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ABSTRACT Machine learning and deep neural network developments have evolved image classification.
This study offers a new neural network design with segmentation and localization, different crack types,
categorization accuracy, and efficiency. In the proposed work, an advanced and innovative Spliced Multi-
modal Residuall8 Neural Network (SMR18-NN) Model is presented that departs from previous models.
For data authentication, augmentation is done by proposing the new and effective model known as an
Augmented Minority Over-sampling Technique (AMOST). The SMR18 NN model combines the well-
established ResNet18 framework with the Faster RCNN architecture, incorporating parts from the modified
Fast RCNN and the Region Proposal Network. This work aims to revolutionize crack-type recognition and
categorization in images. A Support Vector Machine strategically improves the network’s data classification.
A modified ResNet18 model is ultimately implemented and compared with the proposed innovative SMR18-
NN model. Both network’s parameters, such as epochs, number of iterations, etc., were kept the same for fair
evaluation. Innovative frameworks and properly selected benchmark datasets supported this. The empirical
results of this comparison study are convincing. ResNetl8 training and testing accuracy was 90.60% and
85.20%, respectively. The SMR18-NN outperformed these results with 96.20 training and 92.00% testing
accuracy. The experiment concluded with SMR18-NN accurately detecting image features, proving its
superiority in image classification.

INDEX TERMS Faster RCNN, ResNet18, road crack image, road cracks, spliced multimodal Residual18
neural network, localization.

I. INTRODUCTION

Any image’s background significantly impacts the brightness
or contrast of an image [1]. Traditionally, visionary engineers
know the value and worth of paved road maintenance and
rehabilitation. Its significance is now being understood in a
new context and with a new concept [2]. In the past, civil
inspectors were used to gathering information on the road
surface as they drove or walked [3]. It was a dangerous
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job to be done. The entire process considered was time-
consuming, laborious, and expensive. It is more challenging
because the task must be completed in busy traffic. The
safety of the impacted members will be in jeopardy. The
pavement crack quality is tested using various methods and
techniques, including image processing, infrared detection,
and ultrasonic testing. Another technique called WiseCrax
employs infrared imaging to find cracks [4]. Umer Farooq
uses infrared images for pedestrian detection [5]. These
techniques are still being made, and impressive research is
being done on advancing pavement cracks. The literature has
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suggested a strategy for crack width detection to enhance
the precision of crack detection. This strategy involves
extracting crack images from surface disturbances on paved
surfaces.

The biological neural network system inspires Artificial
Neural Networks (ANN) [6]. It isn’t easy for the computer
to recognize and give output as humans do. More partic-
ularly, when faced with an unfamiliar object, humans can
quickly learn the patterns from even a single example and cor-
rectly identify similar ones. It is a programming worldview
with which a system can gain from accessible observational
information. The pattern recognition approach is also used
for different purposes [7]. A feed-forward neural network
is created by forming a directed acyclic graph for a neural
network (NN) [8]. Artificial neurons receive input signals
from previous neurons (x0), and this signal is multiplied by
a weight (wi) to model the interaction of dendrites. Sub-
sequently, these weighted input signals are summed, and a
fixed bias is added and fed into the activation function, which
generates the output. The weights are adjusted based on the
data labels to learn and estimate the inference [9]. Current
automatic real-time detection systems have a low entry rate
and difficulty in soldering. However, no precise algorithm
is available for identifying and classifying pavement crack
images [10].

The size of a CNN model can have a significant impact
since it comprises several layers, including convolution, pool-
ing, ReLU, and fully connected layers [11]. The core layer is
the convolution layer because it plays a vital role in perform-
ing complex matrix multiplication. Several crack recognition
and segmentation techniques are available. Nevertheless, sev-
eral of these techniques aim to decrease the model size,
considerably decreasing accuracy. Although much research
has been conducted on pavement crack detection [12], there is
still room for improvement, specifically in reducing the pro-
cessing time, increasing accuracy, and building unique neural
networks. Multiple research studies were done using differ-
ent techniques, such as the researcher’s work on masonry
structure in the article published in the Journal of Geo-
mate [13]. Many machine learning techniques, including
traditional techniques like the general linear model and multi-
voxel techniques, have been used for categorization [14].
Finding a suitable algorithm for suitable kinds of cracks was
also a problem. The same issue was finding the most appro-
priate algorithms like VGG, which did not give satisfactory
results for finding non-crack or crack images in the dataset.
However, the same VGG is good for finding abnormal human
behaviour [15]. The deep learning algorithms utilized are
ResNet18 and SMR18-NN. The purpose of using these neu-
ral networks is that the ResNetl8 model from Microsoft
Research Asia won the ILSVRC-2015 object identification
competition. This model is also used to compare AlexNet and
SqueezeNet. So, this model is utilized here for better com-
parison and analysis [16]. The proposed research concerns
pavement cracks, their identification, classification, and road
safety [17].
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The aim and the achievement after the completion of this
research are:

o The proposed new algorithm SMRI8-NN is com-
pared with existing altered networks ResNetl8. Its
modification, implementation, and accuracy result is
compared.

o The scope of the study is to automatically identify
and classify cracks in the pavement surface based on
the dataset. Pavement crack detection and segmentation
through a deep neural network are to be implemented to
find the best and most accurate model for such a small
dataset with minimal possible computational time.

o To build Geo-Free dataset robust pavement crack
datasets and classify them into respective classes. Auto-
matic dataset building will decrease human interference
errors.

One of the contributions also involves resizing and reshaping
the images into a format suitable for processing by multiple
networks. A small dataset of 4333 images is built, though
other researchers did the research using 21k, 60K, and 100K
images. Training and testing are done using the algorithms
ResNet18 and SMR18. Classification into 8 different classes
is done, and the localization task is performed at the end.
Road accidents are preventable only with good paving and
crack care.

Il. LITERATURE REVIEW

The review was conducted by researchers Byunghyun Kim
and Soojin Cho from the University of Seoul’s Depart-
ment of Civil Engineering. Their investigation only involved
two binary detections in determining whether an image has
a crack or crackles, but the average accuracy was good
(96.64%), and the precision was 86.73 [18]. The explo-
ration in a publication by Zhun Fan, Senior Member, IEEE,
Yuming Wu, Jiewei Lu, and Wenji Li, shows a precision
gain of 91.78%; nevertheless, their training images are
7,41,932 their testing images are 70,65,600 [19]. A sig-
nificant number of images in the dataset will produce
impressive results. According to Steward and Tian, seg-
menting images recorded in sunny environments was more
prone to pixel noise and edge variability [20]. The clas-
sification accuracy (CA) may be impacted by the images’
brightness, size, and colour (Amith, 2020) [21]. Accord-
ing to researchers, image processing helps remove typical
features that may be used to train and evaluate the algo-
rithms that produce the CA [22]. The same deep learning
measures COVID-19 for decision-making and aggregation
via the RISTEC-B model [23]. It has demonstrated excep-
tional achievements in object detection, language processing,
biology, etc. Some researchers are working on nighttime
images, as the researcher did research and published the
article in Scientific Reports [24]. All the disciplines men-
tioned earlier and other engineering have used deep learning,
but some research is also taking place without deep learn-
ing [25]. Due to their benefits, including safety, uncrewed
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aerial vehicles (UAVs) have been the subject of more and
more studies on bridge inspection. The advancement of deep
learning has prompted significant research towards creating
datasets, automation, and discriminative methods for feature
extraction [26].

The maintenance of roads is of utmost importance for the
development of any country. The Ministry of Local Trans-
portation must maintain roads effectively to reduce road
accidents. Road cracks can be broadly categorized as struc-
tural or non-structural [27]. Structural cracks may be caused
by incorrect design, faulty construction, or overloading, while
non-structural cracks are typically the result of internally
induced stresses, moisture penetration, and thermal variation.
Cracks can also be classified as thin or small (less than 1 mm
in width) or medium-sized (1 to 2 mm in width). This research
has focused on wide or big cracks over 2 mm in width [28].
Scientists M. Hofacker and his colleague scientist C. Miehe
explain the diversity of complex cracks with mathematical
proof and deep analysis in the research article, “A phase
field model of dynamic fracture: Robust field updates for
the analysis of complex crack patterns™ [29]. This research
aims to discover a cost-effective method for upgrading road
cracks using different kinds of neural networks [30] and [31].
In Korea, the proportion of structures older than thirty years
was estimated at 3.8% in 2014, slightly developed in the
1970s. Experts predict that this percentage will grow expo-
nentially and reach 13.8% in 2024 and 33.7% in 2029. In the
US, the overall condition of transportation infrastructure is
rated as D+ on average, and the cost of rehabilitation is
anticipated to be $123 billion [32].

IIl. FRAMEWORK OF IMPLEMENTED MODEL

Prior research has demonstrated that deep learning models
are highly effective for recognizing cracks and classifying
images [33]. The models are capable of automatically and
efficiently extracting features from data. Deep neural net-
works (DNNs) function as hierarchical feature representation
frameworks that use back-and-forward propagation methods
to fine-tune the network, producing the desired classification
outcome [34]. Although there was complexity due to the
complicated background, this experiment used a low-budget
device instead of the specialized optical devices that the
present methods demanded. The performed research work
is unique because of the internally modified structure and
the unique parameters during the experimentation. Like in
ResNet18, by default, there is a fully connected layer with
an output size of 1000, but in the proposed case, the output
layer finds and differentiates 8 classes. So, changes are made
accordingly.

This research route and process are crystal clear in
Figure 1. Initially, data was collected with the help of a built
setup. After that, manipulation is done by mixing different
available datasets online. After filtering the dataset, a new
dataset is formed. After training, the testing phase was imple-
mented, and the result was in the form of F1 score, precision,
and recall.
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FIGURE 1. Overall outline of the research.

IV. DATA COLLECTION AND ANALYSIS PHASE

Data collection serves as the foundation and backbone of
any research project. While creating a dataset is not consid-
ered innovative work, it is a difficult task under a complex
background [35]. Still, the difference between the proposed
dataset and the existing one is that the proposed dataset is
built in a developing country. In contrast, the existing datasets
are built mainly in developed countries [36]. The pave-
ment images data-gathering system comprises three parts,
as shown in Figure 2. The pavement surface images are
illuminated by a vehicle-mounted high-definition linear array
CCD camera in the data collection process. The relating
line laser gives extra lighting so the camera can store the
image in the system’s hard drive. Cracked and crackles
images are obtained from the assembled setup. As the images
were acquired through the setup, it was challenging for the
researcher to validate them concerning crack or non-crack
images. For this purpose, help was given by an expert, Amna
Khatoon. She helped to differentiate between the images and
whether the images had cracks or crackles.

Once it is done, with the help of another expert, different
classes are made, and different crack types are assigned to
the concerned crack class. It was done by an expert, Ishfaq
Ahmad, and it was a paid task costing 2,000$. The total
collected images were 80000 by the established setup.

A. AUGMENTATION

In the image classification domain, deep convolutional neural
networks have made remarkable progress in recent years
and have also been employed for pixel-level pavement
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FIGURE 2. System composition of data collected from the vehicle.

crack segmentation [37]. Nevertheless, a diverse set of image
datasets is required to achieve accuracy and robustness in
training deep convolution models. If there isn’t enough
diverse training data, regularization techniques, including
dropout and batch normalization, are frequently used to avoid
overfitting [38]. Data augmentation was implemented during
the research. Data augmentation is a technique used to gen-
erate new samples similar to those in the training set, which
can be seen as a form of regularization. Data augmentation
has been extensively used in early works for image classifi-
cation tasks. Once the data is collected, augmentation makes
the dataset robust [39]. The research study showed that the
quantity and variety of data determine most neural network
models’ success. The initial aim of data augmentation is to
create or add up data for models. Data augmentation enhances
machine learning models’ performance and outcomes, which
generates novel and varied instances for training datasets.
Data augmentation techniques are practical tools to address
the challenges faced by the artificial intelligence field in
neural network applications.

Additionally, a rich and diverse dataset results in bet-
ter accuracy and performance of the model [40]. Another
benefit of data augmentation is that it minimizes operat-
ing expenses by transforming datasets. Data augmentation
approaches improve the robustness of neural network models
by introducing variables the model encounters in the real
world. Some researchers did not implement augmentation
and class-making algorithms but directly implemented them
in real-time for road crack detection [41]. Computer vision
applications use standard data augmentation techniques for
training data. Simple and advanced data augmentation tech-
niques are available for image datasets. Modifications to
visual data are commonly used in data augmentation [42].

Random rotation, rescaling, and horizontal/vertical flip-
ping are examples of image processing operations utilized
in data augmentation. Additionally, cropping, zooming, color
adjustment, darkening, and brightness are good techniques
used in image augmentation [43]. Advanced data aug-
mentation techniques, such as adversarial training/machine
learning, are being developed wherein adversarial instances
that disrupt machine learning models are created and added
to the dataset for training [44]. Generative Adversarial Net-
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works (GANs) utilize input datasets to learn patterns and
generate new instances similar to the training data [45].
Data augmentation has various advantages, including mini-
mizing data overfitting. Overfitting occurs when a function
closely fits a limited number of data points and increases the
data variability. Data augmentation also assists in improving
the models’ generalization ability, resolving class imbalance
issues in categorization, and reducing data collection and
labeling costs. Moreover, some category-free image transfor-
mation methods are utilized for image classification tasks to
generate new samples from the training set. The commonly
used image transformation techniques are listed in Figure 3.

(a) Random-cropping of Original Image (b) Color-jittering (c) Blurring (d) Color
noise (e) PCA-jittering

FIGURE 3. From a-e data augmentation with an original image and
augmented images.

As data augmentation techniques become more preva-
lent, verifying the quality of their outputs becomes essential.
Creating synthetic data with advanced applications using
data augmentation requires further research and study. For
instance, generating high-resolution images using GANs can
pose challenges. Thus, data augmentation may have some
drawbacks that require addressing. The enhanced data will
also have biases if the original dataset has biases. Data
augmentation increases the training sample’s size through
various data transformations. However, the transformations
may occasionally differ depending on the dataset being used.
For example, the MNIST dataset, which consists of hand-
written digits, can be transformed by rotations or changes in
brightness [46]. However, horizontal or vertical reflections
of these images may violate the logical consistency of the
dataset. To balance the crack classes, a new over-sampling
technique, known as the Augmented Minority Over-sampling
Technique (AMOST), is implemented in the research work.
In the proposed algorithm, the improvement is done in
AMOST in terms of weights of variables: for each minority
class instance g; with p variables, randomly select one of K
neighbour instances gi‘, usually K = 5. The distance between
two instances is calculated by Euclidean distance gapi-C is
shown in equation 1.

gapt = (21— ¢f) = ‘/Zj;l (25— gﬁ})z 8))

The jth variable element generates a new instance, as in
Equation 2.

glf = gjj +wj X rik X gapf 2)
where r{‘ is in-between 0 and 1, a random number j, and k
is the number from 1,2 ...upto p and K. Equation 2 shows
each variable weight by w;. The generated sample by these
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variable weights is symmetric. The proposed algorithm works
on two algorithms. Algorithm 1 calculates variable weight
and minority sample. There is a direct relationship between
the new samples and minority sample weights. Algorithm
2 calculates the Case Weight. Different initial weights are
assigned with support and non-support vectors to the minority
samples in algorithm 1. This sample is predicted to obtain
additional weights. It works on the line segmentation portion,
where the algorithm randomly selects a Z neighbor based on
Equation 3.

g=g+rx(g—g) A3)

According to equation 3, the random number r and g’
is always in-between 0 and 1, randomly elected among Z’s
nearest neighbors g. The g is the minority sample. The above
equation can be repeated to obtain the required synthetic
minority instances. Figure 4 shows the variables 71 and
T2 on the x-axis and y-axis respectively. The weights of
these variable T'1 and 72 are shown as vl and v2. These
variable weights have an impact on both the dimensions of
the generated samples. AMOST also generates the synthetic
sample of the minority class, using the Z minority nearest
neighbor to the nearest sample. It creates synthetic sample
¢ along the line segment connecting the minority sample g,
and nearest neighbor gP. Due to the weights and direction
dissimilarity, the generated samples are non-linear blends of g
and g”. When both v2 and v1 are greater than 0, the generated
g'1is close to its nearest neighbor g”. In the scenario, where
v2 > vl, then the value and direction of v2 are supposed to
have a significant impact on generated samples. As a result,
the direction of g} is more inclined to v1. On the other hand,
when both v1 and v2 are less than 0, the direction of g5 will
be opposite to g.

T= gP
vy = 0,v; =0 -
vy < 0,v, = 0O @
® . ® |
1 2 4 p— :(q!
; T | e e a5
= _ (9"""‘ i,
(@~ .
‘& L]
v, > 0, v; <O By <2 Oy <2 O

gP and g = Minority Sample, g}, g5, and g5 are Synthetic Sample, g’ is
Synthetic Sample by AMOST.

FIGURE 4. The distribution of the generated sample with different
variable weight.

In the proposed algorithm, the element of j* variable g;.j of
a newly generated sample g is define as.

gij = 8ij + 1 X (g1 — ) X wj @)

where r is a random number between [0, 1]. The variable
gf.‘ is K’s neighbors in the minority sample g;, and w; stands
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for the weight of the variable, the value of j is in-between
1 and p. When the value of each weight is shown as wj
to wp, is equal to w, then all these weights have the equal
impact on the generation samples. The same phenomenon
is true for AMOST synthesizes to create new instances by
the combination of minority instances with its neighbor. The
minority instance is shown by g; and it’s neighbor is shown
by gé‘ in the Equation 4. As a result, the variable has a
varied influence on sample generation. For example, wy is
more significant than other variable weights w» . . . wp; thus it
is assumed that g}, plays a more critical role on g;j, resulting in
more impact of g, on the generation of g;. The minority class
distribution is optimized by introducing the variable weight.
These weights prevent to creation of the resembled minority
new samples. When the boundary samples are oversampled,
AMOST may intensify overlaps because of the neighboring
point on the classification edge. Class overlap is prevented,
and the generated sample doesn’t always interchange with the
neighboring samples. Figure 5 shows the variable correlation.

'@ig

g’:@!
= T @l\@ T

g = Minority Sample, g’ are Synthetic Samples on the axis of T1 and T2.

FIGURE 5. The Distribution of the generated samples with correlative
variables.

Our algorithm proposes a new adaptive oversampling
method that weighs minority instances in sample space.
Based on the SVM classifier, the minority instances are
divided into non-support vectors and support vectors. In con-
trast, the number of support vectors is s, and the number
of non-support vectors is m—s (m denotes the number of
minority samples). We assign the initial weight of the support
vector to (s/m) and the initial weight of the non-support vec-
tor to (1—(s/m)). Since the separating hyperplane is mainly
affected by support vectors, we further add different weights
to the support vectors according to the accuracy of pre-
dicting the sample generation of each support vector; after
that, the weight of each support vector is the initial weight
plus additional weight, while the weight of non-support vec-
tors remains unchanged. According to the different weights
of each minority sample, the new samples are generated
by selecting the nearest neighbor adaptively. As shown in
Figure 6, different minority instances are due to the differ-
ence in weight, so the generated instances with the nearest
neighbors are different.

In this method, new fictitious minority samples are chosen
by interpolating between original minorities. This method
is unique as it didn’t do simple duplication based on the
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g = Minority Sample, g’ are Synthetic samples, and the majority of the
samples are above the incline plan line (Without the Assign symbol).

FIGURE 6. The influence of case weight on the distribution of the
generated samples.

original sample. The essential advantage of the other methods
and the proposed method is that introducing the variable
weight improves the distribution and weakens the collinearity
of minority samples. In the proposed method, the estima-
tion is done with a vector v from the hyperplane. While
ADASYN applies different weights on each minority sam-
ple, different numbers of samples are generated. However,
in high-dimensional space, the distance between the samples
is approximately equal, adversely affecting the definition of
the nearest neighbor and thus affecting the distribution of
the generated samples. After the augmented and AMOST,
Table 1 shows the overall number of images in each class at
the end of this research article.

TABLE 1. Summary of dataset numbers.

Crack Type Number of Images
Alligator 538
Transverse 529
Complex 503

Non-cracks (Crackles images) 491
Wide Crack (Big Crack images) 590

Longitudinal 567
Pothole 555
Sealed 560

Table 1 shows that each class has a specific number
of pavement cracks/crackles images. The dataset is indis-
pensable to evaluate the network model’s performance. The
dataset used in this research was about 4333 images with
8 different classes. These classes cover a broad range of
crack types. These classes are alligator, transverse, com-
plex, non-cracks, wide crack, longitudinal, pothole, and
sealed classes with the number of images of 538, 529,
503, 491, 590, 567, 555, and 560, respectively. The frame-
work includes stages such as database creation, network
architecture development, crack detection, classification, and
localization.
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B. RESIZING OF IMAGE

The dataset can directly handle RGB (red, green, and blue),
which are true color images, but the size is an issue due to the
imbalanced image size during the building of the dataset. The
dimensions are converted to processible dimensions concern-
ing neural networks. It is possible to convert all images or use
another methodology manually. However, BULKRESIZE
online is the quickest and easiest option [47]. Height, width,
format, and image quality can all be changed along with
the background color using the BULKRESIZE option. Engi-
neer Asad Ullah also used the same research method [48].
In addition to this, there is yet another method [49]. With this
method, the images are cropped following the necessary input
for the respective neural networks to process.

As seen in Figure 7, the image’s left side was originally
512x512x 3, but it was changed to a size that could processed
by the neural network. Like the illustration above, all images
are resized and saved in the storage device. After that, the
final cropped images are assigned to the appropriate class.
The classes are manually configured to ensure accuracy.
Additionally, this is done to prevent the display of any images
that have been cropped or resized so that the crack no longer
exists. Figure 8 displays some randomly selected training
images that have been cropped. They are chosen randomly
and contain images of cracks and non-cracks, including pot-
hole, alligator, big or wide, complex, etc. cracks images,
respectively.

FIGURE 8. Some randomly selected dataset images.

C. NEURAL NETWORK MODEL AND MODIFICATION

In many cases, the training set is divided into two subsets
- one is used for actual training, and the other is employed
to monitor how the training is progressing. This subset is
referred to as the validation set [50]. The dataset provides
a predefined train/ validation and test split. The performed
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experiment on a dataset has a training, validation, and test set
divided into 70, 15, and 15%, respectively. After the data col-
lection, the experiment is performed using MATLAB 2018b
as software. The Device name used is DESKTOP-G5S8EQ3,
with an Intel(R) Core (T.M.) 17-8565U processor. The 11 pro
window edition is used, having built an operating system
of 22000.434 with a version of 21H2. The installed CPU is
1.80GHz and 1.99 GHz with a GPU of Intel UHD Graphics
620 (300 - 1150 MHz). Random access memory of 8.00 Giga-
bytes GB having experience pack of 1000.22000.434.0. The
system is implemented for AVX, AVX2, and hyper-threading
with virtualization. The default ResNet18 NN architecture is
shown in Table 2.

ResNet18 training necessitates many computations, which
may take more training time, but accuracy is excellent. The
manipulation is done for the sake of performed research,
and the last layer is designed for 8-crack class classifica-
tion. In ResNetl8 NN, the total trainable parameters are
11,511,784 [51]. Table 2 shows the padding, stride, input,
and output layers. Residual block is one of ResNet18’s dis-
tinctive characteristics in the implemented research. To learn
the residual between the input and output instead of the
direct mapping, the implemented network learned the “iden-
tity shortcut link,” which introduces a shortcut between two
layers. By incorporating skip connections with identity map-
ping, the residual block solves the problem of disappearing
gradients while training intense models. There is a set weight
of 1.0 for these skip connections. Because of the skip connec-
tions, the model can become quite deep while still trainable.
The residual block tries to fit a different mapping, as shown
in Equation 5.

H(x) = F(x) +x 5)

Concerning identity, (x) is a residual mapping. Learning
the weights as 0 is simple if the best mapping is identity.
Otherwise, finding tiny fluctuations besides the identity map-
ping is easier if the ideal mapping is close to the identity. The
proposed method utilizes a projection connection instead of
an identity connection when the output and input dimensions
differ. The function G(x) transforms input x into output F(x)
dimensions [52]. There is a difference between the regular
and residual blocks of the ResNet18 algorithm, shown below
in Figure 9.

X X
- Stacked Neural Stacked Neural
Network Layers L Network Layers
I =
~ -
y=6G) y=fG)+x

FIGURE 9. Comparison between CNN stable block and residual block of
Resnet18.
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A residual block involves learning the residual (x) between
the output and the input. The residual module determines
whether or not a connection is allowed to skip its present
connection.

D. PROPOSED INNOVATIVE MODEL SMR18-NN
SMR18-NN is built so that faster RCNN is used to share
the computation of DNN between the region proposal net-
work and fast RCNN. One of the key contributions is the
enlargement of this algorithm of multiple classes, comprising
non-crack and crack classes. The built dataset is capable
of covering an assortment of on-field environments. Using
a variety of cameras and vision equipment, this technique
intends to make a routine inspection of pavement structures
easier while also speeding up the accurate assessment of the
broad crack distribution. Secondly, convolutional maps are
shared between regional proposed networks. This is done to
make Faster RCNN faster. The proposed new algorithm is an
automated vision-based crack detection method using deep
learning.

The pavement road crack detection algorithm using Faster
RCNN is divided into two main networks, as shown in
Figure 10. Fast RCNN and RPN execute crack detection
using or sharing the same deep neural network architecture,
and here, the deep neural network used is ResNetl18. For
modification in ResNetl18, the last two layers are modified:
max pooling and fully connected. Modifications are done in
the CONV and FC layers, while the Softmax layer is replaced
with Softmax and regression. For ResNet18 fast RCNN mod-
ification, the last max pooling layer is modified by the Rol
(Region of interest) pooling layer. The modification is shown
below in Table 3.

onEy e X0qq

0B K00

Rol Feature Vector

FIGURE 10. The schematic architecture of Faster R-CNN (RPN upper and
FRCNN lower portion).

A regional proposal network (RPN) is a fully convolutional
network that generates a set of object proposals in the form
of rectangular bounding boxes from input images. The liter-
ature demonstrates that the RPN is a critical component of
the Faster-RCNN model. The RPN comprises two networks
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TABLE 2. ResNet18 architecture.

Input Output Layer Stride  Pad Kernel Input Output Parameters
224 224 3 112 112 64 Convl 2 1 7 7 3 64 9472
112 112 64 56 56 64 Maxpool 1 2 0.5 3 3 64 64 0
56 56 64 56 56 64 Conv2-1 1 1 3 3 64 64 36928
56 56 64 56 56 64 Conv2-2 1 1 3 3 64 64 36928
56 56 64 56 56 64 Conv2-3 1 1 3 3 64 64 36928
56 56 64 56 56 64 Conv2-4 1 1 3 3 64 128 36928
56 56 64 28 28 128 Conv3-1 2 0.5 3 3 64 128 73856
28 28 128 28 28 128 Conv3-2 1 1 3 3 128 128 147584
28 28 128 28 28 128 Conv3-3 1 1 3 3 128 128 147584
28 28 128 28 28 128 Conv3-4 1 1 3 3 128 128 147584
28 28 128 14 14 256 Conv4-1 2 0.5 3 3 128 256 295168
14 14 256 14 14 256 Conv4-2 1 1 3 3 256 256 590080
14 14 256 14 14 256 Conv4-3 1 1 3 3 256 256 590080
14 14 256 14 14 256 Conv4-4 1 1 3 3 256 256 590080
14 14 256 7 7 512 Conv5-1 2 0.5 3 3 256 512 1180160
7 7 512 7 7 512 Conv5-2 1 1 3 3 512 512 2359808
7 7 512 7 7 512 Conv5-3 1 1 3 3 512 512 2359808
7 7 512 1 7 512 Conv5-4 1 1 3 3 512 512 2359808
1 7 512 1 1 512 Average pool 7 0 7 7 512 512 0
Total 11,511,784
TABLE 3. RPN layers specification.
Feature Vector
DNN PFeature Map
Layer Name Filter size Depth Stride
1 Conv+RelU 7x7 96 2
2 LRN - - -
3 Max Pooling 3x3 96 2
4 Conv+RelU 5x5 256 2
5 LRN - - -
6 Max Pooling 3x3 256 2 FIGURE 11. The schematic architecture of the region proposal network.
7 Conv+RelLU 3x3 384 1
8 Conv+RelU 3x3 384 1
9 Conv+RelU 3x3 256 1
10 Sliding Conv+RelLU 3x3 256 1 . . J
object detection models, the RPN utilizes the anchor mecha-
11 FC - 256 - . .
nism to generate k anchors at the convolutional feature map.
12 Softmax & Regressor - - -

that are connected by two parallel convolution layers. Given
the feature map extracted by the feature extraction network,
the RPN produces a series of highly accurate regions. After
receiving the feature map, the RPN initially generates a 1024-
dimensional feature map using a 3 x 3 convolution. Then,
it generates anchors, and two parallel branches are used
for classification and boundary regression. Unlike traditional
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The generated anchors are then forwarded to the subsequent
two parallel convolution layers. Branch 1, one of the con-
volution layers, generates 2xkdimensional vectors matching
the k anchors’ scores classified as targets or backgrounds.
The other convolution layer, named branch 2, produces a
4xk-dimensional vector corresponding to the positional trans-
formation parameters of k anchors linked to the actual object
bounding box. In this study, branch 2 is utilized for target
and background classification. Figure 11 illustrates the RPN’s
entire schematic architecture.
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In the above Figure, there are anchors after the feature
map layer. The anchors often number nine and can be found
in other aspect ratios, including 1:1, 2:1, and 1:2. The three
advised anchors have the following sizes: 128 x 128, 256 x
256, and 512 x 512. Fast RCNN is given the obtained region
proposal for additional fine-tuning to enhance the classifi-
cation process. The obtained region proposal is described
by predicting each box’s rectangular bounding boxes and
probabilities. Here, Table 4 explains Fast RCNN layers in
detail.

TABLE 4. Fast RCNN layers specification.

Layer Name Filter size Depth Stride
1 Conv+RelLU 7x7 96 2
2 LRN

3 Max Pooling 3x3 96 2
4 Conv+RelLU 5x5 256 2
5 LRN

6 Max Pooling 3x3 256 2
7 Conv+RelLU 3x3 384 1
8 Conv+RelU 3x3 384 1
9 Conv+RelLU 3x3 256 1
10 Rol Pooling -- 256

11 FC+RelU - 4096

12 Dropout

13 FC+RelLU - 4096

14 Dropout

15 FC+RelLU -- 6

=
[}

Softmax & Regressor

Like RPN, the Fast RCNN uses DNN to extract feature
maps from the object proposal provided as an input image
after receiving the object proposal from RPN. The acquired
feature maps are overlaid with the RPN region proposal.
The Region of Interest (Rol) is presented in the object pro-
posal. When using Rol pooling, Rols are provided, and the
max-pooling procedure is used to create a feature vector for
each Rol with a fixed size. The FC layers get the result-
ing vectors. The softmax layer follows the FC layers, and
the regression softmax layer finds the probability of image
cracks. In contrast, the regression layer shows the location
and size of the anchors, shown in Figure 12.

o Mz  Pooling Layes

o

Softmax l‘,« “?l
A

— | —_——

Regression “

Object Proposal

FIGURE 12. The schematic architecture of Fast R-CNN.
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Once all these parameters and modifications are done,
the architecture extracts features. Support Vector Machine
(SVM) is used as a classifier. This classifier is preferred to
improve actual positive value. Figure 13 below shows the
internal processing structure of SMR18 NN.

A Pre
Dathase =) e. E SMR18-NN E Crack- Results
Processing Localization

FIGURE 13. The internal processing structure of the algorithm.

The modification in SMR18-NN is done so that faster
RCNN is attached with DNN, and Faster RCNN is a com-
bination of two N.N., Fast RCNN and RPN. In SMR18-NN,
a new modification is made to attach the support vector
machine to the algorithm for good classification results. Dur-
ing the implementation of SMR18-NN, localization is done
to emphasize the result at the end, and after gaining the
result, it is compared with the ResNet18 result. Ultimately,
the decision is made using the results’ statistics. The feature
maps are acquired by utilizing DNN in RPN. After getting the
feature maps, a CONYV layer followed by the ReLU activation
function is slid on each pixel to get feature maps. Each sliding
window feature is planned into a vector and given to a softmax
layer and regressions, which predict bounding box locations
and the related probabilities.

V. IMPLEMENTATION AND RESULT ANALYSIS

A. PRE-PROCESSING

As already mentioned, deep neural network training is a chal-
lenging undertaking. To get the best performance out of the
network, thorough training must be done to adjust the weights
and biases of each neuron. Region Classification based on
Adaptive thresholding has been used for better classification.
Equation 6 below shows the formula used for classification.

l[(a,b)y=f(ab)+1(@-1,b)+1(a,b—-1)
—Il(@a-1b—1DHKx)=Fx)+x 6)
where f (a, ) is the thresholding pixel of each classified part
of the image starting from (ap, b1) to the end, shown by

(an—1, by—1). The Equation 7 is the transform equation of
Equation 6.

fiab) =377 377 filab) =1 (@b
—I (a2, b2 — 1) =1 (a2 — 1,b2)
+1@—1b—DH® =F®) +x ()

where the square patch size with the 2 x 2 the threshold value
of classification of T (a, b) is below:

. (a, b) t
Tap=11 T@h>7"7 X(l_ﬁ) (8)

0 otherwise
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In the above equation 8, T (a, b) is the classification bina-
rized value with the thresholding sensitive value 7. The
formula is implemented on each pixel (a, b) of the image
patch. The pixel value of the image is maximum in the center
of the image and lower at the edges of the image. The trans-
form value is represented by F (x,y) it is shown in the
equation 9.

A 1 -1 —1 o rxx WY

In the equation above f (a, b) is the exact pixel value
between two pixels of the image, e 727G W) s the cor-
responding agent of each pixel value. The complex output
of the transformation is produced without losing accuracy.
The function of this transformation will make the proposed
algorithm fast and robust in terms of time and accuracy,
respectively. There is also a conditional probability between
two pixels of the image as if they have a similarity up
to a non-ignorable level. So, the algorithm is designed in
a way that the thresholding point will automatically cate-
gorize them in the crack or non-crack part of the image.
There is a special Equation 10, for finding the similar-
ity between two-pixel points of the image with conditional
probabilities.

¢ llaj—ail*/207

Qjii = (10)

—llai—ag|* /20
Zk;éi ¢

where o; is the variance of the Gaussian centered on the data
point a;. The a; and a; are y; and y; are the matching parts
between points, respectively and it is shown in equation 10.
The pairwise similarity is shown by Fj;; of image pixel a; and
a;j can be found as in Equation 11.

o~ lIbi—=bill?
Fi = Fyi = 0. (11)

> e bl

The probability of a maximum match of the pixel depends
on the output of Qj; and Fj;. These outputs are directly
dependent on the variables a; and a; with a segmented part
of another image part that is b; and b;. Fj; can be expended
using a series, as shown in the Equation 12.

—1
(1+ = ilP)
qij = . (12)

(Zk;&il + [y - yi“2)71

The previous equation has the advantage that

-1
(1 + ||yj — y,-||2) approaches an inverse square law for

large pairwise distances, ’ yji —Yi ||2 This ensures that the
joint probabilities are almost invariant to changes in map
scale. A natural measure of faithfulness with P;; and gj;,
is Kullback-Leibler divergence. t-SNE minimizes the sum of
the Kullback-Leibler divergence over all data points by using
gradient descent. Assuming symmetricity, the cost function
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is given as in Equation 13:

aC _
oy = 42020 (P = a) (14 i = 112) L)
(13)

Mapping features in the low-dimensional space using t-
SNE enables visualization of the metadata feature space
during knowledge transfer across the layers of the deep neu-
ral network. t-SNE is analogous to Eigen map analysis to
find the relevant clusters, which essentially gives the Eigen
gap between successive clusters. The main reason for using
ResNet18 and SMR18-NN is that they have distinct architec-
tures, resulting in different training processes and outcomes.
To achieve the objective, both networks are evaluated, and the
accuracy obtained determines which network is more suitable
for the dataset in terms of training, validation, and testing.
ResNet18 and SMR18-NN differ in various aspects, which
will influence their outputs. Here is the training analysis of
ResNet18 and SMR18-NN.

B. RESNET18 MODEL IMPLEMENTATION

During the experiment involving ResNetl8, a single GPU
was employed as the available resource. The experiment
conducted for six epochs resulted in a 90.64% accuracy in
training. The learning rate (LR) was set to 0.001, the maxi-
mum iterations were 1242, and there were 207 iterations per
epoch.

Figure 14 shows the ResNet18 training and that when the
epoch is updated, the accuracy increases, and the loss function
decreases. This indicates that the model is working correctly,
and in the final epoch, the maximum accuracy is gained with
a minimum loss. The whole experiment is performed under a
constant learning rate.

C. SPLICED MULTIMODEL RESIDUAL18 NEURAL
NETWORK OPTIMIZATION
As per the experiment performed and the result is a concern,
all the data distribution and various parameters, such as train-
ing, validation, testing, leaning rate, epochs, and the number
of iterations, are kept the same as the ResNet18. Because the
newly proposed method is ultimately compared to ResNet18,
it sought to maintain all the parameters at the same level. The
dropout layer is also kept the same as before, which is 0.5,
preventing the overfitting problem. To create object proposals
for the Fast R-CNN, the RPN is trained using pre-trained
DNN-initialized weights as a first stage. In the second stage
of training, the Fast R-CNN is initialized using the pre-trained
weights acquired in the object proposal generation stage.
In step 3, object proposals are again generated after RPN has
been trained using the weights collected in step 2. The created
object proposal is given to the Fast R-CNN in step 4, which
trains it using the initial parameters discovered in phase 3.
Figure 15 shows the training processing of the network at the
end of this research article.

The proposed crack detection algorithm, SMR18-NN, uses
a fully connected layer to generate output. This output is
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& Training Progress (09-Nov-2022 12:26:27) = o X
Training Progress (09-Nov-2022 12:26:27)
Results
Validation accuracy: 90.64%
Training finished: Reached final Iteration
Training Time
Start time: 09-Nov-2022 12:26:27
Elapsed time: 322 min 16 sec
3 Tralning Cycle
z Epoch: 6of6
3 Iteration: 1242 of 1242
2 Iterations per epoch: 207
Maximum iterations: 1242
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FIGURE 14. ResNet18 training.
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FIGURE 15. Accuracy/ loss graph of SMR18 neural network.

then used as the input feature vectors for an SVM classifier,
which is applied during the final stage of the algorithm.
The main objective of SVM is to identify a hyperplane that
distinguishes most of a labeled dataset for classification. This
study used an RBF kernel for SVM, and a cross-validation
technique was utilized to obtain optimal results. Generally,
DNN is used to extract features from paved images, but
SVM is used as an alternative classifier to a softmax layer to
enhance the classification ability. Typically, DNNs are used
to extract features from paved images, but in this algorithm,
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SVM is used instead of a softmax layer to improve classifi-
cation accuracy.

VI. RESULT ANALYSIS
A. RESNET18 EXPERIMENT RESULT ANALYSIS
The target and output classes are shown wit in Figure 16. The
Figure is a confusion matrix elaborating every class output as
target and output classes.

The best outcome in the above-shown confusion matrix
is the pothole class because of the 100% accuracy rate and
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Confusion Matrix of Test
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FIGURE 16. Confusion matrix of the Resnet18.

the correct classification of all the images. In Figure 16 of
the ResNet18 confusion matrix, the true positive values are
235 for alligators, 289 for big, 105 for complex, 231 for
longitudinal, 268 for crackles, 271 for a pothole, 145 for
sealed, and 225 for transverse class cracks. The results are
satisfactory for the processed dataset since the true positive
detected images for wide crack images, which is 289, are also
impressive. The confusion matrix shows that ResNet18 per-
forms excellently in every class, resulting in 85.20% overall
accuracy.

B. SMR18 COMPARISON AND ANALYSIS WITH RESNET18
NEURAL NETWORKS

After getting the test result of SMR18 NN, which is 92.00%,
this result is compared with ResNetl18 NN taken from the
above experiment. It is crystal clear that all the output results
of the SMR18-NN are far better than ResNet18. Figure 17 is
more visible.

Owerall Training and Test Accuracy of two Algorithm

96.2

20

Training Accuracy Test Accuracy

®ResNetl8 SME18-NN

FIGURE 17. Comparative results of ResNet18 and SMR18-NN.
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Figure 17 shows comparative results of ResNetl8 and
SMR18-NN in which training accuracy is shown on the left
side while the right side presents test accuracy results. After
finding the values, a comparison is made at the end. The value
for ResNel8 is 90.60% and 85.20% in the training and test
class. At the same time, SMR18-NN is 96.20% and 92.00%
for training and test class, respectively.

VIl. EXTENDED RESULTS IN TERMS OF OTHER
MEASURES

When analyzing the results of a task, several performance
metrics can be employed. Different methods exist to evaluate
a model, but in engineering, there are three scales based on
which it can find the performance score of any network.
These are precision, recall, and F1 Score. So, to find the
accuracy level of ResNet18 and SMR18-NN, the overall aver-
age accuracy is calculated for precision, recall, and F1 score.
The last figure, Figure 17, shows the accuracy comparison;
it doesn’t give information about each class, so it will be
more accurate to compare the results of each class for better
analysis.

A. PRECISION

Precision considers all retrieved documents and can be eval-
uated at a specific cut-off rank, considering only the system’s
top results. Equation 14 for finding the precision value.

Tp

_— 14
T, +TF (14

Precision =

B. RECALL
Recall is a crucial metric that determines the number of
positives the model accurately identifies as true positives.

Tp
Recall = —P—— (15)
T, +Fy

C. F1-SCORE

The F1-Score measures the accuracy of a model on a
dataset. It assesses binary classification algorithms cate-
gorizing examples as ‘positive’ or ‘negative.” The F-score
combines the model’s precision and recall. Interestingly, the
F1-Score can be adjusted to prioritize either precision or
recall. F1-Score, which is a function of precision and recall,
the formula is as follows:

Precision x Recall

F1 — Score = —
Precision + Recall

) x 2 (16)

The recall is the ratio between correct classified class
samples and the class’s total number of instances. Table 5
shows the training and test average ResNet18 and SMR18 NN
scores. The result-wise performance of SMR18-NN is almost
6-7% better than ResNet18.

In engineering, this is a considerable achievement. It is an
eye-opening result for any researcher.

In Figure 18 above, six classes are compared, in which
three left sidebars present training accuracy of precision,
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TABLE 5. Results comparison of average accuracy.

Method Training Average Score Test Average Score
Precision  Recall F1 Precision  Recall F1
Score Score
ResNet18 85.43 89.40 87.36 84.80 85.38  85.08
SMR18- 92.25 91.68 91.96 87.90 90.26  89.06
NN

recall, and F1 score, and on the right side, the same sequence
order for the test class. From left to right, the precision value
for ResNet18 is 85.43, and SMR18-NN accuracy is 92.25,
indicating very high progress in accuracy. The recall value
for ResNetl8 is 89.40, and SMR18-NN is 91.68. Mean-
while, the average F1 Score is 87.36 and 91.96 for ResNet18
and SMR18-NN, respectively. Test average precision indi-
cates 84.80 for ResNetl8 and 87.90 for SMR18-NN. The
Figure shows much improvement comparatively because for
ResNet18, the outcome is 85.38, but for SMR18-NN, the
value is 90.26. The figure’s right side presents 85.40 for
ResNet18 and 89.06 for SMR18-NN. If the figures are deeply
observed, all results are improved significantly irrespective of
training or test class.

Average Comparison of Precision, Recall and F1 Score

100

3
60
5
4
10

Precision Recall F1 Score Precision Recall F1 Score

3 8

8 88 8

o

Training Accuracy Test Accuracy

= ResNet18 ~ SMRIS-NN
FIGURE 18. Precision, recall, and F1-Score comparison.

In Table 6, each class precision comparison is shown.
From alligator to transverse class, each is showing significant
improvement in SMR18-NN is visible. The alligator class
accuracy for training ResNetl8 is 98.10, but the accuracy
in SMR18NN is 99.20, while for test precision, the values
are 83.60 and 85.10 in ResNet18 and SMR18-NN, respec-
tively. For the big (Wide), non-crack, and pothole classes,
the accuracy results are outstanding that is 98.90, 98.20, and
100 for training ResNetl8, but in the table, the result of
training SMR18-NN it is much better than ResNet18 for these
classes. These class values are 99.50, 99.10, and 100 for
SMR18-NN with the same sequence of big, non-crack, and
pothole classes. For test ResNet18, precision values for the
same classes are 98.00, 96.80, and 96.80, while SMR18-NN
got 98.90, 98.00, and 98.50 for big, respectively, non-crack
and pothole classes, respectively. The complex class result
is worse than all, for training ResNetl18, its value is 52.30,
and for SMR18-NN, it is 58.80, while for the same class, the
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test ResNet18 is 41.80 and SMR18-NN is 51.20. The training
ResNet18 values are 90.60, 93.10, and 91.20 for longitudi-
nal, sealed, and transverse classes, while for respective class
SMR18-NN, the values are 92.60, 95.80, and 93.00, respec-
tively. The test precision score is impressive for ResNet18 for
the described classes, which is 81.60, 92.40, and 84.90 for
longitudinal, sealed, and transverse crack classes, respec-
tively, while for SMR18-NN, the values are 84.40, 94.20,
and 87.10 for the above mentioned three classes respec-
tively. Figure 19 shows the recall numbers for ResNet18 and
SMR18-NN at the end of this research article.

TABLE 6. Results comparison of average accuracy.

Class ResNet18 SMR18-NN ResNet18 SMR18-
(Training) (Training) (Test) NN (Test)
Alligator 98.10 99.20 83.60 85.10
Big (Wide) 98.90 99.50 98.00 98.90
Non-crack 98.20 99.10 96.80 98.00
Pothole 100.00 100.00 96.80 98.50
Complex 52.30 58.80 41.80 51.20
Longitudinal ~ 90.60 92.60 81.60 84.40
Sealed 93.10 95.80 92.40 94.20
Transverse 91.20 93.00 84.90 87.10

For recall, the worst class is the sealed class because the
values for training ResNet18 and SMR18-NN are 57.90 and
61.40, respectively. For test ResNetl8, it is 48.50 and
56.30 for SMR18-NN. Wide or big, longitudinal, and pothole
are outclass for recall because all the result values are up
to 90. For ResNet18 training accuracy for big, longitudinal,
and pothole crack classes, the values are 98.30, 93.90, and
100, while for SMR18-NN, the values are 99.20, 95.40, and
100.0, respectively. 92.90 is the value of training ResNet18
in the alligator class, and the SMR18-NN value is 94.50 for
the same class. It is a little weird for the same class in the test
section because the test alligator score for ResNet18 is 87.20,
which is very bad compared to SMR18-NN for the same
class, which is 91.50, comparatively defendable. For com-
plex, non-crack, and transverse classes, the training ResNet18
value is 79.80, 98.20, and 94.20. In comparing these scores,
training SMR18-NN is almost the same except for com-
plex class, which is 87.70, 99.40, and 94.20 for respective
non-crack and transverse classes. In the test section, the
values for these complex, non-crack, and transverse classes
are 81.40, 89.90, and 87.90 for ResNet18. For the same class,
the values are 97.50, 91.9, and 92.30 for SMR18-NN. The
most accurate and unbeatable result for all the algorithms,
irrespective of ResNet18 or SMR18-NN, is the pothole class,
whose result is 100 in all the classes. All the descriptive
statistics are shown in Figure 19, and Figure 20 is the figure
for the F1 Score comparison at the end of this research article.

Figure 20 shows the F1 Score result. It is evident that the
pothole is once again leading the result because the score for
training classes for ResNet18 and SMR18-NN is 100, which
is unbeatable, but for a test class, the ResNet18 value is 98.37,
and SMR18-NN is 99.24. The output for the non-crack and
big crack classes is comparatively sound because for training
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FIGURE 19. Recall comparison.
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FIGURE 20. F1 Score comparison.

ResNetl18, its value is 98.20 and 98.59, while 99.24 and
99.34 for SMR18-NN. For the same classes in the test class,
its values are 93.22 and 97.64 for ResNet18 but 94.85 and
98.34 for the SMR18-NN. Training ResNetl8 values are
95.42,63.18,92.22,71.30,92.67, and for SMR18-NN, 96.79,
70.39, 93.97, 74.83, and 94.42 for the respective classes of
alligator, complex, longitudinal, sealed and transverse. If this
classwise order is followed, the values for the test F1 score
of the two algorithms are 85.36, 55.23, 85.99, 65.31, and
86.37 for ResNet18, while the SMR18-NN results are 88.18,
67.14, 89.29, 72.04 and 89.62. From the above discussion,
it is clear and a significant achievement that the pothole crack
class result is almost ideal and unbeatable. The gain result for
this specific class is almost 100% accurate.

D. PAVEMENT CRACKS LOCALIZATION AND ANALYSIS

The crack localization implementation combines the train
neural network algorithms with sliding window techniques.
The sliding window size in the performed experimentis 1 x 1,
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as shown in Figure 21. The purpose of such a small size is to
increase accuracy significantly by decreasing false positive
detection.

ist Scanning

FIGURE 21. Sliding window technique.

Some input images were new to the algorithm during crack
localization, but some augmented training images were given
as test images. The result can be seen in Figure 22, where
the regions are identified correctly and are indicated by the
blue boxes after implementing crack localization. One of the
other benefits of crack localization is that it can easily find
the size and depth of the pavement crack. Though it can
find the size of the crack mathematically, it will always be a
rough estimation, which might be near the actual crack size.
The result shows that the algorithm performance is excellent
because new data is fed, and that data has never been used
before for training. Some concrete structure images were also
given to the system to test whether the proposed algorithm
can detect cracks in concrete structures. The image is divided
into a grid in the localized cracks figures, and the proposed
crack detection algorithm classifies each grid. If the grid is
classified as cracked, the highlighted grid is blue and yellow.
As shown in the images, most cracked regions are accurately
detected. However, there are still instances of incorrect cate-
gorization

According to the results of the studies, the SMRI8-
NN approach offers the potential for automatic pavement
crack detection. In this work, SMR18-NN is implemented
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FIGURE 22. Crack localization results.

to automatically detect and localize the cracks in images of
paved roads. The algorithm offers better resistance to noise
and does not require handcrafted features as it automatically
extracts features [53]. Once a deep neural network is trained,
it can accurately detect crack regions in images, which is
more efficient and cheaper than manual inspection. Creating a
quality dataset can present difficulties as it depends on human
assessment as the ultimate standard and requires verification
from multiple sources. The proposed model has to be realis-
tic, yet the computation cost has to be reasonable, which is
fulfilled by our proposed SMR18-NN.

VIIl. CONCLUSION, LIMITATION, AND FUTURE WORK
The current research uses modern image processing and
genetic algorithms to identify and categorize pavement
distress cost-effectively, precisely, and efficiently. It was
achieved using advanced Photo processing and genetic algo-
rithms. The studied method automates pothole, longitudinal,
and sealed crack evaluations well. It was highly reliable and
precise in the samples analyzed. The system is excellent
at finding pothole cracks, which can cause road deteriora-
tion, accidents, and traffic congestion. This inquiry relies
on the algorithm’s independence to eliminate manual feature
extraction. This quality reduces errors and human involve-
ment expenses. Support Vector Machines in SMR18-NN and
ResNet18’s testing performance, which yielded an accuracy
rate of 85.20%, demonstrate the method’s robustness.

The study’s shortcomings include its reliance on tiny Photo
collections and its inability to obtain interior fracture data.
Broader applications, including video processing and med-
ical imaging, have yet to be fully explored. Although no
model can attain 100% accuracy, using more datasets, itera-
tions, and hyperparameters can improve precision. It bodes
well for academic research in the future. Further research
should examine other datasets and models to determine the
findings’ generalizability and analyze classifiers that may
increase algorithm accuracy. This helps researchers decide if
the findings are generalizable. Using advanced deep learning
models like VGG19, Google Net, ResNet50, and Incep-
tion v3 to compare SMR18-NN outputs appears promising.
This opportunity is good. The algorithm’s architecture may
improve pavement crack identification and classification,
including max-pooling, Leaky ReLU, clipped ReLU, and
BiLSTM, and transfer learning with pre-trained models. This
work advances pavement distress evaluation and prepares
future studies for more complex, accurate, and comprehen-
sive methods. One ongoing challenge is enhancing accuracy
and flexibility when dealing with fractures with similar visual
characteristics. The task is challenging since even human

VOLUME 12, 2024

inspectors struggle with it. Continued research into innova-
tive designs, more datasets, and different applications will
speed up the development system of pavement crack detec-
tion and improve its effectiveness.

ABBREVIATION
AMOST Augmented Minority Over-sampling
Technique.
NN Neural network.
ANN Artificial Neural Networks.

DNNs Deep neural networks.
CA Classification accuracy.

GANs Generative Adversarial Networks.
RGB Red, Green, and Blue.
SVM Support Vector Machine.
Rol Region of interest.
RPN Region Proposal Network.
UsS United States.
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