4 presents the evaluation
of the performance of our methods of instance triplet loss

1https://cocodataset.org/#detection-eval
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TABLE 7. Ablation study on the base model with 1-shot results. The best
performances are marked in bold. ‘‘Triplet’’ stands for instance triplet loss
and ‘‘memory’’ stands for instance memory storage.

and memory storage over our baseline MTFA [49], the
model of Mask R-CNN [66] with sigmoid classifier, and
the state-of-the-art method iFS-RCNN [79] in the approach
of few-shot instance segmentation. We reported experiments
on those models and chose the common COCO-80 ResNet-
101 as their base model to apply our proposed methods.
The details of this decision are declared in the ablation
section. In terms of instance segmentation, we improved over
MTFA [49], Mask RCNN† [66], and iFS-RCNN [79] by get-
ting averageAP values of 6.23%, 8.04%, 7.13%, respectively
thanks to instance triplet loss, and 7.35%, 7.96%, 6.25%,
respectively thanks to instance memory storage. Regard-
ing object detection, our FS-CDIS got average amounts
of 7.14%, 7.34%, 6.96%, respectively with instance triplet
loss and 7.34%, 7.45%, 5.88%, respectively with instance
memory storage. The detailed performance of our methods
is in Table 4. Despite the limited results, we defeated the very
early models on detection and instance segmentation tasks on
camouflaged images.

2) PROPOSED MODULES EVALUATION
In Table 6, we also present the results of the baseline
MTFA [49] with its original default configuration along
with our proposed improvements. On top of the baseline
MTFA [49], we establish fine-tuning configuration on this
model by training all heads of classification, box regression,
and mask prediction on few-shot novel data. The reported
results prove the performance of the proposed instance triplet
loss, instance memory storage, and the combination of both
loss functions.

In general, our approaches achieve outstanding results in
comparison with the baseline. Our improvements surpass
MTFA by a remarkable margin. These results manifest the
efficiency of our methods in the context of few-shot camou-
flaged instance segmentation. Both loss functions enhance
the discrimination between foreground and background
features which strongly supports the model to segment pixels
that belong to the camouflaged animals. Regarding the
memory storage and the triplet loss function, the results of the
memory loss function are higher than those of the triplet loss
function by about 1%. We realize that storing representatives
for each class is a crucial element in few-shot learning.
This technique not only expands the variants during training
but also increases the consistency per class, so thereby

model can segment difficult objects better. In these ways,
we also improve the corresponding results in camouflage
object detection.

In Table 6, our improvements help the model segment
animals in various sizes. Specifically, all three metrics
including APs, APm, and APl improve in comparison
with the baseline model, which demonstrates that our
model well segments small, medium, and large animals.
This situation also happens in the detection task. When
data is very scarce as in a 1-shot or 2-shot setting, the
instance triplet loss function has comparative results with the
instance memory storage function. However, in the context
of 3-shot or 5-shot settings, the instance memory storage
demonstrates outstanding efficiency thanks to storing and
updating the memory via iterations to create discriminative
features on a global level. Actually, our proposed instance
triplet loss is designed to differentiate the features among
the foreground and background of a single camouflaged
instance. Meanwhile, the instance memory storage aims to
store features of multiple instances of the same category
to enhance the general features. Thus, when combining the
two approaches at the same time to train our FS-CDIS,
the performance of the model fluctuates but still follows a
trend. It can be seen from the reported numbers that with
K = {1, 2, 3} shots, the results of the combined loss seem to
dominate the results of each separate component. However,
notably around K = 5 shots, the AP, AP50, and AP75 of the
instance memory storage yield better performance due to the
information increase by more shots.

In terms of quantitative comparison, Figure 8 illustrates the
qualitative comparison among the results of 5-shot settings
of the baseline MTFA [49] and our proposed methods
of Instance Triplet Loss and Instance Memory Storage.
We chose to visualize the images with a confidence threshold
of 0.5, which released a huge number of predictions with
low confidence from the models. The four final rows indicate
exemplary cases that either FS-CDIS-ITL or FS-CDIS-
IMS can figure out camouflaged instances compared to the
baseline. In these cases, our methods seem to be better
the baseline although there are some imperfect cases where
the prediction mask in the sixth row overlays irrelevant
parts of the object (over-segmentation) or the results in
the fourth, fifth, and last rows only capture some main
parts of objects (under-segmentation). We conjecture the
reasons for that is the image contains background clutter
and the extremely vague boundary between foreground and
background. To alleviate the phenomenon, it is feasible to
further apply the post-processing methods on the output
segmentation masks.

3) BASE MODEL ABLATION STUDY
We also conduct ablation experiments on different backbone
base models of the COCO settings including general and
few-shot concepts. To be detailed, we report the perfor-
mance of our proposed method of instance triplet loss and
instance memory storage over four different backbones. The
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FIGURE 8. Qualitative comparison among the selected baseline MTFA [49] and our proposed methods. The results are from 5-shot settings.
Predicted images are visualized with a confidence threshold of 0.5, which released a huge number of predictions with low confidence from
the models. The four final rows indicate exemplary cases that either FS-CDIS-ITL or FS-CDIS-IMS can figure out camouflaged instances
compared to the baseline.

considered backbones are ResNet-50 and ResNet-101 [90].
The two base datasets are MS-COCO with 80 classes and
60 classes, respectively. Thus, it led to the combination
of four different base models (i.e. COCO-80/60 R-101,
COCO-80/60 R-50). As can be seen from Table 7, the
performance of applying COCO-80 R-101 base weight yields
better results among others evaluated on AP, AP@50, and
AP@75 in both segmentation and detection tasks. In both
cases of our two proposed improvements, the ablation
results demonstrate our selection of COCO-80 R-101 is the
best among the tested backbones of the base phase. For
the segmentation task, we achieve 4.46 and 5.46 of AP
reported for triplet loss and memory storage, respectively.

For the detection task, we reach 4.04 and 4.50 also of AP,
respectively. In summary, the chosen backbone of the base
weight presents a higher performance of around 1% to 2% of
evaluated on commonmetrics as in the table. To be explained,
the base from COCO-80 contains more semantic concepts
in comparison with the COCO-60 base, which leads to the
higher performance reported. Note that all the results in this
ablation section are reported for the 1-shot setting.

4) ABLATION ON INSTANCE TRIPLET LOSS COMPONENT
In terms of the instance triplet loss described in Eq. 1,
we establish ablation experiments to evaluate the perfor-
mance of the model with different configurations of margin
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TABLE 8. Ablation study on the margin and the α ratio of the instance triplet loss in 1-shot settings. The best performances are marked in bold.

TABLE 9. Ablation study on the capacity of the instance memory storage
in 1-shot settings. The best performances are marked in bold.

TABLE 10. Ablation study on the β ratio of the instance memory loss
(Eq. 3) in 1-shot settings. The best performances are marked in bold.

and α value when the instance memory storage component
is disabled (i.e. β = 0). To this end, we set up the margin
varying from 0 to 1, with a step of 0.25. For the α ratio
of the loss function (Eq. 3), we check out α = {1, 1 ×

10−1, 1× 10−2}. To be enhanced, the margin value indicates
how distinguished foreground and background features are.
Meanwhile, the α controls the effect of the instance triplet
loss on the total loss of the framework. Table 8 presents
the evaluation of both detection and segmentation issues in
1-shot manner. As can be inferred from the table, the effect
of α decides which margin should be selected for the triplet
loss. With α = 1 meaning we keep the original ratio of
the loss, the segmentation result in 1-shot setting yields the
highest performance of 5.16%mAPwith a 0.75margin value.
Meanwhile, the detection result gets the highest performance
of 4.36% with α = 1 × 10−1 and zero margin. This table
offers a better understanding of the impact of α and the
margin over the total performance.

5) ABLATION ON INSTANCE MEMORY STORAGE
COMPONENT
As for the instance memory storage, as introduced in Eq. 2,
and Eq. 3, there are several parameters that need analyzing,
listed as the amount of capacity in the memory storage and
the β ratio controlling the effect of the memory storage loss
in the total loss. Table 9, and Table 10 present the ablation
experimental results of those issues when the instance

triplet loss function is disabled (i.e. α = 0), respectively.
In terms of the capacity of the memory storage, we establish
experiments on a range of memory capacity of 2i where
i = {5, 6, 7, 8, 9, 10}. The reported results figure out that
the performance on both segmentation and detection tasks
increases with a larger capacity of memory storage. To be
detailed, with a capacity of 512, the mAP metric achieves the
highest value among configurations, i.e. 4.76% and 4.48%
for segmentation and detection, respectively. Empirically,
we select 512 to be the suitable capacity of the memory
storage, not the largest. To this end, the larger capacity can
confuse the model in the process of learning when retrieving
information in such a large memory bank. Besides, Table 10
expresses the effectiveness of the memory loss to the total
loss function. As can be inferred, β = 1×10−4 gives the best
performance evaluated on mAP, AP50, and AP75 among all
configurations.

V. CONCLUSION
In this work, we investigated the interesting yet challenging
problem of few-shot learning for camouflaged animal detec-
tion and segmentation.We first collect a new dataset, CAMO-
FS, for benchmarking purposes. We then propose a novel
method to efficiently detect and segment the camouflaged
animals in the images. In particular, we introduce the
instance triplet loss and the instance memory storage.
The extensive experiments demonstrated that our proposed
method achieves state-of-the-art performance on the newly
constructed dataset. We expect our work will encourage more
research work in this field. In the future, we would like to
extend our work with more shots for new classes. In addition,
we aim to improve the computational model by taking the
context into consideration.
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