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ABSTRACT The transportation sector is one among the key sources of greenhouse gas emissions (GHGs)
leading to climate change and global warming. Energy transition through electrified transportation is one
of the solutions to tackle the issues. Electric vehicles (EVs) offer significant environmental and economic
advantages against the conventional Internal Combustion Engine (ICE) vehicles. EVs are called mobility
loads and their connectivity to the utility grid for charging is unpredictable. The large penetration of such
unpredictable loads into the utility grid will lead to undesirable impacts on the utility service. This paper
highlights the importance of managing and optimizing the charging schedules. The optimization of EV
charging has diverse aspects, and the perspectives of EV charging differ among consumers, aggregators, and
utility services. Proper planning and management of EV charging is essential to achieve harmony amongst
these stakeholders. A comprehensive review on the objectives of electric vehicle charging optimization from
various perspectives is presented and discussed in this paper. EV charging optimization techniques including
mathematical programming, meta heuristics algorithms and machine learning techniques are explored. The
main objectives, constraints, strength, and limitations of different charging optimization techniques are
analyzed in detail. A brief discussion on the communication strategies for data exchange in EV charging
framework is presented and the need for a communication security constrained EV charging scheduling is
also emphasized.

INDEX TERMS Electric vehicles (EVs), charging scheduling, optimization, machine learning, metaheuris-
tics, renewable energy.

I. INTRODUCTION
Fossil fuels have been acting as the principal energy sources
since the industrial revolution. They have also played a major
role in improving the world economy. However, their contri-
bution to the undesirable climate changes in the world and
the anxiety towards their long-term availability have created
a need to focus on sustainable energy transition. To ensure
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leaving a healthy planet for the future generations to live on,
immediate actions should be taken to reduce carbon emis-
sions. The statistics for global CO2 emissions by various
sectors obtained from [1] shows that the transport sector
acts as the second largest contributor to the global carbon
emissions. Fig. 1 shows the comparison of global emission in
Mt CO2 by various sectors in the year 2021 and 2022 [1]. The
environmental degradation and climate changes due to these
emissions could be tackled by the move towards electrified
transportation [2]. International Energy Agency (IEA) has
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reported in its 2023 CO2 emissions report that the adoption of
EVs together with energy transition has prevented a threefold
increase in emissions growth since 2019 [3]. In recent years,
the popularity of Plug-in Electric Vehicles (PEVs) is steadily
rising and the usage of PEV is on a definite upswing. The
transportation landscape is rapidly transforming with the rise
of EVs, thus promising a cleaner, quieter, and more sustain-
able future. Based on the sales of EV in the first quarter of
2023, a projection was made indicating a 35% increase in
global EV sales in 2023 compared to 2022, with an expected
sale of 14 million EVs [4]. The actual EV sales in 2023 nearly
aligned with this prediction, reaching 13.6 million, leading
to 31% increase in sales of EV [5]. China leads the global
electric car market, with over half of all electric vehicles
on the roads worldwide now found in the country. In 2022,
China marked its total EV sales as around 5.9 million which
is double the number of global EV sales a couple of years
before in 2020 [4]. The steady increase in EV sales numbers
in recent years confirms their wide acceptance as the future
of transportation.

As EV usage is increasing rapidly, a thorough examination
of its impact on the grid becomes essential. Though there are
a lot of potential advantages of EV in terms of environmental
sustainability and energy efficiency, the integration of EVs in
large-scale brings various challenges, including grid strain,
limited charging structures, and managing energy demands.
As the EV sales increase, the energy demand for charging also
increases. This also could result in uncontrolled charging and
put a strain on the grid systems. These negative impact may
act as a barrier for future EV adoption. Grid integration of
EVs in large numbers requires costly upgrades to smart tech-
nologies. When many EVs charge at the same time without
planning which in other terms referred as an uncoordinated
EV charging creates unpredictable demand spikes, pushing
power grids beyond capacity. Uncoordinated EV charging
is dictated solely by customer preferences, so it creates
difficulties for grid operators and utilities in ensuring grid sta-
bility and electricity distribution. This leads to infrastructure
overload, voltage instability, and energy losses [6]. Certain
concerns also arise from the user’s standpoint which includes
range anxiety due to limited charging stations (CSs), longer
charging durations, and the lack of fast charging system to
match the recent advancement in EV technologies. These
issues highlight the need for smarter charging management
solutions.

Coordinated electric vehicle charging system with
efficient scheduling algorithms ensures optimum charg-
ing/discharging and presents a potential avenue for the
enhancement of grid utilization and the mitigation of net-
work expansion requirements [7]. Some of the important
constraints to be considered to develop an efficient schedul-
ing algorithm are vehicle configuration (such as vehicle
type, model, battery capacity etc.), vehicle profile (including
arrival and departure times, current state of charge (SOC) of
the battery, required charging energy etc.), grid and aggre-
gator parameters [8]. Optimization of the charging schedules

FIGURE 1. Comparison of global CO2 emission by various sectors in the
year 2021 and 2022.

is essential to effectively manage EV charging, considering
different objectives from the perspective of different stake-
holders. These diverse goals of optimization problems have
been solved in numerous research by employing different
optimization techniques.

This review paper analyzes various objectives of opti-
mization and the optimization techniques ranging from
the conventional mathematical optimization techniques, fol-
lowed by metaheuristic algorithms to the recently emerged
machine learning techniques. The major contributions of this
review paper are:

• Emphasizing the role of EVs in sustainable transporta-
tion, while highlighting their advantages over conven-
tional internal combustion engine vehicles by comparing
their well to wheel emissions and efficiency.

• Study of electric vehicles charging system and their core
elements, as well as the various charging levels available
along with their technical specifications.

• Reviewing the need for coordinated charging scheduling
of EV and a look into different coordinated charging
scheduling approaches, including centralized, decentral-
ized, and the emerging field of hierarchical scheduling.

• Exploring the necessity of EV charging scheduling
optimization from the viewpoint of different entities
participating in the EV charging structure.

• Surveying various optimization techniques employed to
solve different optimization problems with varying con-
straints.

• Analyzing the strategies for data exchange between var-
ious stakeholders in a smart charging network, assessing
their vulnerability to cyber-attacks and exploring meth-
ods for achieving secured communication within the
network.

II. EVS VS. ICE: WELL-TO-WHEEL ADVANTAGE
Battery Electric Vehicles (BEVs) or Plug-In Electric Vehicles
(PEVs) are considered zero emission vehicles. The fact is
that PEVs have no direct emissions i.e., PEVs produce zero
tailpipe emissions [9]. However, the tailpipe emission is just
one aspect, which means that EVs possess indirect carbon
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FIGURE 2. Fuel pathway from Well to Wheel.

emission. For example, EVs are mainly charged from utility
grids in which the source for production of electricity is fossil
fuel [10]. The fuel pathway for electricity generation has life
cycle emission at various stages through fuel extraction, refin-
ing, production, and transportation. But PEVs, and Plug-In
Hybrid Electric Vehicles (PHEVs) still exhibit reduced life
cycle emissions compared to the ICE vehicles.

The carbon emission of PEVs and ICEVs can be assessed
through a Well-to-Wheel (WTW) and Tank-to-Wheel (TTW)
analysis. The fuel pathway fromWell-to-Wheel for ICEV and
PEV is shown in Fig. 2. WTW analysis is divided further into
Well-to-Tank (WTT), and Tank-to-Wheels (TTW) analysis
[11]. In WTW assessment, the energy efficiency, and GHG
emissions at various stages during the entire fuel life cycle
are examined.

For ICEVs the WTW fuel pathway includes fuel extrac-
tion, oil refining, transportation to fuel station, refueling and
consumption. In the case of PEVs, fuel extraction, electricity
generation and transmission are considered as WTT pathway
and the TTW pathway stages are the electrical power trans-
mission stages at charging stations, vehicle charging, and
energy consumption.

A lifecycle emission assessment of ICEV and PEV is car-
ried out in [12]. The study considered the life cycle emission
of a vehicle in terms of emissions due to vehicle manu-
facturing, battery manufacturing, and emissions associated
with production of electricity and/or fuel, consumption, and
maintenance of the vehicles. From the study it is observed that
the emission of medium sized PEVs in Europe are 66%-69%
less than the comparable ICEVs. Likewise, the emission is

60%-68% lower than the ICEVs in the United States. In India
and China, the emission reduction is 37%–45%, and 19%–
34% respectively.

The WTT and TTW efficiency of ICEVs based on fuel
pathway are depicted in Fig. 3(a) and Fig. 3(b) respectively.
The efficiency of crude oil extraction is about 95% [13]. The
processing and transmission efficiency of fuel is 88% and
99% respectively. Thus, the overall WTT efficiency is around
82%. The TTW efficiency of ICEVs accounts for various
losses associated with vehicle operation. It mainly includes
engine losses of around 68-72%, and drivetrain losses of 3-
5%. The parasitic losses of ICEVs are between 4-6%, and
the losses due to auxiliary electricity services accounts to 0-
2% [14]. Therefore, the TTW efficiency of gasoline powered
ICEVs are from 16% to 25%. Thus, the Well-to-Wheel effi-
ciency of gasoline ICEV is calculated as only 13-20%.

The power generation, transmission and the charging effi-
ciency determine the WTT efficiency of PEVs. The power
generation efficiency using fossil fuels is around 50% and
the transmission efficiency is 92% [13]. While accounting for
the fuel extraction efficiency of 95%, the WTT efficiency of
EV is approximately 44%. For TTW efficiency assessment of
EVs, the losses occur between charging to wheel are consid-
ered. The charging losses are assumed to be nearly 10%. The
drivetrain losses are 18%, power train cooling and steering
loss of 3%. The auxiliary electricity use losses ranges from 0-
4%. Thus, the TTW power conversion efficiency of EVs lies
in the range of 65–69%. Another important feature of EVs
is regenerative braking where the power is generated and fed
back to the tank during braking.While taking the regenerative
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FIGURE 3. (a). WTT efficiency of ICEV. (b). TTW efficiency of ICEV.

braking efficiency of 22% into account, power conversion
from tank(battery)-to-wheels in an EV throughout a drive
cycle can vary between approximately 87% and 91% [14].
Thus, the overall WTW efficiency of EV falls between 30%
and 40%. The WTT and TTW efficiency of EVs based on
the fuel pathway is shown in Fig. 4(a) and 4(b) respectively.
In Fig. 4(b), the higher range in the calculated efficien-
cies with and without regenerative breaking respectively are
shown as the range of TTW efficiency. The losses shown
in Fig. 3(a) and Fig. 4(a) are derived from the efficiency
at each stages in [13] which comprehensively analyses the
WTW, TTW efficiency at various stages. The methodology
and assumptions made for the calculation ofWTW, and TTW
efficiency are described in [13].
From the above discussions, it is evident that EVs are

more energy efficient than ICEVs. The overall WTW effi-
ciency of EVs is at least 17% higher than the comparable
ICEVs even with fossil fuel as a source of electricity.
Charging EVs from the stations integrated with renewable
energy system (RES) could further increase the overall WTW
efficiency [15].

III. ELECTRIC VEHICLE CHARGING
The impact of PEV charging on distribution grids
under various conditions has been investigated in sev-
eral studies, including diverse charging strategies and
operational settings. The following subsections briefly dis-
cuss the EV charging system and different EV charging
levels.

A. ELECTRIC VEHICLE CHARGING SYSTEM
An EV charging system is a network of components that
collaborate to recharge an EV’s battery. The core elements
of an EV charging system include:

i. Power source: This supplies the energy required for
charging the EV. The source can either be the grid, RES,
or a combination of both.

ii. Electric vehicle supply equipment (EVSE) or charging
station: This is the physical unit where the EV connects
for charging.

iii. Aggregator or energymanagement system (EMS): This
crucial component manages a substantial fleet of EVs,
controlling their charging and discharging to maintain
desired grid frequency [16].

iv. Communication protocols and user interface: These
elements enable communication between the EVSE
and EV, electric vehicle charging system and
users [17], [18].

B. EV CHARGING LEVELS
EV charging includes different levels, each offering distinct
charging speed and power outputs [19]. These levels dif-
fer in voltage, application, and cost. Table 1 represents the
EV Charging level [20]. Level 1 (L1) and level 2 (L2) are
Alternating Current (AC) charging, typically used for home
and/or commercial charging stations. Level 1 utilizes readily
available standard 120 VAC or 240 VAC household outlets,
but delivers limited power, adding only 15-20 kms of range
for one hour of charging. L1 charging is the slowest among
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FIGURE 4. (a). WTT efficiency of EV. (b). TTW efficiency of EV.

all EV charging levels. Level 2 charging utilizes a 3 phase,
415 V supply system, and it necessitates an EVSE or a
designated charging station and is frequently encountered in
residential areas, workplaces, and public charging stations.
It provides a range of 20 to 130 kms per hour of charging [21].
Utilizing DC fast charging, Level 3 (L3) offers the most
rapid charging solution for electric vehicles. It is primarily
found at public charging stations situated along highways and
main travel corridors and is generally the most expensive but
fastest charging option. Electric vehicles (EVs) have built-in
chargers with AC-DC converters that convert grid power to
DC for the battery. These are called onboard chargers. Level
1 and Level 2 chargers with AC power, charge the EV battery
via onboard charger. In contrast, Level 3 chargers, which are
also called off-board chargers, have the AC-DC converter
located off-board, e.g. inside the charging station itself. So,
they bypass the onboard charger and deliver high-voltage
DC directly to the battery via the EV’s Battery Management
System (BMS) [22]. This enables significantly higher charge
rates, with charger output power ranging up to 400 kW and
with voltages ranging from 200-1000 V. The charging voltage
may vary depending upon the type of charger used. Newer
EVs with high-voltage batteries are particularly well-suited
for this efficient charging method. It offers a recharge rate

TABLE 1. Charging levels of electric vehicles.

of 5 to 32 kilometers of range per minute [21], significantly
reducing charging times.

It is important to note that setting up an Electric Vehi-
cle Charging Station (EVCS) involves various stakeholders
including investors, operators, developers, utility systems,
and several other government agencies. From initial planning
to the operation, a rigorous process is involved. The grid fea-
sibility in the location, maximum possible loading capacity
are the key factors in identifying a suitable location for the
EVCS. The total electricity demand of the charging station is
amost crucial and challenging factor in the process. Likewise,
scaling up a CS is also challenging since it must go through
most of the processes involved at the initial set up. Other than
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TABLE 2. Specifications of few selected EVs in current market.

the financial constraints the grid constraints play a crucial
role in the scaling up process. Moreover, the regulations and
policies for setting up and scaling up the charging stations
are not in place in many countries which is another major
challenge for charge point operators.

Table 2 provides the specifications of some of the EVs in
the current market [23]. The details in Table 1 and 2 provide
insights about the power rating of different levels of EV
chargers as well as the energy consumption of different EVs.
From Table 2 it can be realized that most of the EVs charge
at the power rating of 11 kW (Level 2). Every EV can be
treated as equivalent to a residential load on the grid when it
is connected for charging at Level 2AC charging.Whenmany
EVs simultaneously connect to the grid for charging particu-
larly during the peak demand hours, the unforeseen surge in
demand could strain the grid and lead to issues such as voltage
drops or overloaded transformers. EVs are mobility loads and
their penetration to the grid is unpredictable. The intermittent
nature of EV charging could create significant changes on the
grid, if not managed effectively. This necessitates the need
for EV charging scheduling which becomes the core theme
of this review.

IV. EV CHARGE SCHEDULING
The huge adoption of electric vehicles could pose a challenge
to existing grid infrastructure if their charging is uncontrolled.
This unforeseen peak demand could lead to unpredictable
and significant strain on the network. Fig. 5 depicts some
of the various negative impacts caused by EV charging on
the existing grid structures. To address these challenges and
effectively reduce negative impacts on the distribution grid,
charging control management systems are crucial. These
systems schedule EV charging based on various factors and
thus optimize the charging process [24]. Based on the pres-
ence of management strategies, charging methods fall into
two categories namely the uncoordinated and coordinated
methods. Within coordinated EV scheduling, based on the
decision-making process, it is further classified as central-
ized, decentralized (or distributed), and hierarchical charging
techniques [25].

A. CENTRALIZED EV CHARGING
In centralized decision-making for EV charging, a sole entity,
such as an operator or aggregator, takes charge of control and

management. This entity collects data from both EVs and the
grid. Using this data, the aggregator solves an optimization
problem which is mostly a complex mathematical problem,
the ideal charging rate and optimal time for charging each
EV is determined [26]. The optimization process factors in
multiple parameters, including grid capacity constraints, real-
time electricity costs, and the specific charging needs of each
connected vehicle. The ultimate objective is to ensure opti-
mal power utilization while fulfilling the individual charging
requirements of all EVs. Once the optimal charging schedule
is established, the aggregator transmits it to the charging
station. The charging station would then direct each EV
connected to it, dictating the precise charging rate for their
vehicle and/or the time of charging according to the charging
schedule it received from the aggregator.

Centralized EV charging systems use various optimization
algorithms to achieve a diverse set of objectives. The role
of these optimization algorithms is crucial in maximizing
the profitability of aggregators while also ensuring efficient
utilization of the available network capacity. Centralized
control allows EVs to participate in the ancillary service
markets, offering services like voltage regulation, and fre-
quency control to the grid. Scalability poses a significant
obstacle for centralized approaches, particularly as the opti-
mization problem grows over longer planning timeframes
and with an increasing number of connected EVs. Conse-
quently, implementing centralized approaches may become
computationally infeasible due to the growing complexity
and time required for execution. A smart centralized schedul-
ing method is proposed in [27] which tackles a two-fold
optimization challenge namely minimizing charging costs
and maximizing user priorities for charging. The research
in [41], [63], [82], [92], and [109] which are later reviewed in
this paper make use of centralized charging approaches.

B. DECENTRALIZED EV CHARGING
In a decentralized or distributed charging system, each
EV operates independently and takes charge of calcu-
lating their own charging schedules [28]. This requires
EVs to gather information from the aggregator through
their connected charging stations. Additionally, decentralized
architecture often involves an iterative scheduling process.
EVs are required to share their calculated charging profiles
with the aggregator to update overall system information.
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FIGURE 5. Various impacts of EV charging on Grid.

Decentralized EV charging prioritizes flexibility and scalabil-
ity. Unlike centralized systems with a single decision-maker,
each EV operates independently. This distributed approach
allows the system to seamlessly adapt to a growing number of
EVs without burdening the charging network with excessive
processing demands. However, this decentralized approach
comes with limitations. Customers take ownership of their
charging decisions, determining the rate and duration based
on their individual needs. These individual decisions, while
solving a localized problem, may not always lead to the most
optimal charging strategy for the entire grid. This is especially
true when EVs lack complete information about the broader
grid conditions. Participation in ancillary services, which
offer grid stability functions like frequency regulation, is lim-
ited in this approach. While some services may be available,
their scope is often restricted. Additionally, as many EVs
attempt to charge concurrently during lower electricity rates,
decentralized system performance is minimized. A decen-
tralized method to optimize the EV charging costs based on
prices, while considering grid and battery health is proposed
in [29]. The decentralized control method in [30] schedules
EV charging to fill the low demand, off-peak hours while
meeting customer needs. Decentralized charging approaches
are also employed in [43] and [62], which are later reviewed
in this paper.

C. HIERARCHICAL CHARGING
Hierarchical Charging has recently gained attraction in EV
charging management scenario. It is a multi-layered EV
charging framework that includes multiple aggregators at
each level [25]. The aggregators located at each charging
station may be referred to as a Sub-Aggregator (SA). Each
sub-aggregator controls the group of EVs connected to it and
thus all the group of EVs connected to its SAmakes the lowest
level of the framework. The sub-aggregators are controlled
by a central aggregator (CA). The central aggregator may
be controlled by the Distribution Network Operator (DNO),

which would then occupy the highest layer of the hierarchy.
In some cases, the SAs may be directly under the control of
the DNO. The sub-aggregators are responsible for collecting
data from the EVs such as their charging requirements and
vehicle profile and they transfer it to their CA. Considering
the customer charging needs as well as local transformer
capacity limitations, once CAs determine their allowable
charging load limits, an optimization model is executed either
at the DNO level or in the CA level itself. This model gener-
ates an ideal charging curve for each aggregator, outlining the
optimal power distribution throughout the charging period.
The sub-aggregator is responsible for managing the operation
of chargers, and the charging power of individual charging
points in the charging station. Additionally, SAs are obligated
to adhere to the charging regulation directives set forth by the
central aggregator. A type of hierarchical EV charging archi-
tecture is shown in Fig. 6. However, there are several other
variations in the hierarchy depending on the number of levels
and type of control. To address the optimal charging coor-
dination problem, hierarchical distributed approach which
utilizes the exchange problem, is presented in [31]. Alternat-
ing Direction Method of Multipliers (ADMM) technique is
adopted to solve the problem. This approach schedules the
charging of electric vehicles in a privacy preserved way that
reduces the cost and doesn’t overload the power grid. ADMM
was chosen because it can handle the challenges of charging
multiple EVs at the same time. The outcomes demonstrated
that the suggested approach led to a considerable reduction
in the number of iterations when compared to traditional
charging methods. A study in [32] proposes a mathematical
model for a three-level system that coordinates EV charging
for the vertically regulated electricity market in China. This
hierarchical approach schedules EV charging at stations using
a combination of pre-planned and real-time adjustments.
The model incorporates a real-time, low-complexity heuristic
algorithm to manage uncertainties related to EV mobility
patterns. This combined approach optimizes both the overall
electricity system load profile and charging costs, while still
meeting customer needs for charging.

V. OPTIMIZATION OF EV CHARGE SCHEDULING
EV charge scheduling optimization is the method to find
the most efficient way to schedule EV charging, given a
set of limitations. Optimization algorithms are implemented
to achieve one or more well-defined objectives during the
electric vehicle charging process. Effective optimization for
EV charging scheduling hinges on understanding the prob-
lem from different perspectives. Here, we categorize these
problems into three classes based on the objectives of the
stakeholders involved namely, power grid operators, aggrega-
tors, and EV owners. This classification is crucial because it
considers the unique goals of each stakeholder. In the electric-
ity sector, participants often have distinct legal and functional
roles, leading to diverse objectives within the larger system.
The classification of the objectives of EV charge scheduling
from different perspectives is presented in Table 3.
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FIGURE 6. Hierarchical EV charging control architecture.

A. POWER GRID ORIENTED OBJECTIVES
EV charging introduces new challenges for the power grid
like managing active power losses, minimizing voltage devi-
ation and load variance. They also deal with economic
constraints like reducing the operating cost and increasing
grid operator’s revenue for those distribution grids managed
by DNOs [33]. Multiple EVs charging at a time can trigger
surges in demand, causing voltage dips and increased resis-
tive losses in power lines. These losses rise with the square
of the current, so even small voltage fluctuations during
peak charging can be significant. Additionally, EV chargers
without proper power factor correction can inject reac-
tive power, further reducing grid efficiency. The combined
effects of rising power demand, voltage instability, over-
loaded transformers, and power factor issues all contribute to
substantial active power losses during EV charging. To mit-
igate these challenges and ensure grid stability, numerous
optimization strategies have been proposed. A coordinated
charging strategy to optimize the power usage for PHEVs
is proposed in [34]. This method aims to minimize both
power losses in the grid and maximize its overall load fac-
tor. Since accurately predicting household electricity loads
is challenging, the approach employs stochastic program-
ming, a technique suitable for handling uncertainty and
optimal charging profiles are achievedwith twomathematical
modelling techniques namely, quadratic programming and
dynamic programming. A study in [35] identified a critical
voltage drop at feeder ends when the EV penetration rate
surpassed 50%. The findings suggest that exceeding this
threshold would cause voltage levels to breach the standard
tolerance of 7%. However, the study also demonstrates that
implementing a smart charging strategy effectively mitigates
this issue, ensuring all voltages remain within acceptable
limits.

The study in [36] proposes a coordinated charging schedul-
ing strategy which tackles two key challenges: the peak-to-
valley load adjustment and charging cost minimization. This
method achieves these goals by shifting charging patterns.
The coordinated scheduling model strategically transfers this
charging load to periods with lower electricity prices and
lower base load, effectively reducing both total charging
costs and the peak-valley difference. Building on economic
and environmental considerations, the work in [37] explored
charging and discharging schedules of EVs within exist-
ing distribution networks. It proposes a complementary
multi-objective management model for scheduling the PEVs
in a smart distribution network. This model prioritizes min-
imization of operating costs and greenhouse gas emissions.
Both [38] and [39] discussed the integration of RES into the
power grid, thus minimizing the reliance on grid electricity
during peak hours for EV charging and consequently reduc-
ing overall charging costs.

B. AGGREGATOR ORIENTED OBJECTIVES
Aggregators are entities that manage one or more charg-
ing stations at various sites. They procure electricity from
the grid or an energy provider to fulfill their customers’
charging needs. Research on EV charging scheduling issues
from the aggregator’s standpoint emphasizes minimizing
electricity costs, maximizing profits, optimizing capacity, and
enhancing service quality while adhering to grid constraints.
An auction-based coordinated charging heuristic for EV
scheduling at the aggregator level is explained in [40]. This
method empowers aggregators to perform direct energy trad-
ing between each other, reducing their reliance on the grid for
energy procurement. This approach helps mitigate the impact
of forecasting errors, demonstrably lowering energy costs
for aggregators and consequently maximizing their profits.
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An optimal discharging schedules for electric vehicles parked
privately, considering both their movement patterns and park-
ing behavior is explored in [41]. The authors propose an
effective recharge scheduling scheme for parking areas by
categorizing EVs into regular and irregular groups. This
scheme factors in EVs’ entry and exit times, state of charge
(SoC), and travel range to determine the ideal charging spot,
time, and amount of energy delivered. The model aims to
achieve a dual optimization of maximizing the total revenue
for the aggregator while also maximizing the number of
EVs served by the aggregator. Building on cost minimization
from aggregator perspective, [42] proposed an optimal online
scheduling method for price-responsive, early charging adap-
tive control. Analyzing historical EV mobility data, a control
factor for the early charging adaptive control was derived
offline, which was then utilized to optimize early charging
decisions and enhance the online scheduling performance.
This approach involves a two-tiered control structure with a
base-level and upper-level controller utilized by the parking
operators and the aggregators respectively to schedule EV
charging. The study highlights the method’s advantages in
achieving optimal cost reduction, maximizing power capacity
utilization and task completion efficiency, and improving
profitability of the aggregator.

C. EV USER ORIENTED OBJECTIVES
Customer satisfaction is a crucial factor for charging service
management systems. EV users who experience inconve-
nience during charging are unlikely to return. Recogniz-
ing this, research is increasingly focused on EV charging
scheduling that prioritizes user needs. Several papers pro-
posed user-centric optimization objectives, including min-
imizing charging losses, ensuring desired SoC, reducing
charging costs, and mitigating battery degradation. Using a
multi-agent system framework, [43] proposed a decentralized
approach for power losses minimization due to EV charging

while adhering to system constraints. The primary focus lies
in addressing charging power loss relative to battery’s internal
resistance, which holds significant potential for stimulating
user participation in the charging process. In [44], a smart
charging algorithm based on an integrated data-driven regres-
sion model is proposed. This approach not only optimizes
charging efficiency but also enhances EV user satisfaction.
The algorithm maximizes the average SoC for multiple EVs
charging concurrently at a location. This is achieved by
employing a methodology for data pre-processing and train-
ing a regression model to predict battery charge profiles
which succeeds in achieving a higher average final SoC for
the entire EVfleet. Considering diverse user preferences, [45]
explored coordinated EV charging at stations by proposing
a hybrid strategy, combining centralized and decentralized
control. The centralized layer utilizes an offline scheduling
approach to minimize energy costs while fulfilling EV charg-
ing needs. The decentralized part of the proposed algorithm
is used to model the communication between the EVs and
system controller in a game-based approach so that the EVs
are enabled to attain greater benefits. The authors in [46]
proposed an intelligent heuristic algorithm for optimizing the
charging schedules of PEVs encompassing home and public
charging infrastructure. The algorithm prioritizes charging
cost minimization of PEVs by introducing an interrupted
charging strategy. A practical charging scheme that considers
battery degradation during EV charging is explained in [47].
A cost model to capture battery degradation is proposed,
which is integrated into an optimal scheduling scheme that
makes of a Vacant Resource Allocation algorithm, to mini-
mize total battery degradation cost.

VI. OPTIMIZATION TECHNIQUES FOR EV CHARGE
SCHEDULING
EV charging optimization involves multiple steps, start-
ing with formulating mathematical models for the various

TABLE 3. Classification of the objectives of EV charging scheduling.
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constraints to be optimized. In the domain of optimization,
a wide range of techniques are available for developing,
optimizing, and validating the EV charging models. While
a diverse array of optimization techniques exists, each pos-
sesses unique strengths and weaknesses, thus making them
suitable depending on the specific challenge at hand. The
selection of the most appropriate technique is very important
to achieve successful problem resolution. Various techniques
used for solving optimization problems under the realm of EV
charging scheduling are broadly classified as (i) Mathemat-
ical Optimization techniques, (ii) Metaheuristic Algorithm
based techniques, (iii) Machine Learning techniques.

A. MATHEMATICAL OPTIMIZATION TECHNIQUES
Many studies address the electric vehicle charging scheduling
challenge by formulating it as a mathematical programming
problem. These studies often utilize conventional mathemat-
ical optimization techniques due to their ease of implemen-
tation and minimal computational burden. However, these
techniques may struggle with complex, multi-objective sce-
narios involving numerous decision variables and intricate
non-linear constraints. Common examples of conventional
mathematical optimization methods applied to scheduling
problems of EV integrated to grid include Linear Program-
ming (LP) [48], [49], [50], [51], [52], [53], Non-Linear
Programming (NLP) [54], [55], [56], [57], [58], Quadratic
Programming (QP) [59], [60], [61], [62], Mixed-Integer Pro-
gramming (MIP) [63], [64], [65], [66], [67], [68], [69], [70],
[71], and Dynamic Programming (DP) [72], [73], [74], [75],
[76].

1) LINEAR PROGRAMMING (LP)
Linear programming (LP) represents a well-established opti-
mization methodology, employing the solution of a defined
mathematical function to identify the optimal outcome within
a framework of defined constraints. This approach is par-
ticularly suited to problems involving linear relationships
and resource limitations. However, with increasing problem
dimensionality, linear programming algorithms experience
computational limitations, rendering them unsuitable for
timely solution. Different optimization methods utilize lin-
ear programming to aim for the establishment of a highly
effective system. Using linear programming, [48] proposed
optimal charging strategies for mitigating grid congestion
and minimizing costs under dynamic tariffs, employing real-
time control. The study focuses on two charging scenarios
validated through experiments with an actual electric vehicle,
comparing results to the default charging method. However,
this study does not encompass fast and public charging.
In study [49], a dynamic and clustered linear program-
ming method was applied to a fleet of electric vehicles
to promote a coordinated charging pattern for EVs and to
achieve a load scheduling pattern that minimizes the cost
of charging. To optimize energy usage of electric vehicles
connected in Smart Buildings incorporated with PV arrays,

[50] introduced a Linear programming model with Artificial
Neural Network (ANN) based predictions to obtain the opti-
mum charging/discharging schedule for EVs. However, the
model assumed a fixed driving pattern, neglecting its uncer-
tainty, and concluded limited cost savings under time of use
pricing schemes. EV charging schedules from the customer’s
perspective, considering both planned and unplanned charg-
ing needs is investigated in [51]. It proposes an LP approach
to minimize charging costs under real-time pricing, balanc-
ing customer savings with the aggregator’s revenue. Two
dynamic LP solutions are offered, one for new arrivals and
one for rescheduling all connected EVs. To optimize energy
costs and reduce peak demand, researchers in [52] applied
LP to create a hierarchical coordinated system involving
the electricity provider and EV aggregators. This approach
promotes a stable and secure power distribution network.
Reference [53] utilized LP to minimize EV energy costs,
considering factors like day-ahead electricity prices, battery
degradation costs, SoC limits, maximum power, and distri-
bution feeder capacity. The work incorporates uncertainty
through Monte Carlo simulations to account for variability
in these factors.

2) NON-LINEAR PROGRAMMING (NLP)
Nonlinear programming (NLP) is well-suited for addressing
optimization problems where the objective function or con-
straints exhibit non-linear characteristics [54]. An illustrative
example is the minimization of load deviation formulated
quadratically for optimizing electric vehicle charging sched-
ules. NLP methods excel at efficiently solving large-scale
problems with relatively few local minima. However, they
tend to find a good solution quickly and may not explore
the entire solution space, potentially missing the absolute
best outcome. Nonlinear programming is used to create the
upper-level model of the two-stage hierarchical decompo-
sition approach proposed in [55] that designs the charging
strategies, which is followed by the lower level formulated by
a branch and bound algorithm. The lower-level is focused on
implementing dispatching instructions provided by the upper-
level decision-maker and the aim is to minimize the total cost
of system operation. A non-linear optimization technique is
utilized in the study presented in [56] to establish an optimal
power flow model for coordinated control of Plug-in Hybrid
EVs and On-Load Tap Changer (OLTC) Optimizing the
operation of the distribution network by minimizing power
losses in the main objective of this study. In the study, [57]
proposed a way to optimize charging schedules for overnight
EV bus fleets using NLP. The primary goal is the reduction of
expenses linked to battery degradation, but it doesn’t factor in
peak and valley electricity prices. Reference [58] introduced
a smart system for managing electric vehicles in a parking
lot. This innovative system lets EVs charge and sell energy
back to the grid. It uses a nonlinear programming solver and
considers factors like owners’ desired prices, battery levels,
charging time, and battery age to optimize the scheduling.
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3) QUADRATIC PROGRAMMING (QP)
Quadratic Programming falls under the umbrella of nonlin-
ear programming, distinguished by its quadratic objective
function and linear constraints [54]. Quadratic problems can
either be solved directly or can be broken down into smaller
problems (sub-problems) for a more efficient solution. For
a residential area with 63 households, quadratic program-
ming is employed in [59] for EV charging scheduling in
a residential parking EV charging station. Three QP-based
algorithms are explored, namely the local, iterative global,
and global algorithms, each assuming varying degrees of
knowledge about components within the grid. By implement-
ing a controlled charging, the proposed approach effectively
reduces the demand variability, peak load, and voltage devi-
ations of the grid. Reference [60] proposed an optimized
method based on quadratic rotated conic programming for
balancing power in distribution systems that include both EV
charging, and distributed generation (DG). The goal is tomin-
imize the operating costs while considering the uncertainties
in the output power of distribution systems and the EVs’
charging behavior. To optimize charging and discharging of
PHEVs within a vehicle-to-grid (V2G) system, a quadratic
programming model is used in [61] The objective of pro-
posed algorithm is to manage peak loads in the power grid
and stabilize the system. The article [62] presented a dis-
tributed algorithm for optimizing charging and discharging
schedules of V2G-equipped EVs, considering both battery
efficiency and varying energy prices using a mixed-integer
quadratic programming (MIQP) model for efficient resource
utilization.

4) MIXED INTEGER PROGRAMMING (MIP)
Mixed-integer programming (MIP) is a widely used tech-
nique to tackle problems where some variables take whole
number (integer) values. Notably, MIP can handle prob-
lems where the objective function or constraints involve
piecewise linear functions, meaning they consist of multiple
linear segments. The specific segment used in the calculation
is determined by the chosen integer values. The research
in [63] introduced a novel energy scheduling system that
allows bidirectional energy flow between the EVs and the
power grid (V2G), as well as energy sharing between EVs
(V2V). The authors formulated the energy transfer optimiza-
tion problem using mixed-integer programming and solved
it offline to maximize customer satisfaction and energy uti-
lization. A comparison of offline and online algorithms for
EV charging at a single station is presented in [64], for-
mulating the cost-minimization problem as a mixed integer
program. In [65], researchers classify EV drivers as premium,
conservative, and green based on their charging habits using
MIP and allocate separate charging schemes for each type to
optimize the system. The proposed method aims to reduce
energy costs for charging stations with solar photovoltaic
(PV) power integration and compensate the impact of inter-
mittent nature of PV generation. The model proposed in [66]

helps customers make informed decisions about solar panels,
battery storage, and modes of EV charging. The model used
mixed integer programming for optimization which considers
net metering policies, time-of-use pricing, and smart meter
data. A case study in [67] demonstrated solving an electric
vehicle routing and charging optimization problem by break-
ing down the original mixed-integer program into two simpler
linear programming problems. The work presented in [68]
analyzes the impact of different EV charging strategies on a
power system under various scenarios. A Mixed Integer Lin-
ear Programming (MILP) framework is adopted in the study.
To optimize the EV integration into the Distribution Systems
(DSs), [69] introduced a novel MILP model that facilitates
the joint expansion planning of both the DS and EVCSs,
accounting for uncertainties in both the existing grid and
future EV demand. A mixed-integer non-linear programming
(MINLP) approach is used in [70] to identify ideal locations
and optimal charging capabilities for fast charging stations
and to minimize the cost of EV charging. A long-term,
MINLP model for optimizing the sizing and allocation of
wireless charging infrastructure for EVs, considering power
systems, losses, routing, and traffic is presented in [71].

5) DYNAMIC PROGRAMMING (DP)
Dynamic Programming (DP) is a powerful technique for
solving time-varying optimization problems. It achieves this
by working backward from the end, effectively breaking them
down into smaller, more manageable subproblems, making it
ideal for scenarios where conditions change over time [54].
This ability has been leveraged to optimize charging sched-
ules for PEVs, where multiple factors like grid constraints,
device characteristics (PEV battery), and user preferences
need to be considered. Reference [72] employed stochas-
tic dynamic programming (SDP) for a dynamic pricing
approach, helping charging providers to balance compet-
ing objectives, such as enhancing profitability, customer
satisfaction, and minimizing grid impact, amidst inherent
uncertainties. Reference [73] proposed the utilization of a
stochastic dynamic programming approach to minimize the
operational expenses of CSs, mitigate the influence of CSs on
the grid, and optimize the schedule for power dispatch. Like
this, [74] also developed a dynamic linear program-based
approach for automatic demand response in charging stations
with integrated PV systems to achieve optimized charg-
ing decisions based on real-time electricity prices. In [75],
dynamic programming is utilized to optimize large-scale EV
charging in a power grid, with the integration of RES and
considering electricity tariff. The formulated program is then
characterized as a Nodal Multi Target and Soft Actor Critic
framework to reduce problem complexity by addressing state
variable dimensionality. While dynamic programming offers
flexibility in power system scheduling due to its ability to
handle time-varying parameters and strategy periods, it suf-
fers from the ‘curse of dimensionality’ [76]. This refers
to the increase in computational and storage costs as the
number of variables (dimensions) increases. This limitation
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makes DP more suitable for low-dimensional problems with
time-varying variables, such as scheduling PEV charging in
smaller systems.

B. METAHEURISTIC ALGORITHM (MA) BASED
TECHNIQUES
Metaheuristic algorithms (MAs) are a category of optimiza-
tion algorithms inspired by various natural phenomena, such
as the evolutionary process found in biology, the collective
behavior observed in swarms, and the underlying principles
of physics. MAs work by maintaining a population of ran-
domly generated solutions and iteratively improving them
using heuristic techniques. Though they are not guaranteed
to find an absolute optimal solution, their approach makes
them well-suited for tackling non-linear, non-convex, and
high-dimensional problems [77]. So, metaheuristics excel at
optimizing complex EV charging problems, which involve
extensive computations, require precise solutions within
high-dimensional spaces, and are subject to numerous con-
straints. Candidate solutions in these algorithms represent
the individual elements within the search space that repre-
sent potential solutions to the optimization problem being
addressed. MAs can be classified as, Single Solution Based
Metaheuristic Algorithms (SSBMA) and Population Based
Metaheuristic Algorithms (PBMA) [78].

1) SINGLE SOLUTION-BASED METAHEURISTIC ALGORITHMS
(SSBMA)
These algorithms employ a single candidate solution, iter-
atively improving it using local search techniques in its
neighborhood. Though they have an advantage of increased
efficiency and speed, this approach has a risk of missing the
global optimum by getting trapped in local optima [79]. The
risk of local optima can be mitigated by parameter tuning,
by increasing randomness in exploration of the search space
and by introducing diversity in exploring different regions
of the search space. Simulated Annealing Algorithm (SAA)
[80], [81], [82], [83], Hill Climbing (HC) [84], and Tabu
Search (TS) [85] are some of the most common SSBM
algorithms.

2) POPULATION BASED METAHEURISTIC ALGORITHMS
(PBMA)
Population-based algorithms work with a set of diverse can-
didate solutions and each solution represents a single point
in the search space. This helps them avoid getting trapped
in local optima. The multiple set of solutions allow them to
explore multiple regions of the search space simultaneously
and each solution investigates a different solution to the
optimization problem [78]. Such algorithms move towards
more suitable areas of the search space in every iteration
with the help of competition and collaboration among the
set of solutions. This collaborative exploration helps them to
overcome the disadvantages of single-solution approaches.

Some of the popular PBMA algorithms are Genetic
Algorithm (GA) [86], [87], [88], [89], [90], [91], Differential
Evolutionary Algorithm (DE) [92], Harmony search [93],
[94], Ant Colony Optimization (ACO) [95], [96], Artificial
Bee Colony Algorithm (ABC) [97], Particle Swarm Opti-
mization (PSO) [98], [99], [100], [101], [102], Grey Wolf
Optimizer (GWO) [103], [104], Firefly Algorithm [105],
Cuckoo Optimization Algorithm (COA) [106], Gravitational
Search Algorithm (GSA) [107], Artificial Hummingbird
Algorithm (AHA) [108],, Whale Optimization Algorithm
(WOA) [109], Grasshopper Optimization Algorithm (GOA)
[110], Artificial Fish SwarmAlgorithm (AFS) [111], Chicken
Swarm Optimization (CSO) [112], Teaching Learning-Based
Optimization Algorithm (TLBO) [113], Bald Eagle Search
Algorithm (BESA) [114], Bat Algorithm (BA) [115], Virus
Colony Search (VCS) Algorithm [116], Fruit fly Optimiza-
tion Algorithm (FOA) [117], flower pollination algorithm
(FPA) [118], and Binary Lightning Search Algorithm
(BLSA) [119]. Among all different metaheuristic algorithms,
GA and PSO are most used techniques for solving problems
related to EV charging infrastructure.

Table 4 provides a list of several Metaheuristic Algorithms
which are successfully applied to solve EV charge scheduling
problems along with their optimization objectives. The hier-
archal classification of the metaheuristic algorithms applied
for EV charge scheduling are presented in Fig. 7.

a: GENETIC ALGORITHM (GA)
Genetic Algorithm represents a population-based optimiza-
tion methodology, employing the principles of natural selec-
tion to identify the optimal solution within a set of potential
candidates. Each solution, acting like a chromosome, is eval-
uated based on a specific goal (objective function). Through
processes that mimic the selection, crossover, and muta-
tion, GA iteratively improves the solutions, leading towards
increasingly optimal outcomes. GA based algorithms are
powerful tools for scheduling problems. They can handle
enormous search spaces and incorporate expert knowledge
from the specific scheduling domain. This makes them highly
competitive with even the most efficient scheduling methods.
A real coded genetic algorithm-based optimization model is
proposed in [86]. The focus of algorithm is to manage energy
use and scheduling of EV for charging in a smart home with a
hybrid energy system. Building on the concept of integrating
vehicular networks with the smart grid, [87] introduces an
EV charging scheduler which is a hybrid approach, com-
bining the speed of a time-efficient heuristic methods with
the optimization capabilities of genetic algorithm (GA). The
core functionality of the scheduler involves two steps. First is
initial population selection which is done by a fast heuristic
method which generates a starting set of potential charging
schedules, and the next step is to apply genetic algorithm
to further refine the initial schedule and identify the most
optimal solution for minimizing load. This approach allows
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the scheduler to be both efficient in processing requests and
effective in optimizing EV charging station management.
In [88], the charging station location optimization is done
using GA. The objective function and the constraints are
determined using a MILP model which is followed by the
application of an improved GA for optimal location selection
for EVCS. Research in [89] proposes a GA-based strategy
to optimize EV charging schedules. The main focus of this
research is to flatten the power consumption profile in a
residential distribution system by introducing valley filling
and peak shaving with G2V/V2G technologies. It considers
constraints like voltage limits, transformer load, availability
of parking, and arrival/departure patterns. Their success-
ful test on a low-voltage Spanish distribution system with
100 customers demonstrates the effectiveness of GAs for
managing EV charging and grid constraints. The study pre-
sented in [90] shows that GA offers a good convergence when
solving the multi-objective optimization model of EV charg-
ing network. A planning model for EV charging network that
considers both the optimization of service capacity and the
network losses is proposed and discussed. The fuzzification
of the optimization objectives is done before applying genetic
algorithm. The research in [91] utilizes a two-level program-
ming model combined with a genetic algorithm to address a
scenario where a workplace has a limited number of chargers
and an uncontrolled EV charging, aiming to minimize opera-
tional costs.

b: PARTICLE SWARM OPTIMIZATION (PSO)
The PSO algorithm is inspired by the flocking behavior of
birds and tackles problems like a collaborative search. Each
bird, representing a potential solution, explores a vast search
space and learns from its neighbors’ successes. Particles
move based on their own best discoveries or the personal best
and the best findings of the entire group or the global best
solution. This social learning helps them gradually converge
on the optimal solution. The algorithm continuously updates
each particle’s position using dynamic velocity adjustments,
influenced by information from both global and local best
solutions. PSO has emerged as a prominent technique for
developing electric vehicle charging schedules. Compared
to established approaches like GA and other metaheuristic
methods, PSO frequently achieves satisfactory solutions with
lower computational demands. Consequently, PSO offers an
efficient path to attaining computationally tractable solu-
tions, outperforming methods that may incur unpredictable
computation times or struggle with a high number of vari-
ables. Different methods for optimizing DER scheduling,
considering both network limitations and cost efficiency
were analyzed in [98] by comparing three variations of PSO
algorithm namely standard PSO, Evolutionary PSO (EPSO)
andNew PSO (NPSO). This research focused on a large-scale
case study for day-ahead scheduling. The analysis revealed
that EPSO achieved superior solution quality while still main-
taining reasonable execution time. This suggests that EPSO
could be a valuable tool for optimizing DER scheduling in

practical applications. PSO is employed in [99] to identify
the most economical dispatch solution while simultaneously
integrating data from RESs such as wind speed, solar irradi-
ation, and power generated by RES. It proposed an approach
that exploits electric vehicles to act as distributed energy
storage devices within the smart grid. An energy storage
model that incorporates network-connected vehicles for eco-
nomic load dispatch within the smart grid and it optimizes
a multi-objective function, considering both cost and emis-
sion reduction is introduced. Research in [100] proposed an
improved PSO algorithm called IPSO. This enhanced PSO
leverages principles from GA and SAA to optimize the EV
charge scheduling. Simulation results demonstrate that the
proposed IPSO strategy effectively reduces operational costs
for the power grid while ensuring that EV owners can meet
their driving needs. Additionally, the study verifies that IPSO
offers improved performance in terms of finding optimal
solutions and its ability to explore a broader range of possi-
bilities. The optimization problem of V2G in a complex unit
commitment setting has been effectively addressed in [101]
through a well-balanced hybrid PSO technique, capable of
managing variables represented in both binary and integer
formats. This study includes V2G technology, where EVs
essentially act as small, mobile power plants. Binary PSO
allows for smart control of power generation from RESs
to find a balance between reducing emissions and keeping
costs low. A two-layer optimization approach for the EV’s
load demand using a combination of Evolution Strategy and
Particle Swarm Optimization (ESPSO) algorithms is pro-
posed in [102]. This approach helps to manage the residential
distribution grids by providing ancillary services, and ulti-
mately reducing peak electricity demand. Additionally, the
study utilizes a data-driven fuzzy logic model to account
for the unpredictable nature of EV charging behavior, which
includes factors like entry and exit time, and daily mileage.

C. MACHINE LEARNING TECHNIQUES
Machine learning (ML) is a subdivision in the domain of
artificial intelligence (AI). It aims to develop analytical mod-
els by employing data-driven learning methods. Machine
learning trains algorithms to recognize patterns and rela-
tionships between the data. The patterns thus identified
can then be used for predictions or making decisions on
new data, aiming to achieve the best results within a spe-
cific context. Machine learning algorithms usually exhibit a
rapid improvement in accuracy and efficiency at first when
applied to real-world problems that involve diverse datasets.
Then as more data is fed into the system, the accuracy of
prediction and decision making gets gradually enhanced.
Machine learning encompasses three main categories namely
supervised learning, unsupervised learning, and reinforce-
ment learning methods, each of which is appropriate for
specific investigation purposes [120]. Machine learning has
emerged as a prominent force in tackling various aspects
of infrastructure planning EV charging stations, from place-
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TABLE 4. Metaheuristic algorithms applied in EV scheduling.

ment of charging station and prediction of demand to charge
scheduling. Its applications extend to service operations plan-
ning and optimization, further enhancing efficiency in this
domain. To address challenges in EV charging, machine
learning models are trained using extensive real-world data,
including vehicle load [121], [122], price of electricity [123],
charging duration [124], battery SoC [125], infrastructure
availability [126], weather information [127] and other rel-
evant factors. These models then generate forecasts that are

used as inputs for optimization models, ultimately improving
the efficiency and effectiveness of charge scheduling. Clas-
sification of the Machine learning algorithms used for EV
charge scheduling problems is shown in Fig. 8.

1) SUPERVISED LEARNING METHODS
In supervised learning approach, models are trained on
datasets where each data point has a corresponding label,
acting as a guide for the model’s predictions. These labels
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FIGURE 7. Classification of metaheuristics algorithms applied for EV charge scheduling.

can be categories or numerical values. The relationship
between the input (features) and the desired output (targets)
is learned by the model during the training phase. Supervised
learning tackles two main problem types: classification and
regression [128]. Classification algorithms utilize input data
to categorize new data points into predefined classes. Sup-
port Vector machine (SVM), Naïve Bayes and K-Nearest
Neighbors (KNN) algorithm are some of the algorithms
used for classification purposes. Regression analysis aims
to predict the continuous value of a target variable based on
the observed values of one or more independent variables.
This involves finding a mathematical function that maps the
relationship between the input variables and the continuous
output variable. Linear Regression (LR) and Support Vector
Regression (SVR) can be used for regression analysis. Artifi-
cial Neural Networks (ANNs), Ensemble Boosting / Bagging
and Random Forest (RF) Algorithms are capable of solving
both regression and classification problems. The authors
of [121], introduced short-term load forecast model using
SVM influenced by travel patterns, power consumption,
distance travelled per day and connection time and proved
to outperform Monte Carlo forecasting technique applied for
the same problem. SVM is used together with GA in [122]
for long-term forecasting of daily peak load demand using
a model with seven support vector machines. Each support
vector machine corresponds to a specific day of the week
trained on historical data, and applied iteratively to forecast
loads for the forthcoming month. In [123], a prediction-based
charging mechanism is proposed which uses KNN to predict
future electricity costs based on dynamic pricing obtained

from the microgrid through wireless communication aiming
to reduce EV’s charging costs and carbon footprint. The
effectiveness of K-Nearest Neighbors (k-NN) was investi-
gated in [124] for predicting energy consumption at charging
outlets within the university campus. The problem is framed
as a time-series forecasting task, aiming for a day-ahead (24
hours) prediction of energy consumption at each outlet. This
approach aimed to improve the accuracy of forecasts while
also reducing the processing time needed for predictions.
In [125], Naive Bayes algorithm is used to forecast the
charging as well as discharging status of EV batteries to
predict whether an EV battery will be in a charging or dis-
charging state for day-ahead scheduling purposes considering
participation from V2G systems. In this context, Naive Bayes
classifier along with Gaussian fitting option achieved a pre-
diction accuracy of 80%. Three supervised machine learning
regression techniques namely Gradient Boosting, Random
Forests, and XGBoost were employed in [126] to estimate
the idle time of EVs at public stations that can negatively
impact charging infrastructure by affecting its availability,
sizing requirements, and overall cost. The results showed
that XGBoost achieved the highest accuracy in predicting
idle time for this specific dataset. Reference [127] used
SVR to predict EV charging demand, considering factors
like historical data, number of EVs, weather, and holidays.
An approach to find the optimization EV charging and dis-
charging schedule of an EV connected to a smart building
integrated with a solar PV system is discussed in [50]. ANN is
applied for power demand forecasting of the building and for
solar PV power generation forecasting, linear programming
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FIGURE 8. Classification of machine learning algorithms applied for EV charge scheduling.

is then used for charging and discharging schedule
optimization.

2) UNSUPERVISED LEARNING METHODS
In unsupervised machine learning method, the algorithm
learns from unlabeled data. It works with datasets that lack
labels, which means that they only have input features with-
out labels indicating the desired output or category. The
algorithm explores the structure of the data to uncover hidden
patterns and structures within it. K-means clustering, and
Principal Component Analysis (PCA) are used for solving
the clustering and dimensionality reduction problems respec-
tively. It is crucial to identify the optimal location, number
of EV parking lots and the capacity for efficient infrastruc-
ture development. The paper [129], used K-means clustering,
to classify the distribution system into different sets of geo-
graphic area so that it can be given boundaries to distinguish
as different zones. The model also estimates the expected
number of EVs for each parking location which allows pre-
cise revenue predictions for newly established parking lots.
K-means clustering is utilized in [130] to group areas with
similar charging demands and to analyze the relationship
between the user satisfaction and charging distance. After
understanding the relationship, the model is further simu-
lated using GA-PSO to optimize the EVCS placement while
also considering the constraints of the power grid. To pre-
dict day-ahead EV parking needs and electricity load, [131]
applies unsupervised k-means clustering and neural network
on historical EV charging data. Among unsupervised ML
algorithms, Principal Component Analysis (PCA) is one such
powerful tool, which helps to understand complex datasets by

reducing their dimensionality, which means it condenses the
data into a smaller set of key features. Thus, the hidden pat-
terns and relationships within the data can be found. In [132],
PCA is applied to examine the impact of urban sprawl on
the distribution of public smart charging stations for EVs.
Utilizing K-means PCA-based clustering, researchers gained
insights into the correlation between urban sprawl and energy
demand in the city. This analysis facilitated the identifica-
tion of potential energy clusters, enabling the optimal site
selection for smart charging station deployment that would
increase the charging infrastructure, and at the same time
reduce the cost of energy consumption. Hierarchical clus-
tering is another method of cluster analysis technique in
unsupervised learning, which aims to construct a cluster hier-
archy within a dataset. This method generates clusters where
each level of the hierarchy is formed by merging clusters
from the preceding level. Hierarchical clustering technique is
utilized in [133] to identify the optimal location for semi-fast
charging station incorporating technical considerations like
minimizing power losses, usermobility aspects and the uncer-
tainty associated with future EV demand.

3) REINFORCEMENT LEARNING (RL) METHODS
Reinforcement learning (RL) problems revolve around dis-
covering optimal actions to take in various situations to
maximize a numerical reward signal. These are closed-loop
tasks, as the actions taken by the learning system affect sub-
sequent inputs. Unlike other types of machine learning where
actions are prescribed, in reinforcement learning, the learner
must explore and experiment to determine which actions lead
to the highest rewards [134]. Reinforcement learning can be
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further categorized as model based and model free learning.
Q-learning (QL) is a powerful tool that helps agents learn
the value of different actions in different situations, without
needing a complete model of the environment. The ability
of reinforcement learning to learn from past interactions
makes it a promising approach for management and opti-
mization of energy systems that experience dynamic changes.
RL algorithms handle complex and changing environments
by continuously learning from data. This allows us to develop
efficient and effective EV charging strategies in real-world
conditions. A reinforcement learning framework is proposed
in [135] with centralized allocation of chargers, which is
followed by decentralized execution in which the chargers
make their own decision to charge or discharge to maximize
the profit of EVCS. In [136], RL method is effectively used
along with a heuristic benchmark policy to optimize the func-
tions of EV battery swapping stations which is modelled as
a Markov Decision Process (MDP). In [137], RL is success-
fully applied to enhance the battery degradation cost model.
The primary goal is to reduce the EV charging expenses and
the expenses associated with the wear on charging station
batteries, while considering the constraints of V2G services
and user dissatisfaction due to extended waiting times. Rein-
forcement learning based online dynamic pricing algorithms
are implemented in several other articles aiming to maximize
the profit of charging stations [138], load shifting [139] and
system cost minimization [140]. A single-agent RL technique
based on Q-learning is implemented in [141], charging cost
minimization. This approach considers fluctuating electric-
ity prices and the V2G capabilities to maximize efficiency.
To tackle congestion at charging stations, the authors of [142]
consider both waiting time in CS and travel time as part of the
total charging time. A congestion game model that reflects
the interaction between vehicles and charging resources
for optimal charging allocation is proposed. This approach
utilizes Q-learning in combination with communication tech-
nology to manage and avoid congestion in charging station
allocation. The challenge of real-time electricity price uncer-
tainty for EVs is modelled in [143] using MDP and then a
Q-Learning algorithm that considers V2G control services to
allow the system to make real-time choices about whether an
EV should charge, discharge, or provide frequency regula-
tion, ultimately maximizing its profitability.

4) DEEP LEARNING (DL) METHODS
Deep learning is a subclass of machine learning, inspired by
the function and structure of the human brain. It employs arti-
ficial neural networks consisting of multiple layers, known as
Deep Neural Networks (DNNs). In contrast to simple neural
networks, DNNs usually comprise three or more layers, and
often many more layers in practice. These deep networks
undergo training on extensive datasets, enabling them to
recognize patterns, categorize data, and even make predic-
tions. Some of the popular DL techniques are Convolutional
Neural Networks (CNNs), Recurrent Neural Network (RNN),

Multi-Layer Perceptron (MLP), Deep Reinforcement Learn-
ing (DRL). There are few variants of the recurrent neutral
network like Long short-termmemory (LSTM), Bidirectional
Long short-term memory (Bi-LSTM) and Gated Recurrent
Unit (GRU) [144]. Studies have shown that various neu-
ral network models, like RNNs, LSTMs, Bi-LSTMs, and
CNNs, are capable of predicting EV charging demands
more efficiently. Safe deep reinforcement learning (SDRL)
algorithm is used in [145] to find the best charging strategy
for a single vehicle, in which the approach treats the charg-
ing/discharging process as a problem with certain limitations
called a Constrained Markov Decision Process (CMDP). The
above method makes use of a Multi-Layer Perceptron (MLP)
to approximate the moments of the probability distribution
function. CNNs are becoming increasingly popular for time
series forecasting tasks. A hybrid approach was introduced
in [146], combining a CNN with a fuzzy time series (FTS),
utilizing fuzzy time series and CNNs to link load data and
temperature data for the purpose of generating short term
load forecasts. A study in [147] compared the performance
of four popular DL techniques ANN, RNN, LSTM, and GRU
for predicting EV charging demand at an EV charging station
in Morocco. Their simulations revealed that GRUs achieved
the most accurate predictions, followed by RNNs, LSTMs,
and lastly, ANNs. Many studies explore combining LSTM
networks with other machine learningmodels or even simpler
techniques like heuristic algorithms to create hybrid deep
learning approaches. These approaches have proven effective
in solving forecasting and optimization problems related to
EV charging.

Table 5 provides a list of several Machine Learning Algo-
rithms which are successfully applied to solve EV charge
scheduling problems alongwith their optimization objectives.

VII. EV COMMUNICATIONS AND SECURITY
Electric vehicles primarily search out for charging sta-
tions while in motion, where they subsequently connect
and exchange information. Consequently, charging stations
necessitate receiving latest and prompt updates regarding
the battery status of approaching EVs, estimated remaining
range, and information regarding the traffic conditions they
encounter along their routes. These real time information is
essential for optimizing the charging schedule and enhancing
the charging experience for EV owners. Also, in centralized
charging, the aggregator needs information exchange from
the charging stations under its control as well as with the
distribution network operators. To develop a smart charging
infrastructure, an efficient communication strategy is a cru-
cial component which allows data exchange among various
stakeholders in the EV charging ecosystem. The communica-
tion protocols that exist in the EV charging infrastructure are
divided in [148] as front-end and back-end protocols. Front
end protocols like CHAdeMO and ISO15118-20 define the
communication interface between EV and the charging points
while the back end protocols like Open Charge point Protocol
(OCPP), Open Automated Demand Response (OpenADR),
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TABLE 5. Machine learning algorithms applied in EV scheduling.

IEC63110, IEEE2030.5 and EEBus define the communi-
cation interface between charging points and the service
providers [149].The authors of [150] integrated Vehicular
Ad hoc Network (VANET) into a smart grid to facilitate
communication among EVs within the smart grid and with
roadside units, which collect information in real time such as
battery SoC and EV mobility. Subsequently, a traffic server
in the microgrid was utilized to process this information
and generate a coordinated charging schedule, resulting in
reduced travel costs for EVs and improved power utilization.
A communication protocol that is based on VANET for EV
charging/discharging in an intelligent grid infrastructure was
introduced in [151]. The paper claims that its communica-
tion protocol outperforms the existing MAC protocols like
IEEE 802.11p and VeMAC, used for VANETs. Recently, the
integration of cloud based, Internet of Things (IoT) plays
an essential role in effectively managing EVs within the
charging infrastructure, a concept often termed as the Internet
of Electric Vehicles (IoEV) [152]. IoEV involves EVs with
embedded sensors and enables them to communicate with
the onboard sensors as well as with other entities in the
network which is collectively called V2X communications.
This enables EVs to participate in V2G energy transfer, and

thus contributes to building an Intelligent Transport System
(ITS). The integration of IoT and V2G energy transfer tech-
nology has empowered EV to function as an individual and
mobile energy storage device thus supporting grid stability
by reducing demand fluctuations. Over-the-Air (OTA) cloud
service is the latest attractive technology that offers solu-
tions to manage the software components in vehicles and
charging stations by automatically updating with the latest
software versions and optimal settings, thus ensuring smooth
and cost-effective operations [153]. But these communication
strategies are at high risk of cyber-attacks by hackers. Few
cyber-attacks in EV charging network like, malware injection
in the supply equipment, man in the middle attack, false
data injection attack, denial of service attack, eavesdropping,
Address Resolution Protocol (ARP) spoofing, packet replay
attack and physical attack are discussed in [154] and [155].
These attacks may have serious impacts like grid black-
out and transmission line failures [156], damage to the EV
battery [157], EV charging station out of service or malfunc-
tion [158], and loss of personal and financial information of
EV users [154]. Any compromise in the security of OTA ser-
vice can lead to fatal consequences that could even endanger
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human lives. So, secure data handling becomes a major issue
for communication in EV charging network.

A. COMMUNICATION SECURITY CONSTRAINED
CHARGING SCHEDULING
Several research projects are exploring the use of blockchain
technology’s encryption capabilities to address security and
privacy concerns during data communication between EVs
and charging stations that rely on cloud servers. This ensures
secure data exchange within the EV charging infrastructure.
In [159], a secure charging scheduling algorithm for EVs
is introduced, incorporating blockchain technology for EV
registration and secure data transfer. The implementation of
this scheduling algorithm led to substantial cost reductions.
In [160], the study outlines methods for storing and verifying
EV charging data within a blockchain framework, as well
as procedures for conducting secure payments for EV charg-
ing enabled by a blockchain system. A charging scheduling
algorithm for EV based on a consortium blockchain model,
ensuring both safety and confidentiality in electricity trading
is introduced in [161]. The feasibility of a hybrid mobile
charging vehicle to vehicle (MCV2V) charging scenario is
evaluated and the aims to enhance customer satisfaction and
to minimize user’s expenses. Likewise, the concept of charg-
ing EVs from mobile vehicles is employed also in [162],
where energy and data exchange occur in a Peer-to-Peer
(P2P) manner. This method employs blockchain technology
to ensure data security, while an Inter-Planetary File System
(IPFS) is used for secured data storage alongside a scheduling
algorithm for cost minimization.

VIII. DISCUSSION
A variety of optimization techniques, including mathemati-
cal methods, metaheuristic algorithms, and machine learning
approaches were analyzed in this paper. Each technique was
found to exhibit unique advantages for addressing different
optimization objectives and constraints. For those problems
that have a clear objective function and well-established
constraints, mathematical methods can effectively find the
absolute optimal solution. These methods have an ease of
implementation and less computational burden and can effi-
ciently solve suchwell-defined problems. But they struggle to
solve complex problems like the evolving dynamic EV charg-
ing scenarios that may be multi-objective, having numerous
decision variables and intricate non-linear constraints. Math-
ematical optimization techniques could still be employed for
solving specific sub-problems within the wide area of EV
charging optimization framework. Due to the limitations of
mathematical methods, exploring alternative approaches like
metaheuristic algorithms and machine learning techniques
becomes essential.

Metaheuristic algorithms have good flexibility and ability
to handle non-linear problems, and this makes them more
suitable for handling EV charging optimization problems.
Though metaheuristic algorithms provide many effective
tools for complex EV charging optimization problems, they

also exhibit certain limitations which should be carefully
considered in the context of EV charging optimization. Gen-
erally, convergence to the global optimum is not always
guaranteed by metaheuristic algorithms, leading to potential
suboptimal solutions. Their performance can be influenced
by the initial solution or population, leading to variability in
results. These limitations must be carefully considered when
employing metaheuristic algorithms to solve EV charging
optimization problems. While the conventional methods rely
on pre-defined models, machine learning approaches pro-
vide a promising problem-solving nature due to its ability to
learn and adapt to changing patterns. They have proved their
excellence in handling complex data and providing improved
forecasts.

In the papers analyzed for the review, supervised machine
learning techniques are mostly applied for load forecasting,
future energy cost prediction in the case of dynamic pric-
ing scenarios, predicting future power demand in charging
stations and forecasting power generation in RES inte-
grated charging framework. The unsupervised techniques are
employed effectively in several research for grouping the
areas with similar charging demands or EVs within same
geographical zone, to find the optimal location for charging
station placement.

Machine learning techniques are heavily dependent on the
quality and quantity of the data provided for training. Data
scarcity can lead to biased models, resulting in suboptimal
charging schedules subsequently minimizing the effective-
ness of the optimization process. Moreover, overfitting is a
common problem that occurs with machine learning models
when they become overly fixated on the training data which
would lead to inaccurate predictions when applied to real
world conditions that are highly variable in the case of EV
charging. Also, the datasets collected in a location such as
charging behavior or driving patterns can be used to develop
machine learning models only for that location and cannot be
used elsewhere as these characteristics need not be same for
different geographic locations.

However, reinforcement learning methods can overcome
these issues as they continuously interact with the charging
environment and allow the system to learn from a trial-
and-error approach. This makes them mostly beneficial for
dynamic EV charging scenarios as they adapt to chang-
ing conditions and optimize charging strategies in real-time.
Also, deep learning methods which possess enhanced feature
extraction characteristics can be combined with reinforce-
ment learning to create even more powerful optimization
strategies like DRL and SDRL.

A. FUTURE RESEARCH RECOMMENDATIONS
Future research directions may involve the development of
new hybrid approaches that combine conventional methods
and metaheuristics with advanced machine learning tech-
niques to overcome the limitations of individual techniques
and to achieve promising approaches for addressing the chal-
lenges and complexities of optimizing EV charging systems
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in real-world environments. Employing RLwith human feed-
back may be used to enhance EV charging optimization.
By learning from user input and preferences, RL algorithms
can personalize charging schedules, ensuring efficiencywhile
meeting individual needs. The fusion of cloud computing and
RL holds the potential to significantly influence the develop-
ment of future applications within EV charging systems. The
cloud based smart charging networks have unveiled a lot of
new challenges regarding security in data exchange. There
is an urgent need for developing advanced fault and threat
detection frameworks as modular solutions for security issues
within smart charging platforms. A broad avenue of future
research involves creating robust authentication mechanisms
to prevent unauthorized data access EV charging systems,
while upholding privacy and confidentiality by establish-
ing interoperable universal standards for EV cybersecurity.
Machine learning solutions can be explored to develop
threat detection and monitoring tools to address the security
challenges in EV communication networks. The charging
scheduling algorithms to be developed in the future, address-
ing various optimization constraints, should try to incorporate
security constraints regarding data exchange as well as energy
trading as part of the optimization process. This could be
achieved either by utilizing the encryption capabilities of
existing blockchain technology or by exploring other novel
opportunities. Integrating RES into existing charging stations
and efficiently utilizing the V2G and V2V capabilities of
EVs to employ them as mobile energy storage systems could
transform the charging stations into grid-connected, small-
scale microgrids. By tackling all these challenges addressed
and fostering innovation, EV charging optimization could act
as a key driver for widespread EV adoption and a greener
transportation future.

IX. CONCLUSION
Electric vehicles play a pivotal role in energy transitions. This
review provides a comprehensive examination of the current
landscape in EV charging scheduling optimization. It empha-
sizes the critical role this field plays in enabling widespread
EV adoption and enabling a more sustainable transporta-
tion future. The advantages of EVs over ICE vehicles in
economic and environmental prospective are explained to
highlight the necessity of employing EVs as the solution
for greener transportation. A thorough examination of dif-
ferent methodologies and factors that have a crucial role
in developing efficient charging strategies for EVs is pro-
vided. EV charging management is the prime focus of this
review paper and the importance of coordinating charg-
ing schedules to balance between consumer demands, grid
capacity, and economic factors is emphasized. The analysis
highlights the essential role of EV charging management
in maintaining grid stability, thus facilitating a smoother
shift towards high penetration of EVs. It examined vari-
ous EV charging scheduling optimization problems from
the perspectives of power grid operators, aggregators, and
individual EV owners. Different optimization techniques like
mathematical programming, metaheuristics, and machine

learning algorithms, that are employed for EV charging
scheduling optimization are analyzed. The advantages as
well as limitations of these techniques are evaluated, thus
offering insights on their effectiveness in achieving diverse
optimization objectives. The article thus provides valuable
insights that could direct future research efforts to develop
an efficient EV charging ecosystem. Future research is sug-
gested to focus on constructing robust, adaptable, and secure
optimization frameworks that utilize the power of hybrid
techniques. Efficient utilization of V2G technology and RES
integration could offer promising solutions for grid stability
and sustainability. By strengthening the collaboration among
stakeholders and adopting innovative optimization strategies,
we can unlock the complete capabilities of EVs, paving the
way for a more environmentally friendly and sustainable
transportation infrastructure.
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