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ABSTRACT To enhance the accuracy of existing nighttime visibility estimation methods, this study
proposes a classification algorithm for nighttime visibility levels based on stable light sources. Initially,
a target detection network identifies all stable streetlights in the image and extracts the light source blocks.
Subsequently, these blocks undergo fog classification through a classification network. The blocks we
then sorted by brightness values and assigned corresponding weights. Finally, the classification results
and weights are combined to categorize the nighttime image visibility levels. Experimental results show
that the accuracy of our nighttime visibility classification algorithm reaches 77.6% on real-world datasets,
outperforming existing methods and demonstrating good generalization across different scenes.

INDEX TERMS Night images, visibility classification, light source block, generalization.

I. INTRODUCTION
Visibility has significant impacts on various aspects of
daily life, such as transportation, logistics, and production.
Nighttime visibility is closely related to the occurrence
of accidents. The primary factors influencing visibility
are solid particles and small liquid droplets suspended in
air [1]. Accurate classification of nighttime visibility is
crucial for timely and effective implementation of related
protective measures, reducing the occurrence of accidents,
and playing an important role in social development [2].
Existing visibility estimation instruments mainly include
forward-scattering visibility meters, which detect visibility
based on atmospheric scattering principles [3]. However,
issues such as high instrument cost, large size, and high
maintenance expenses hinder the widespread deployment of
these devices.

As computer vision develops, visibility estimation is no
longer limited to physical instruments. Researchers have
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previously proposed visibility estimation methods based on
video images [4]. Approaches for constructing visibility
and images can be divided into two main ways: physical
model-based [5] and deep learning-based methods [6]. The
visibility estimation method using a physical model primarily
relies on the atmospheric scattering model and associated
theories. This type of method, while interpretable to some
extent, demands specific conditions and relies on additional
parameters like distance and depth information. And, they
have poor performance in terms of generalizability as
they require matching different clear images for different
scenarios, and the issue of atmospheric light values in
multi-light source nighttime scenes has not been fully
addressed. With the rapid development of CNN, researchers
have been studying visibility estimation algorithm driven
by images [7].To fully exploit the learning capabilities
of CNNs, these methods map foggy images directly to
visibility levels using CNNs. However, most simply use
CNNs for visibility estimation without extracting specialized
features for this task. Additionally, the majority of current
deep learning-based visibility estimation techniques rely on
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CNNs, which are prevalent across various fields and excel
at extracting low-level features. High-level visual semantic
information typically focuses on how elements interconnect
to form objects and how spatial relationships between objects
create scenes, all of which merit consideration. In summary,
existing visibility estimation methods face several issues,
including excessive constraints and lower accuracy.

To overcome the drawbacks of current methods, we present
a novel algorithm for classifying nighttime visibility based on
street-lights. In the detection network, we use ResNet50-vd
as the backbone for feature extraction. Inspired by the tricks
proposed by [23], we replace the final 3 × 3 convolutional
layer of ResNet50-vd with a deformable convolutional layer
to optimize the backbone and enhance its performance.
Additionally, to effectively leverage multi-scale information,
we also employ the Path Aggregation Network (PAN) to
process the extracted features. Unlike the methods mentioned
above, the proposed method concentrates exclusively on
analyzing the regions within the image that contain stable
light sources. In our method, This approach enables the
classification of the entire nighttime image while mitigating
interference. In addition, a dataset comprising authentic
nighttime surveillance images is made. Experimental results
demonstrate that the ourmethod outperforms the counterparts
in terms of classification accuracy, particularly when dealing
with limited sample data, underscoring the proposed method
robust generalization capability.

The main contributions of this paper are summarized as
follows:

• This paper proposes a classification algorithm for
nighttime visibility levels based on streetlights, utilizing
a target detection network to identify and extract all light
source blocks in images.

• A classification network is employed to categorize the
extracted light source blocks into four visibility level,
and Color space conversion is applied, and the blocks
are sorted by luminance values to determine light source
weights. Combined with fog classification results and
weights, the overall visibility level of the image is
assessed.

• Performances of the proposed approaches are verified by
extensive experiments on our dataset. The results show
that the proposed visibility level estimation method
outperforms its competitive methods.

The rest of this paper is organised as follows: Section II
introduces the related works. Section III presents the
proposed methods that contains the object detection network
and the fog classification. Section IV gives the experimental
validation. Finally, Section V concludes this paper.

II. PRELIMINARY WORKS
In this section, we present current status and progress
of research in image-based visibility estimation, including
physical model-based methods in section A and deep
leaning-based methods in section B.

A. PHYSICAL MODEL-BASED METHODS
Visibility estimationmethods based on physical models relies
on Koschmieder’s law, proposed by Lee and Shang [8],
which describes the process of radiative attenuation of the
entire observed atmosphere from an object to a sensor.
This type of methods rely on atmospheric values, which is
different in daytime and nighttime. The imaging of daytime
images follows the principle of atmospheric scattering [22],
as depicted by Eq.(1),

I (x) = J (x)e−βd(x)
+ A(1 − e−βd(x)) (1)

where x represents the pixel value at a specific position
in the image. I (x) and J (x) correspond to the pixel values
of the hazy and clear images, respectively. e−βd(x) represents
the transmission rate, and β is the extinction coefficient. d(x)
represents the distance between the object and the camera.
A denotes the global atmospheric light value in the image.
Fig.1(a) provides a visual representation of daytime imaging
processing, with J (x)e−βd(x) representing the pixel value of
an object that traverses through haze before reaching the
camera, and A(1 − e−βd(x)) representing the pixel value of
atmospheric light scattering detected by the camera. Based
on this law, He et al. proposed the dark channel prior
algorithm [9], which involves extracting the top of 0.5%
brightest points in each channel as the atmospheric light
value. The transmission value and extinction coefficient are
obtained by comparing the clear image with the hazy one,
by which the visibility value is inversely calculated. This
approach performs well when there is only one light source
during the daytime. However, in nighttime, the imaging
process varies.

The imaging of nighttime scenes is defined as:

I (x) = J (x)e−βd(x)
+ A(1 − e−βd(x)) + Aα · APSF (2)

where, α represents a local region within the image, Aα

denotes the atmospheric light value in region of the image,
APSF is the atmospheric point spread function, andAα ·APSF
refers to the halo effect generated within that particular
region. As illustrated in Fig.1(b), during nighttime, when the
illumination comes from artificial light sources and is non-
unique, the atmospheric light values across the entire image
are inconsistent. Consequently, it would lead to significant
deviations using this method to detect nighttime visibility.
To address the issue, Pei et al. proposed a preprocessing step,
mapping the color space from RGB to LAB [10], and then
optimizing the image’s extinction coefficient using the dark
channel prior and bilateral filtering. Li et al. introduced a
new nighttime scattering model considering the interference
of halo in nighttime images on visibility [11], [12], which
separates the halo layer from the image and performs visibil-
ity estimation using the dark channel prior algorithm. He et
al. assumed the maximum brightness value of each channel
in the clear image to be 1 [9], promoting the maximum
reflection prior algorithm. Yu et al. proposed a pixel-based
alpha blending method for estimating the transmission
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FIGURE 1. Daytime and nighttime imaging process diagram.

map [14], which is guided by luminance-aware weights
derived from dark channel estimation. The method preserves
high-frequency edge information through the application
of Retinex theory. Yang et al. estimated the atmospheric
light value using a superpixel algorithm and obtained the
extinction coefficient by combining image halo layering
and dark channel algorithms [15]. Gallen et al. performed
visibility classification by calculating the attenuation of
all light source illumination directions in the image [16].
However, due to its strict requirements on the scene and
numerous necessary auxiliary parameters, that method is
difficult to apply in the complex scene.

B. DEEP LEARNING-BASED METHODS
Li et al. utilized a CNN-RNN network to extract image
features for estimating image visibility [17]. They employ
a pre-trained convolutional neural network (CNN) to auto-
matically extract the visibility features instead of manual
method and design a generalized regression neural network
(GRNN) for intelligent visibility evaluation based on these
deep learning features. Zhang et al. trained the HazDesNet
using paired images of the same scene with and without
haze [18], employing the Structural Similarity Index (SSIM)
score between the two images as the regression target to
estimate the visibility in outdoor images. But the variability
of haze levels in the environment poses significant challenges
for the model’s adaptability and responsiveness to different
degrees of haze, and a single SSIM objective may not
suffice to achieve such detailed differentiation. Choi et al.
converted images to the HSL(Hue,Saturation, and Lightness)
and used the VGG (Visual Geometry Group) to predict
image visibility [19]. Yang et al. presented a self-enhanced
image dehazing framework called D4 (Dehazing via Decom-
posing transmission map into Density and Depth) [20].
This framework overcomes overfitting issues in synthetic
image dehazing and calculates the scattering coefficient of
the original image. However, it usually over-estimates the
transmission of extreme bright area, which will mislead
the depth estimation network to predict low depth value
for over-bright areas. Sharma et al. proposed a method for
decomposing images into high-frequency and low-frequency

feature maps [21]. The low-frequency feature maps are pro-
cessed using deep learning networks, and then combined with
high-frequency features to obtain clear nighttime images. The
visibility is calculated by comparing the transmission rate
ratio of the clear image to the foggy image. However, deep
learning-based algorithms classify visibility levels of input
images directly through neural networks, which requires
substantial amounts of data and necessitates a high level
of network complexity to achieve satisfactory classification
results.

In conclusion, physical model-based methods struggle
with the complex and varied nature of night lighting.
Deep learning-based approaches also face challenges such
as low accuracy and high network complexity. Therefore,
we propose to estimate visibility by conducting research on
stable light sources during the night.

III. METHODOLOGY
In this part, Section A is the structure of our method.
Section B and C introduce our light sources Detection
network, visibility level estimation network and its related
theories, Section D introduces our training process.

A. THE OVERVIEW OF OUR METHOD
As depicted in Fig.2, a detection network is designed to
identify all light source blocks. Subsequently, these identified
blocks undergo a fog classification process leveraging a
specialized classification model. Meanwhile, color space
conversion from RGB to LMN is executed on the light
source blocks, facilitating the assignment of weights. These
weights are derived from the sorting of the light source blocks
by brightness values across all detected blocks. Finally, the
visibility level is obtained by combing the classification
results and the light values analysis.

B. DETECTION NETWORK
The framework for light source blocks detection [23], [24] is
illustrated in Fig.3. We adopt the ResNet50-vd-dcn (the final
convolutional layer replaced by a deformable convolutional
network) to process the input images, generating feature
maps. The top three feature maps l1, l2 and l3 are aggregated
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FIGURE 2. Framework diagram of the streetlight-based night visibility classification algorithm.

FIGURE 3. Schematic framework diagram of detection network.

using Path Aggregation Network(PAN) to form a Feature
Pyramid, enhancing detection accuracy through the utiliza-
tion of information from each feature map. Each feature map
is fed into the Head for detection and loss calculation, with
the total loss computed after aggregating information from
each extracted depth image.

1) HEAD
The detection head comprises two convolutional layers,
employing a 3 × 3 convolution followed by a 1 ×

1 convolution layer for obtaining the final predictions. The
network divides each image into S × S grids, with each
grid corresponding to B anchors (we set to three), using
k-means clustering to determine B scales bounding boxes
priors for light sources identification. The network regresses
the prior bounding box that has the highest IOU valuewith the
ground truth, outputs {xk , yk ,wk , hk}S

2

k=1, {pk}
S2
k=1, {ck}

S2
k=1,

representing the values of the center coordinate, height, width
of the predicted bounding box, the class probability and
the object score.The output channel of each final prediction

is 3(C + 5), where C is the number of classes. For each
anchor, the first C channels predict the probabilities for C
classes, followed by 4 channels predicting the location of
the bounding box. The last channel predicts the object score.
Cross-entropy loss is used for classification, and L1 loss
for localization. The object loss supervises the object score,
identifying the presence of an object.

2) INPUT AND OUTPUT
We manually annotated 1750 real-world night-time images
from surveillance footage, marking all light sources on each
image. The training set images were resized to 640 × 640,
with a batch size set to 1. We detected all light sources
within the entire image. The first row (a, b, c) displays
three scenarios, the second row (d, e, f ) shows the detection
results, as shown in Fig. 4.

C. VISIBILITY ESTIMATION NETWORK
All light sources {b1, b2 . . . bη}, after being normalized
based on their sizes and brightness, are fed into the
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FIGURE 4. Target detection results for three scenarios.

network, conducting fog classification and weights calculat-
ing, as depicted Fig 5. A classification network, consisted
of three convolutional layers, pooling layers, and two fully
connected layers, is employed to classify these blocks into
four visibility level. Each image is labeledwith v, and the light
source blocks are fed into the classification network. The final
output of the network is q(v), a 1 × 4 tensor [q1, q2, q3, q4],
where q represents the categorical probability of the image.

In each image,light source blocks vary in scale and foggy
images tend to have lower and more uniform brightness
around light sources. Therefore, we weight all light source
blocks on the entire image that the brighter and bigger the
light source block, the greater its representative weight is
considered. Initially, each light source undergoes color space
conversion. The brightness feature extracted from the RGB
color space brightness channel does not adequately describe
color distortion. The LMN color space is well-defined
on a physical basis, and the conversion can eliminate
the correlation between the luminance component (L) and
the chrominance components (M, N) [22]. The L channel
information is primarily used when weighting the light
sources, as Eq.(3):

L = 0.06R+ 0.63G+ 0.27B (3)

Secondly, drawing from the principle of image super-
resolution, light sources are sorted based on their brightness
values. And, each light source is weighted according to its
scale and intensity within the image.The weight is defined as
follows:

gL,i =
1

|Qi|

∑
(m,n)∈Qi

IL(m, n), i = 1, 2 . . . η (4)

fL,i = log2(1 +
Ranki

η
), i = 1, 2 . . . η (5)

WL,i =

∑η
1(fL,i · |Qi|)∑η

1 fL,i
, i = 1, 2 . . . η (6)

where, IL(m, n) represents the pixel values of L channel
(m, n), Qi denotes the coordinate set of the ith light source
patch in an image. |Qi| signifies the number of pixels in Qi,
η indicating the count of light source patches present in the
image. Ranki denotes the index that reflects the brightness
values ordering of light source patches within the entire
image. gL,i represents the average pixel value of the ith
light source patch in L channel. fL,i denotes the brightness
weight value assigned to the ith light source patch, whileWL,i
represents the maximum weight value among all light source
patches.

We multiply the weight of each light source block by its
classification results and sum these products by category.
Finally, we regard the weighted sum of the category with the
highest total as the visibility level, which is calculated as:

Vest =

η∑
i=1

WL,i · q(vi) (7)

D. TRAINING PROCESS
1) DATASETS AND IMPLEMENTATIONS DETAILS
Since the limited quantity of real-world images is insufficient
to adequately assess the algorithm’s accuracy, we create a
novel nighttime image dataset for this study. The selected
nighttime images encompass complete light sources. The
dataset consists of 46 sites, totaling 4861 images. Among
these, 37 sites are designed for training, encompassing around
3551 images, while the remaining 9 sites are reserved for
testing and validation, comprising 1310 images. The image
collection period for the selected 46 sites spanned from April
2022 to May 2023, ensuring a comprehensive coverage of all
seasons throughout a full year. In line with practical societal
requirements, the nighttime visibility levels are categorized
into four distinct classes: 0-0.2 km (thick fog), 0.2-1.0 km
(heavy fog), 1-10.0 km (light fog), and >10.0 km (clear).
Fig.6 presents illustrative examples of images representing
different visibility levels. It is evident from Fig.6 that the
selected real-world surveillance site images encompass a
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FIGURE 5. The structure of visibility estimation network.

variety of perspectives, including aerial views, horizontal
views, and upward views, thereby catering to a diverse range
of societal needs.

Given the absence of real visibility values at surveillance
sites, the nearest meteorological monitoring site is deter-
mined by correlating the latitude and longitude information
provided by the meteorological bureau with that of the
surveillance sites. We select the meteorological station
located within a radius of approximately 3km from each
surveillance site to obtain the actual visibility values. we also
conduct visual inspection and classification of the images to
ensure compliance with the desired criteria.

We uses two models, a detection model and a classification
model, which we train separately. Training the detection
model we use the SGD optimizer, momentun is set to 0.9.
The initial learning rate is 0.005 / 12 and the batch size is set
to 1, for a total of 30 epochs.Training the classification model
we use the adadelta optimizer, the initial learning rate is set
to 0.001, epsilon defaults to 10−6, and the batch size is 8, for
a total of 200 epochs.

2) LOSS
The losses output from the three detection heads are added to
constitute the total loss for network updates. The loss function
is as follows:

Losstotal = Losscoord + Lossobj (8)

The coordinate prediction loss function is as follows:

Losscoord = λcoord

S2∑
k=1

B∑
j=1

Iobjk,j [(xk − x̂k )2 + (yk − ŷk )2]

+ λcoord

S2∑
k=1

B∑
j=1

Iobjk,j [(hk − ĥk )2 + (wk − ŵk )2]

(9)

where λcoord is the weight of the coordinate error.
The object Loss is defined as follows:

Lossobj =

S2∑
k=1

B∑
j=1

Iobjk,j (Ck − Ĉk )2

+ λnoobj

S2∑
k=1

B∑
j=1

Iobjk,j (Ck − Ĉk )2 (10)

where the parameter λnoobj is the weight, default 0.5, Ĉk is the
predicted confidence, and Ck is the true confidence, defined
as sigmoid ˆ(Ck ).

The loss for this classification is defined as:

Losscate = −
1
N

N∑
t=1

[vt · log2(q(vt )] (11)

In Eq.(11), N denotes the number of images.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In this paper, experimental evaluations are performed on the
NVIDIA GeForce RTX 3060 GPU to validate the efficacy of
the proposed algorithm. Real-world image datasets obtained
from surveillance sites are employed for the purpose of
conducting rigorous testing and validation.

A. EVALUATION METHOD
The confusion matrix is often used as a evaluation index
in deep learning, including precision, recall, accuracy.
A confusion matrix is used to evaluate the proposed method
in this paper. Equations 12, 13 and 14 show their calculation
methods.

precisioni =
TPi

TPi + FPi
i = 1, 2, 3, 4 (12)

recalli =
TPi

TPi + FNi
i = 1, 2, 3, 4 (13)

accuracy =

∑4
i=1 TPi∑4

i=1 TPi + FPi
(14)

where i dnotes the ith visibility range, TP, FP and FN are
separately presented as true positive, false positive and false
negative.

B. COMPARISON EXPERIMENT
To validate the effectiveness of the proposed method in this
paper, we compare it with the following three methods.

In [2], the atmospheric light value is estimated using
atmospheric modeling theory. The ratio of the extinction
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FIGURE 6. Example of images with different visibility levels.

coefficients is derived through the application of the dark
channel prior and edge-collapse algorithm. And, the region
of interest (ROI) is determined using the dark channel
thresholding method. Finally, the visibility value is computed
by integrating the ratio of transmission rates and extinction
coefficients for both clear and blurred regions within the ROI
area.

In [11] involves decomposing the nighttime image into
a halo layer and a background layer. It assumes that the
atmospheric light value remains locally constant for the
background layer. Then, the image is divided into smaller
blocks, and the atmospheric light value is estimated for each
block. Finally, the atmospheric light value for the entire image
is obtained using guided filtering, enabling the computation
of the image visibility.

In [26], a deep residual learning framework named
ResNet50 is developed. This framework incorporates a
152-layer residual network, where each layer adheres to
residual mapping principles. Within the scope of this study,
this approach is employed for classifying nighttime image
visibility. A training dataset comprising 2448 nighttime social
video surveillance images from four distinct categories is
selected for model training.

We compare the time it takes our method to infer a picture
with several competitive methods, as shown in TABLE 1, and
compare the performance of algorithm in different scenarios,
as shown in the following tables.

TABLE 2 provides the experimental outcomes for the
entire test dataset, analyzing the data, it is evident that
the proposed method exhibits superior accuracy compared
to the counterparts across the first three visibility ranges.
Particularly in the low visibility range of 0-0.2 km, ours

TABLE 1. Comparison of the computational efficiency of our method with
competitive methods.

precision and recall achieve 83.7% and 58.5%, respectively.
Moreover, the overall accuracy of our method surpasses that
of the other three methods, reaching 77.6%. Our method
demonstrates significant advancements in the prediction and
classification of low visibility images compared to alternative
methods.

TABLE 3 presents the comparison results of various
algorithms in Scene 1(view at eye level), which is a front-view
image on an elevated bridge. At night when there is heavy
vehicle traffic, it is common for headlights to directly
face the camera. Algorithms based on physical models
in [2] and [11], tend to produce high atmospheric light
values in such scenarios, leading to overestimated visibility
predictions. Thus, while these methods are fairly accurate for
high visibility image classification, they exhibit significant
errors in low visibility conditions. The direct illumination
from vehicle lights causing image overexposure can lead to
misjudgments by the algorithm proposed in [26]. In contrast,
our algorithm focuses solely on fixed light sources like
street lamps, reducing interference from vehicles and other
variables.

TABLE 4 shows the comparison results of various
algorithms in Scene 2(view from below), where the images
are taken from an upward-looking angle, causing the street
lamps to appear higher in the frame, leading to overall image
blurriness. In this scenario, the algorithm proposed in [2]
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TABLE 2. Test result of each method at real social points (%).

TABLE 3. Test results of each method in Scene 1 (view at eye level)(%).

TABLE 4. Test results of each method in Scene 2 (view form below)(%).

TABLE 5. Test results of each method in Scene 3 (view form above)(%).

results in excessively high overall pixel values, while the
algorithm from [11] causes overexposure at the top of the
image when removing halo effects, making the image appear
overly bright. The algorithm mentioned in [26] tends to
misjudge the upper light sources, perceiving the image as
overexposed. Our algorithm improves accuracy by training
on light source blocks under various conditions, enhancing
the precision of judgments.

TABLE 5 presents the comparison results of various
algorithms in Scene 3(view form above), where images are
captured from an aerial surveillance camera in a downward-
looking view. Nighttime aerial views often include images
of buildings, and the sporadic brightening and dimming of
buildings at night lead to errors in the transmission maps
calculated by the algorithms proposed in [2] and [11].
The algorithm in [26] experiences a decrease in accuracy
due to interference from vehicle and building information.

Our algorithm, focusing solely on street light sources,
minimizes errors caused by buildings and vehicle lights,
thereby enhancing classification accuracy.

In conclusion, the test results for the 3 scenes depicted in
TABLE 3, 4 and 5 demonstrate that our method outperforms
the others, indicating that our algorithm maintains high
accuracy across different viewing angles.

C. ABLATION EXPERIMENT
To further validate the impact of each module described in
this paper on the experimental results, we remove the model
that classifies light source blocks and instead perform visibil-
ity level classification directly within the detection network,
named as DIS_cla. In detection network, we manually label
the dataset by assigning category labels to the light sources
based on image visibility for training purposes. Additionally,
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TABLE 6. The result of ablation experiment(%).

we eliminate the color space conversion module and define
the method as DIS_rgb.

The classification loss in detection network is depicted as
follows:

Losscls =

S2∑
k=1

B∑
j=1

Iobjk,j

∑
c∈classes

(pk (c) − p̂k (c))2 (15)

where S2 is the number of grids in the input image, and B is
the number of bounding boxes generated by each grid. Iobjk,j =

1 denotes that the object falls into the jth bounding box in grid
i, pk (c)refers to the true probability that the object belonging
to class c is in grid k . p̂k (c) is the predicted value. c refers
to the class to which the detected target belongs. In training,
we set c to 4, representing four visibility level.

TABLE 6 displays the results of the ablation study.
In TABLE 6, using the DIS_cla method leads to a significant
decrease in the accuracy of night-time visibility level
classification, with notably lower accuracy in classifying
images of low visibility. This suggests that while the object
detection model is highly accurate in identifying street light,
the diversity of light types results in lower accuracy during
fog classification, thereby reducing the overall classification
accuracy of the images. Furthermore, eliminating the color
space conversion module(DIS_rgb) results in larger errors
in classification accuracy across various intervals, indicating
that the inter-channel effects in the RGB color space are
significant and not conducive to improving classification
accuracy.

V. CONCLUSION
This paper proposes a night-time visibility estimation algo-
rithm based on street lights, utilizing a detection network to
identify and extract all light source blocks in an image, which
are then classified into four categories using a classification
network. Within the classification network, the light source
blocks are sorted by brightness and weighted according
to their scales, finally, combining the classification results
and weights, an estimation of the visibility level is made.
Experiments show that in a small dataset, compared to other
methods, our algorithm demonstrates stronger interference
resistance and higher night-time visibility classification
accuracy in complex real-world scenarios. In real traffic
monitoring images, where scenes are highly variable and
contain many sources of interference, our algorithm focuses
on information from light blocks, reducing interference

and enhancing classification accuracy. Additionally, our
method does not require extensive training data, nor does
it need to calculate the transmittance ratio between clean
and foggy images, making it less time-consuming and more
generalizable than other methods. Future work will focus
on optimizing the algorithm for night-time adverse weather
conditions like rain or snow, aiming to enhance the accuracy
of visibility estimation.
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