
Received 18 June 2024, accepted 17 July 2024, date of publication 23 July 2024, date of current version 31 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3432594

An Effective Discrete Jaya Algorithm for
Multi-AGVs Scheduling Problem
With Dynamic Unloading Time
YINGYING CUI , BAOXIAN JIA, HONGYAN SANG, LEILEI MENG ,
BIAO ZHANG, AND WENQIANG ZOU
School of Computer Science, Liaocheng University, Liaocheng 252000, China

Corresponding authors: Baoxian Jia (jiabaoxian@lcu.edu.cn) and Wenqiang Zou (zouwenqiang@lcu-cs.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 52205529, in part by the Natural
Science Foundation of Shandong Province under Grant ZR2021QE195, in part by the Youth Innovation Team Program of Shandong
Higher Education Institution under Grant 2023KJ206, in part by the Research Fund Project of Liaocheng University under Grant
318012110 and Grant 318052150, in part by the Cloud Native Database Architecture Innovation and High-Performance Core Technology
Project under Grant ZTZB-23-990-024, and in part by Shandong Province Social Science Planning Digital Research Project ‘‘Shandong
Province Government Big Data Governance System Construction Effective Path Research’’ under Grant 23CSDJ10.

ABSTRACT With the advance of Automated Guided Vehicles (AGVs) technology, the scheduling
of multiple AGVs in a matrix manufacturing workshop has attracted considerable attention. However,
little attention has been devoted to dynamic unloading time for multiple AGVs scheduling. This paper
investigates a new multi-AGVs scheduling problem with dynamic unloading time (MAGVSDUT) in a matrix
manufacturing workshop with the objective of minimizing the transportation cost, including travel cost,
penalty cost, and vehicle cost. To solve MAGVSDUT, a mixed-integer linear programming model and a
discrete Jaya (DJaya) algorithm are proposed. At first, a heuristic based on ant colony algorithm is designed
to generate high-quality initial solution. And then, two DJaya operators are designed, one of which is a near
optimal operator updating solutions towards better solutions found, while the other is the awayworst operator
updating solutions towards worst solutions. In addition, a sequence insertion operator is designed to help
the population find better solutions within the global space. Finally, a battery of comparative experiments
is conducted in conjunction with the actual situation of an electronic equipment manufacturing company.
The computational results show that the proposed DJaya algorithm is superior to the existing algorithms in
tackling the considered problem.

INDEX TERMS Matrix manufacturing workshop, multi-AGVs, dynamic unloading time, discrete Jaya
algorithm, heuristic.

I. INTRODUCTION
With the rapid advancement of automatic guided vehicles
(AGVs) technology, AGVs have gained extensive traction
across diverse sectors includingmanufacturing, warehousing,
logistics, healthcare, and other domains [1], [2], [3], [4],
[5]. Especially in manufacturing, AGVs are often employed
to carry out handling tasks to improve productivity [6].
Since employing a single AGV to complete all handling

The associate editor coordinating the review of this manuscript and

approving it for publication was Utku Kose .

tasks is often time-consuming, the utilization of multiple
AGVs working collaboratively has become inevitable [7].
To our knowledge, efficient scheduling of multiple AGVs
is a feasible way for improving production efficiency and
reducing production costs. When the AGVs unloaded the
production materials at their designated site, if the charac-
teristics of the problem are not considered, the unloading
time can be ignored or set to a fixed time [8]. However,
given the reality of the matrix manufacturing workshop,
the unloading time can not be ignored or set to a fixed
time, because it will lead to some production equipment

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 101701

https://orcid.org/0000-0001-8801-4519
https://orcid.org/0000-0003-1439-4832
https://orcid.org/0000-0002-0836-6360
https://orcid.org/0000-0002-9652-6415

Y. Cui et al.: Effective Discrete Jaya Algorithm for Multi-AGVs Scheduling Problem

accidents. Currently, there are relatively few studies on the
multi-AGVs scheduling problem with dynamic unloading
time (MAGVSDUT) to optimize the cost and efficiency of
matrix manufacturing workshops. Therefore, it is highly
significant for manufacturing enterprises and researchers
to study the MAGVSDUT in a matrix manufacturing
workshop.

The matrix manufacturing workshop represents a novel
form of production facility that, in contrast to traditional
workshop models, effectively caters to the demands of multi-
variety, personalized, and small-scale manufacturing. The
workshop consists primarily of three components: a depot,
workstations, and AGVs. In the workshop, AGVs start from
the depot, deliver production materials to the designated
workstations, unload them considering the important fac-
tor of dynamic unloading time, and return to the depot
after completing all tasks. The increase in the number of
designated workstations will increase the complexity of
solving the problem. As we all know, the AGV scheduling
problem has been proved to be an NP-hard problem, so the
MAGVSDUT is also an NP-hard problem after adding the
factor of dynamic unloading time. For an NP-hard problem,
it is challenging to obtain the optimal solution using an exact
algorithm within a specified time, while using heuristics
and metaheuristics is considered to be one of the best
approaches to finding the optimal or approximate optimal
solutions [9]. As a metaheuristic, the discrete Jaya (DJaya)
algorithm has demonstrated its powerful search capability
in solving combinatorial optimization problems compared to
other algorithms. Therefore, in this paper, an improved DJaya
algorithm is proposed to solve the MAGVSDUT. The main
achievements can be described as follows:

• Formulate theMAGVSDUT and establish amixed-integer
linear programming model.

• Propose a heuristic based on ant colony algorithm to
generate high quality initial solutions.

• Propose an efficient DJaya algorithm with advanced
techniques, such as two DJaya operators in the updating
mechanism for balancing algorithmic exploitation and
exploration, and a sequence insertion operator for
facilitating the population find better solutions.

The rest of paper is arranged as below. In Section II, we recall
the literature intimately related to this issue. Section III
formalizes problem. Section IV provides a brief introduction
on the basic Jaya algorithm. This is followed by a presentation
of the discretization of the DJaya algorithm in Section V.
Section VI presents detailed experimental computational
outcomes and algorithm comparisons, and at last, Section VII
gives a comprehensive overview of the paper emphasizing the
main discoveries and contributions.

II. RELATED LITERATURES
The problem considered is about AGV scheduling in the
logistics of manufacturing systems, and many researchers
have made significant contributions to it. Aiming at the
scheduling problem of flexible assembly shop, Ge et al. [10]

proposed an online scheduling method of multi-AGV system
assembly shop based on shop static scheduling, and the AGV
transportation system load was used as part of the objective
function to establish the model. Aiming at the AGV flexible
job-shop scheduling problem, Chen et al. [7] established
a dual-resource integrated scheduling optimization model
with the goal of minimizing the maximum completion time
and proposed a hybrid discrete particle swarm optimization
algorithm that can effectively avoid premature convergence.
Meng et al. [11] addressed the distributed flexible job shop
scheduling problem with minimizing maximum completion
time. To improve the efficiency of the manufacturing system,
Tian et al. [12] studied the joint scheduling problem of
AGV and parallel machines in the automatic electrode
foil production process and proposed a discrete grey Wolf
optimization algorithm. To solve the joint production and
transportation scheduling problem in flexible manufacturing
systems, Fontes and Homayouni [13] utilized two sets of
chain decisions connected to each other by the completion
time constraints of machine operations and transportation
tasks. Hu et al. [14] proposed a task allocation method
based on adjacency combination and shortest path principle
for conflict-free scheduling of large multi-load AGVs, and
a heuristic search method based on variable neighborhood
search was presented to optimize the multi-AGV task
allocation problem. To improve the throughput performance
of Automated Guided Vehicle (AGV) unmanned storage
system, Tang et al. [15] established a two-stage mathematical
model. A two-layer genetic algorithm was designed to
optimize the task scheduling sequence of AGVs and picking
stations. Niu et al. [16] aimed at optimizing AGVDP by
fusing a multi-task chain model and the capacity predic-
tion model based on support vector machine. In view of
the flexible job-shop scheduling problem using segmented
AGV, Liu et al. [17] presented a mathematical model of
dual-resource scheduling optimization of machine tool and
robot and established an AGV with the objective function
of minimizing the maximum completion time. Zhang et al.
[1] analyzed the workshop AGV scheduling task, modeled
the workshop as a network of nodes, and applied an
improved QMIX-Based AGV Scheduling Approach. As peo-
ple’s personalization needs increase, matrix manufacturing
workshop is more and more favored by factories. The
research onmanufacturing systems has significant theoretical
significance. Nevertheless, the existing theories cannot be
readily applied to handle AGV scheduling problem in matrix
manufacturing workshops.

Recently, researchers have initiated investigations into
the AGV scheduling problem in matrix manufacturing
workshops owing to the advantages associated with such
workshops, including their large scale, variety and per-
sonalized customization. Zou et al. [8] first proposed
discrete artificial bee colony algorithm to handle scheduling
problem of multi-AGV in matrix manufacturing workshop.
Subsequently, Zhang et al. [18] proposed an improved
Iterative Greedy (IIG) algorithm to solve the multi-AGVs

101702 VOLUME 12, 2024

Y. Cui et al.: Effective Discrete Jaya Algorithm for Multi-AGVs Scheduling Problem

scheduling problem in the manufacturing workshop. In the
algorithm, the AGV path merging strategy and the workshop
division strategy were designed. Li et al. [19] proposed an
efficient discrete invasive weed optimization algorithm to
study automated guided vehicle scheduling problem with
time and capacity constraints. Li et al. [20] proposed a
new discrete invasive weed optimization algorithm to solve
dynamic multiple automated guided vehicles scheduling
problem. Zou et al. [21] proposed an iterative greedy
algorithm to solve multi-compartment automated guided
vehicle scheduling problem. Li et al. [22] proposed an
enhanced genetic algorithm for the AGV scheduling problem
with unloading preparation time. Subsequently, Zou et al.
[23] proposed an iterative greedy algorithm to solve the
multi-AGV scheduling problem with offloading safety
detection. Aiming at the problem of multi-AGV charging
and maintenance, Zou et al. [24] proposed an adaptive
iterative greedy algorithm. Zou et al. [23] proposed a mixed
integer linear programming model and a population-based
iterative greedy (PIG) algorithm to solve the multi-AGV
scheduling problem with offload safety detection in a matrix
manufacturing shop.Wang et al. [25] used a population-based
variable neighborhood search (PVNS) algorithm to solve
the multi-AGV scheduling problem with sudden faults. The
above studies are all about the scheduling problem of AGV
in matrix production workshop, but they do not consider the
actual problem of dynamic change of AGV unloading time.
Therefore, it is crucial to propose an appropriate method to
solve the MAGVSDUT problem.

Jaya algorithm is a swarm based intelligent optimization
algorithm, which has shown excellent performance in solving
combinatorial optimization problems. It was first proposed
by Rao in 2016 for continuous optimization problems [26].
Mumtaz et al. [27] proposed a hybrid spider monkey
optimization (HSMO) algorithm to solve the PCB assembly
line problem with multi-level planning and scheduling.
Rauf et al. [28] proposed Raccoon family optimization
(RFO) algorithm to solve the problem of integrated planning
and scheduling of multiple manufacturing projects under
resource constraints. Khalid et al. [29] combined particle
swarm optimization with NEH algorithm to solve the
product scheduling problem in cell manufacturing system.
Wang et al. [30] studied the balance problem of mixed-
flow human-machine collaborative disassembly line, using
an improved artificial fish swarming algorithm (IAFSA) to
optimize the number of workstations, balance the idle time,
and minimize the disassembly cost. However, compared with
the existing algorithms, Jaya algorithm has the characteristics
of few parameters, optimization and error avoidance, and
has been used for various optimization issues in the past,
such as: The urban traffic signal control problem [31] and
the flexible flow shop scheduling problem [32]. Caldeira and
Gnanavelbabu [33] presented an improved Jaya algorithm
to handle flexible job shop scheduling problem, which
overcame problem of adjusting a mass of parameters and

improved the quality and diversity of the solution. Fan et al.
[34] proposed a hybrid Jaya algorithm combined with tabu
search to solve the FJSP. In the local search phase, three
methods are proposed to deal with multiple critical paths.
Gao et al. [35] proposed a discretized Jaya algorithm
for solving the flexible job-shop scheduling problem with
new job insertion, with the objective of minimizing the
maximum machine effort. Thus, although the Jaya algorithm
has many advantages and has been applied to various
practical problems, its performance in terms of dependence
on the initial solutions, lack of diversity maintenance, and
limited adaptability to specific problems still requires further
improvement.

In summary, AGV scheduling problem has become one of
the popular topics studied by scholars. However, there is no
research on MAGVSDUT in the current literatures, and even
though the available optimization algorithms have presented
solutions to the AGV scheduling problem, they cannot be
straightly applied to MAGVSDUT. Therefore, it is crucial to
address the MAGVSDUT with discrete Jaya algorithm.

III. PROBLEM DESCRIPTION AND FORMULATION
A. PROBLEM DESCRIPTION
A typical matrix manufacturing workshop was mentioned
by Zou et al. [8], as shown in Fig.1, where worksta-
tions and call-workstations are arranged neatly. When the
workstations are short of production materials, their status
change to call-workstations. For descriptive purposes, we call
call-workstations tasks. AGVs are tasked with delivering
production materials to these tasks. AGVs start from the
depot, deliver materials to the designated tasks, and return
to the depot after completing all tasks. Since the amount
of material unloaded in designated tasks is uncertain, the
time taken by AGVs to unload the material is also dynamic
and uncertain. The unloading time is an important factor
for the AGV scheduling system and cannot be ignored,
otherwise it may directly affect the normal production of
the workshop. Therefore, this study is that how to find an
optimal method to dispatch AGVs to complete all delivery
tasks while considering the dynamic unloading time. Without
loss of generality, several assumptions are given as follows:

FIGURE 1. The layout diagram of the matrix manufacturing workshop.

VOLUME 12, 2024 101703

Y. Cui et al.: Effective Discrete Jaya Algorithm for Multi-AGVs Scheduling Problem

1) All equipment in the depot is functioning normally and
there will be no faults such as downtime or collisions.

2) Each task can only be executed by a single AGV, and
each aisle allows only one AGV to pass at a time.

3) The speed of the AGVs stays unchanged during the
entire transportation process.

4) Each task must meet time constraints and capacity
constraints.

5) All AGVs leave the depot and eventually come back to
the depot.

6) The cost of AGVs is very expensive, so reduce the use
of AGVs as much as possible.

B. PROBLEM FORMULATION
In this section, a mathematical model is set up as follows.

Parameters and constants:

i, j unique identifier for the task.
pi location of task i.
xi abscissa of task i.
yi ordinate of task i.
n number of tasks.
n′ maximum number of tasks the AGV can perform.
k present AGV (or AGV route).
k ′ anticipated number of AGVs.
k ′′ number of AGVs allowed for scheduling.
v speed of AGV.
Q capacity of AGV.
Qt unloading volume of AGV per unit time.
qi materials needed for task i.
dij the distance traveled between tasks i and j.
tij the time taken to travel between tasks i and j.
T ci call time (i.e., time when task i gives a signal).
T li delivery time (i.e., latest time for the AGV to reach

task i).
T0 time when the AGV departs from the depot.
tu unloading time of every task.
tm consumption time of each piece of production

material.
S overall stock of the material buffer.
Sci inventory of material buffer at the time of request.
g weight per piece of production material.
ct unit costs of travel distance on an AGV route.
ca cost of per AGV.
ce penalty cost for earliness.

Decision Variables:

xijk if there is a feasible AGV route between task i and
j, it is 1, otherwise 0.

T ri task i actual arrival time.
m the number of AGV utilized.

Objective:

minF(i, j, k) = ct
m∑
k=1

n∑
j=0

n∑
i=0

xijkdij + ca
m∑
k=1

n∑
j=1

x0jk

+ ce
m∑
k=1

n∑
j=1

n∑
i=0

xijk
(
T lj − T rj

)
(1)

Subject to:

dij = |xi − xj| + |yi − yj| (2)

tij = dij
/
v (3)

T rj = T ri + tu + tij, ∀i ∈ V , j ∈ V\ {0} (4)

Dxij =

m∑
k=1

n∑
j=0

n∑
i=0

xijkdij (5)

qj =

[(
S t − Scj

)
+

⌈(
T rj − T cj

)/
tm

⌉]
∗ g, ∀j ∈ V\ {0}

(6)

tu = qj/Qt (7)

k ′
=

⌈
n/n′

⌉
, n′

= 12(8) (8)
m∑
k=1

n∑
i=0

xijk = 1, ∀j ∈ V\ {0} (9)

m∑
k=1

n∑
j=0

xijk = 1, ∀i ∈ V\ {0} (10)

n∑
i=0

xijk −

n∑
i=0

xjik = 0, ∀k ∈ K , j ∈ V\ {0} (11)

n∑
i=1

xi0k =

n∑
j=1

x0jk = 1, ∀k ∈ K (12)

xijk
(
T ri + tu + tij − T rj

)
= 0, ∀k ∈ K , j ∈ V\ {0} , i ∈ V

(13)
n∑
j=1

n∑
i=0

xijk · qj ≤ Q, ∀k ∈ K (14)

T ci

m∑
k=1

n∑
j=0

xijk ≤ T ri ≤ T li

m∑
k=1

n∑
j=0

xijk , ∀i ∈ V\ {0} (15)

k ′
≤ m ≤ k ′′, k ′′

= 6 (16)

xijk ∈ {0, 1} , ∀i, j ∈ V , ∀k ∈ K (17)

xijk = 0, i, j ∈ V and i = j (18)

T ri = T0, i = 0 (19)

In this model, the objective (1) is to minimize transporta-
tion cost which is composed of travel costs, vehicle costs, and
penalty costs for earliness. Equation (2) and (3) represent the
transportation distance and transportation time of each AGV
on the route, and equation (4) indicates that it takes three parts
of time for AGV to finish task i and task j, namely, the time for
the AGV to reach task i, T ri , dynamic unloading time, tu, and
transport time, tij.Equation (5) represents the total distance
traveled by all AGVs. Equation (6) represents the weight of
material unloaded by the AGV for the task. Equation (7)
represents the unloading time of each task. Equation (8)
represents the minimum number of AGVs expected to be
required. Constraints (9)-(11) ensure that every task must
be serviced by an AGV once and that AGVs enter at most

101704 VOLUME 12, 2024

Y. Cui et al.: Effective Discrete Jaya Algorithm for Multi-AGVs Scheduling Problem

one task after leaving the depot. Constraint (12) denotes
that every AGV route begins and finishes at the depot.
Constraint (13) establishes the connection between arrival
times of two adjacent tasks. Constraint (14) ensures that
the overall demand of all tasks on a route cannot beyond
the AGV capacity. Constraint (15) ensures that every task
is completed within required time. Constraint (16) ensures
that the overall number of AGVs can be within the range,
and constraints (17)-(19) place limitations on the decision
variables. TheQt in the model represents the amount of AGV
unloaded per unit time, which can be calculated to determine
how long the AGV should unload the missing material for
each task.

Take n = 10 as an example, the specific instances are
shown in the Table 1 below, a sequence represents the task
number, X-axis coordinates, Y-axis coordinates, the shortest
distance to the depot, the call time, the inventory in the
buffer at the call time, the latest delivery time, the type
of demand, and the number of tools. Assuming Q =250,
Qt =3, ct =1, ca =200, ce =0.1, AGV needs to distribute
materials to 10 tasks in a certain order, and AGV distributes
the tasks according to the proposed heuristic algorithm. The
distribution rule is to select the task closes to the previous task
and the task with the smallest call time among the remaining
tasks. The original task sequence is {1,2,3,4,5,6,7,8,9,10},
and the later sequence is {1,6,4,9,2,7,3,8,10,5}, through
calculation can get the total distance obtained is 367.4, the
early arrival time is 2515.35, and only one AGV is used in
this mission, so the final F=818.935.

TABLE 1. The specific instances.

IV. BASIC JAYA ALGORITHM
Jaya algorithm is a meta-heuristic algorithm recently raised
by Rao [26], which was initially used to solve continuous
real-parameter optimization problems. Jaya means success
in Sanskrit. Its key concept is to approach victory and avoid
failure, always following the rule of constant improvement.
The algorithm continuously improves the solution by moving
the current solution towards optimal solution and away
from worst solution until termination condition is met. The
first step of algorithm is to construct a population of size
(PSize). Next, the optimal and worst solutions are extracted
from the initial population and used to update the other
solutions for the next iteration. In each iteration, the optimal
and worst solutions are updated. The Jaya algorithm is a

single-stage algorithm that necessitates the evaluation of only
one equation in each iteration to determine the value of the
new solution. The Jaya algorithm also has the advantage
that there are no particular algorithm parameters that will
affect the outcome of the solution. Therefore, no external
computational work is required to adjust the parameters. This
enables the Jaya algorithm easier to interpret and execute
than other metaheuristic algorithms. In Jaya algorithm, the
optimal and worst solutions for each iteration are determined
by the objective function values. The rest of solutions are
varied in the population as follows in equation (20), where
r1 and r2 are random numbers between 0 and 1. The term
r1×(Sbest − |Si|) brings the current solution closer to optimal
solution and term r2 × (Sworst − |Si|) brings the current
solution away from worst solution. Sbest is optimal solution
for the current population and Sworst is worst solution for
the current population. If the new solution obtained has a
superior objective value, it is chosen, otherwise the former
solution is retained. The restriction of Jaya’s algorithm is that
it does not efficiently explore regions in the solution space
and tends to fall into local optima. To overcome this, the
sequence insertion operator is used to generate a diversity of
solutions.

Si+1 = Si + r1 × (Sbest − |Si|) − r2 × (Sworst − |Si|) (20)

V. THE PROPOSED DJaya ALGORITHM
Since basic Jaya algorithm was initially introduced for
successive optimization problems, it cannot be straightly
used to the discrete case. For the purpose of solving the
MAGVSDUT with minimized transportation cost, a variant of
Jaya algorithm called DJaya algorithm is proposed and will
be presented in this section. Among the DJaya algorithm,
the solution representation of the DJaya algorithm is first
introduced in detail, a heuristic based on ant colony algorithm
is given, followed by the initialization of the population, the
update mechanism of the DJaya algorithm and finally the
flowchart of the DJaya algorithm is given.

A. SOLUTION REPRESENTATION
In order to make the representation of the MAGVSDUT solu-
tion more simplified, a simple one-dimensional description
approach has been adopted, and the solution can be expressed
as a one-dimensional vector with a length of n+ m-1, where
n and m stand for the number of tasks and the number of
AGVs in matrix manufacturing workshop, respectively, and
assuming that nk is a sub-vector consisting of the tasks ser-
viced by AGV k , and separating two neighboring sub-vectors
by the number 0, which indicates the beginning of each
AGV’s route, then (n1, 0, n2, 0, n3, . . . , 0, nm) represents the
solution. Here is a simple example, suppose that there are
8 tasks and 3 AGVs, the solution has a length of 10, AGV
1 delivers materials to tasks in order of 1 → 3 → 7, AGV
2 delivers materials to tasks in order of 2 → 4, and AGV
3 delivers materials to tasks in order of 5 → 6 → 8,so the

VOLUME 12, 2024 101705

Y. Cui et al.: Effective Discrete Jaya Algorithm for Multi-AGVs Scheduling Problem

solution expression is (1,3,7,0,2,4,0,5,6,8). The service order
of the AGVs is shown as Fig.2.

FIGURE 2. The service order of the AGVs.

B. A HEURISTIC BASED ON ANT COLONY ALGORITHM
Zou et al. [8] raised a Nearest Neighbor Heuristic (NNH)
task search algorithm. The primary thought is to discover
next task that is closest to the current task according to the
Manhattan Distance. In this section, a heuristic based on ant
colony algorithm is introduced. In heuristic, the distance to
the remaining tasks and the call time of the remaining tasks
are considered as two important factors to determine the next
task, which is given in the following formula.

Pi,j =

(
τi,j

)α
·
(
ηi,j

)β∑
s∈A

(
τi,s

)α
·
(
ηi,s

)β
, ifj ∈ A (21)

where α stands for the heuristic factor of the pheromone,
β represents the expected heuristic factor, τi,j stands for the
pheromone strength from position i to position j, ηi,j stands
for the heuristic information value from position i to position
j, A is the set of next points that can be selected and Pi,j is
the probability value of choosing the next point. Respectively,
analogous to the problem we study, τi,j
is equivalent to the call time to the remaining tasks, and ηi,j

represents the distance to the remaining tasks.
In the algorithm, the following notation is used: U =

1, 2 . . . n represents the collection of undistributed tasks,
R denotes one of the present AGV route, X denotes the
generated solution, j denotes the current task, and p is
the probability value. Since AGV begins from the depot, the
depot is taken as the current task, then the probability value
from the current task to the remaining tasks is calculated by
using the formula, the task with the minimum probability
value is taken as the first task in the route, then the second task
is sought from the remaining tasks and attempts to be inserted
into the second location of the route, one point needs to be
noted: the time window constraint and the loading constraint
are satisfied each time, if the constraints are satisfied, then
continue to search for the next task, otherwise, a new route

is opened, this process will be repeated until all the tasks
are assigned, the process of heuristic algorithm is given in
Algorithm 1.

Algorithm 1 Heuristic Algorithm
Output: solution X
1: U : set of unassigned tasks; R: a route; p: value of probability; j:
the current task
2: Let R = 1 and j = 0
3: while U is not empty do
4: Calculate p i between task j and each task i in U
5: pmin = mini=1,2....N (pi),N = sizeof(U)
6: Test to append task i with pmin to R
7: if R satisfies capacity constraint and time constraint then
8: Make task j= i and remove i from U
9: else
10: Close R, construct a new R=R+1
11: Add 0 at the last of X , and make j = 0
12: endif
13: endwhile
14: if R is unempty then
15: Add R to solution X
16: endif
17: return solution X

C. INITIAL POPULATION PHASE
An initial population that balances quality and diversity
will always allow the algorithm to converge quickly to
get a good result [36]. To raise the quality and variety
of the initial population, the heuristic algorithm is used in
this study for generating initial solution, and the remaining
solutions are randomly created. The random approach is to
randomly create a sequence that includes all tasks and then
adds tasks to AGV routes from the front to the end of the
permutation depending on the time and capacity constraints.
After the heuristic method and random generation method
to get PSize initial solutions. Due to the high cost of AGV,
in order to reduce the use of AGV, Zou et al. [8] proposed a
merge operator, which can make the quality of the solutions
improve again, then we find the optimal and worst solutions
in the current population for later evolution, P indicates
initial population, PSize indicates population size, σ indicates
generations of solutions, Xbest indicates the optimal solution
of the current population, Xworst indicates the worst solution
of the current population, X represents the solution generated
by the heuristic algorithm, Xσ represents a AGV route,
and the process of initial population generation is given in
Algorithm 2.

D. DJaya UPDATING MECHANISM
The prime thought of the Jaya algorithm is to move current
solution towards optimal solution and away from worse ones.
Based on the basic thought of Jaya algorithm, a discrete
DJaya strategy is proposed. The related formula is as follows.

XtN = Xt ∗ (r1 · XtB + r2 · XtW) (22)

101706 VOLUME 12, 2024

Y. Cui et al.: Effective Discrete Jaya Algorithm for Multi-AGVs Scheduling Problem

Algorithm 2 Initial Population
Output: solution Xbest and Xworst
1: Generate an initial solution X by heuristic algorithm
2: for σ =2 to PSize
3: Randomly generate sequences for all the tasks
4: Make AGV route R= ∅

5: for i=1 to n
6: Test to append task i to R
7: if R satisfies capacity constraint and time constraints then
8: Append task i to R
9: else
10: Append R to solution Xσ and empty R
11: Add 0 at the last of Xσ

12: endif
13: endfor
14: if R is unempty then
15: Append R to solutionXσ and empty R
16: endif
17: Add solutionXσ to the initial population P
18: endfor
19: for σ =1 to PSize
20: merge operator
21: endfor
22: for σ =1 to PSize
23: find XbestandXworst
24: endfor
25: return solution XbestandXworst

1) random coefficient generation: binary numbers r1
and r2 are generated, namely r1, r2∈ {0, 1}, and
r1+r2=1;

2) generate new solution: the way of generating new
solutions based on the DJaya algorithm is shown
in the formula, XtB stands for the optimal solution in
the t iteration, XtW represents the worst solution in
the t iteration, XtN is new solution, Xt is current
solution, ∗ represents whether current solution is
operated with optimal solution or worst solution,
if r1 is 1, the current solution is operated with the
optimal solution. Conversely, when r2 is 1, the current
solution is operated with the worst solution. The DJaya
updating mechanism steps involving a near optimal
operator and an away worst operator are shown as
follow.

1) A NEAR OPTIMAL OPERATOR
Since the objective of the problem is composed of three parts,
namely, travel cost, penalty cost, and vehicle cost, the total
of three costs of the optimal solution in each iteration is
the minimum. Since the Jaya algorithm has the ‘‘optimal-
oriented’’ property [26], we fully borrow the properties of
the optimal solution and propose a near optimal operator.
First of all, the optimal solution in population as a reference
sequence, which is assumed to be Xbest, and the current
solution is Xcurrent, then start from the first position of Xbest,
find the element in Xcurrent that is the same as it, and try
to re-insert this same element into all feasible positions of
Xcurrent, ‘‘feasible’’ means that both time constraints and
capacity constraints are satisfied, and finally insert it into the

position that obtains the minimum total cost. Next consider
the element in the second position of Xbest, repeat the above
process until all elements in the Xbest are considered, and
finally obtain a new solution, suppose it is X . The following
Fig.3 shows an example of a near optimal strategy, and the
process is given in Algorithm 3.

FIGURE 3. A near optimal operator.

Algorithm 3 A Near Optimal Operator
Output: solution X
1: Find the Xbest, Xcurrent
2: for i = 1 to lengthOfArray(Xbest)
3: for j = 1 to lengthOfArray(Xcurrent)
4: if Xcurrent[i] == element then
5: position = j
6: break
7: endif
8: endfor
9: for k = 1 to lengthOfArray(Xcurrent)
10: test to insert element to position k
11: if meet the time and capacity constraints then
12: calculate the cost
13: endif
14: endfor
15: for k = 1 to lengthOfArray(TotalCost)
16: find the best position
17: endfor
18: endfor
19: return solution X

2) AN AWAY WORST OPERATOR
As mentioned above, Jaya algorithm not only has the
characteristics of ‘‘optimal-oriented’’, but also has the char-
acteristics of ‘‘error avoidance’’ [26], how to make current
solution far away from worst solution is a problem that we
should think about. An away worst operator is designed that
moves current solution away from worst solution. First of all,
worst solution in population is selected, which is assumed
to be Xworst, the current solution is Xcurrent, then start from
the first position of Xworst, compare it with the element in
the same position in Xcurrent, if the element is same, put it
in the Xsame, otherwise put it in the Xdifferent. Until elements
in the Xworst are taken into account, finally elements in the
Xsame are inserted into Xdifferent in turn, so that the total cost
of the inserted sequence is minimized, and the new solution
X is obtained. BackCost and FrontCost represent the cost
of new solution and the cost of old solution respectively.
Comparing BackCost with FrontCost, the solution with the

VOLUME 12, 2024 101707

Y. Cui et al.: Effective Discrete Jaya Algorithm for Multi-AGVs Scheduling Problem

lower cost is kept. The following Fig.4 shows an example of
an away worst strategy, the process is given in Algorithm 4,
and the insertion-based local search operator is given in
Algorithm 5.

FIGURE 4. An away worst operator.

Algorithm 4 An away worst operator
Output: solution X
1: Find the Xworst, Xcurrent
2: fori= 1tolengthOfArray(Xcurrent)
3: if Xcurrent[i]== Xworst[i] then
4: Xsame[i]= Xcurrent[i]
5: else
6: Xdifferent[i]= Xworst[i]
7: endif
8: INSERT
9: if BackCost <FrontCost then
10: chflag=true
11: else
12: chflag=false
13: endif
14: endfor
15:return solution X

Algorithm 5 INSERT
Output: solution X
1: Find the Xsame, Xdifferent
2: for i = 1 to lengthOfArray(Xsame)
3: for j = 1 to lengthOfArray(Xdifferent)
4: insert Xsame[i] to position j
5: if meet the time and capacity constraints then
6: calculate the cost
7: endif
8: endfor
9: for k = 1 to lengthOfArray(TotalCost)
10: find the best position
11: endfor
12: endfor
13:return solution X

3) SEQUENCE INSERTION OPERATOR
To prevent the solution from trapping in a local optimum,
this paper proposes a neighborhood operator for sequence
insertion. The process is divided into three main steps. Firstly,
we randomly select three positions from the X , denoted as
pos1, pos2 and pos3, it should be noted that the three positions
are sorted in ascending order, that is pos1 < pos2 < pos3.
Second, we select the elements between pos1 and pos2.
Finally, we reinsert the selected elements after pos3. In this
way, a new solution X’ can be generated, which greatly
improves the diversity of the solution. The process is given in
Fig.5, and the Sequence insertion operator flow is illustrated
in Algorithm 6.

FIGURE 5. Sequence insertion operator.

Algorithm 6 Sequence Insertion Operator
Output: solutionX ′

1: Sortpos1, pos2, pos3 in ascending order so that
pos1 <pos2 <pos3
2: Makeseq for the elements between pos1 and pos2
3: Insert seq after pos3
4: return solutionX ′

E. SUMMARY OF THE PROPOSED DJaya ALGORITHM
As mentioned before, DJaya algorithm introduced in the
paper, DJaya algorithm has several main components: Firstly,
the population P is initialized to find optimal solution
and worst solution. Then, new solutions are generated by
DJaya updating mechanism. Finally, solutions are updated.
The whole flowchart of DJaya algorithm is shown in
Fig.6.

VI. COMPUTATIONAL AND STATISTICAL
EXPERIMENTATION
In this section, the validity of the presented strategies and
algorithms will be verified. All algorithms are coded using
C++ programming language in Visual Studio 2019, and
experiments are conducted on Windows 11 operating system
using Intel(R) Core (TM) i7-12700 CPU @ 2.10 GHz
processor and 16.0GB of RAM in the hardware environment.
All algorithms stopped running when the predefined CPU
runtime of 5 seconds was reached.We collected 110 instances
form Foxconn Technology Group, one of China’s foremost
sophisticated electronic manufacturing companies, as testing
benchmark, which are divided into two sets: a testing set

101708 VOLUME 12, 2024

Y. Cui et al.: Effective Discrete Jaya Algorithm for Multi-AGVs Scheduling Problem

FIGURE 6. Whole flowchart of the DJaya.

consisting of 100 instances and a calibration set consisting of
10 instances. In the experiment, we consider tasks containing
10, 20, 30, 40, 50, each containing 22 instances, for a
total of 110 instances. To ensure the reliability of parameter
calibration, we assign 20 of the 22 instances in the same
task to the testing set, while the remaining 2 are assigned to
the calibration set. This method ensures that the testing set
consists of a total of 100 instances (20∗5) and the calibration
set consists of a total of 10 instances (2∗5). The instances
in testing set and calibration set are independently repeated
30 times and 10 times, respectively. RPI (Relative Percentage
Increase) is given to estimate the efficiency of all algorithms,
and its expression is as follows:

RPI =
(Ci − Cbest)

Cbest
× 100% (23)

where: Ci is the fitness obtained by a certain algorithm in
the given instance. Cbest : The minimum fitness obtained by
all algorithms in the same instance. It is obvious that for a
given instance, the lower the RPI value, the greater the result.
Furthermore, the analysis of variance (ANOVA) technique is
used to examine the statistical significance of discrepancies
observed in the experimental results.

A. EXPERIMENTAL SETTINGS
In order to better distinguish test set and calibration set,
the method of ‘‘T + number of task tasks + instance

index’’ is used to represent the test set (e.g., T20I5), and the
method of ‘‘C + number of task tasks + instance index’’ is
used to represent the calibration set (e.g., C20I7). Detailed
information is included in each instance, including task index,
location, call time, buffer storage at the time of call, and
delivery time. Assuming that the information for a task is
{24, 3, 4, 51.7, 14, 28, 614}, it means that material delivery
is requested from the control system by the task with index
24 at 14 seconds and reports that 28 pieces of material left
in the buffer at that time. The AGV is required to arrive at
the position (3, 4) at 614 seconds, and the shortest distance
from this task to the warehouse is 51.7 units. Owing to space
constraints, the instances utilized in the paper are not listed,
and interested readers can request them from author. Table 2
lists the relevant parameters of the model.

TABLE 2. Parameters settings.

TABLE 3. Parameters for the competitive algorithms.

B. CALIBRATION OF THE PROPOSED AND COMPETING
METHODS
This section calibrates parameters in DJaya algorithm and
the comparison algorithms. In the proposed DJaya algorithm,
we calibrated the population size (PSize) to achieve optimal
performance. PSize has 5 levels: 30, 130, 150, 200, and
300. In other words, there are 5 options for the PSize
parameter. When running the DJaya algorithm with different
parameters, each calibration instance is performed 10 times
independently, as a result 10 calibration instances produce a
whole of 5∗10∗10=500 results. To ascertain the best level
for the factor, PSize is treated as a factor and the RPI as
the dependent variable to obtain the best configuration of
algorithm. A multifactor Analysis of Variance (ANOVA)is
performed on RPI. It should be noted that if the means of two

VOLUME 12, 2024 101709

Y. Cui et al.: Effective Discrete Jaya Algorithm for Multi-AGVs Scheduling Problem

TABLE 4. Experimental outcomes for the instances comprising of 10 tasks.

TABLE 5. Experimental outcomes for the instances comprising of 20 tasks.

groups in the plot overlap, there is no statistically meaningful
distinction between them. According to mean plot of the
PSize parameter, we can learn that the levels 30, 130, 150,
and 200 do not overlap with the level 300. This indicates that
PSize has a statistically significant impact on RPI within the
95% confidence interval. Among these levels,PSize=150 has
the lowest RPI value, making it the optimal level, as shown
in the Fig.7, its RPI value is the lowest. Therefore, we finally
set the value of the PSize parameter to 150. The similar
calibration procedure is carried out for remaining comparison
algorithms, and the calibrated parameters are shown in the

Table 3. Fig.7 represents the pertinent means plots with 95%
Tukey’s Honest Significant Difference (HSD) confidence
intervals for the five factors of DJaya.
PSize : population size; l: predetermined number of trials;
r : predetermined number; τ : replications; PS0: the

number of initial population; PSmax: the maximum number
of population; Smax: the maximum number of seeds. Plen:
predefined number of times; InitType: the type selected by
the heuristic; T : Temperature; d : Number of tasks removed;
OperIter :The number of iterations in the local search
stage.

101710 VOLUME 12, 2024

Y. Cui et al.: Effective Discrete Jaya Algorithm for Multi-AGVs Scheduling Problem

FIGURE 7. Means plots of parameter of the DJaya.

C. COMPARISON OF METHODS
To validate the efficiency of the new strategies presented
in this algorithm, two comparative experiments are carried
out. Next, effectiveness of the proposed heuristic algorithm
and DJaya operators will be demonstrated through practical
experiments.

1) THE EFFECTIVENESS OF THE PROPOSED HEURISTIC
ALGORITHM
To ensure the validity of the presented heuristic algorithm,
DJaya algorithm and DJaya_no algorithm are compared. The
difference between the two algorithms is that the DJaya_no
algorithm only uses a random method to initialize the
population, while the other aspects of the algorithm are the
same as the DJaya algorithm. Both algorithms are executed
in the same experimental environment for testing same test
instances. After running independently for 30 times, the RPI
values obtained are compared and analyzed using ANOVA
analysis tool. The experimental results are given in the Fig.8.
As you can see, the DJaya algorithm yielded smaller RPI
values, indicating that the heuristic algorithm is effective in
improving the performance of DJaya algorithm and helping
it find better solutions.

FIGURE 8. The effectiveness of the heuristic algorithm.

2) THE EFFECTIVENESS OF THE DJaya OPERATORS
To improve the search capability of the algorithm, aca-
demics typically incorporate local search operators into the
algorithm [37]. In the proposed DJaya algorithm, a local
search that references the optimal solution is introduced,
during operations on the worst and current solutions, the
parts that are identical to the current solution and the worst
solution are removed, followed by a local search algorithm
based on insertion. By comparing DJaya algorithm with the
local search strategies and DJaya_no algorithm without the
local search strategies, the effectiveness of the presented
DJaya algorithm is confirmed. The experimental results
is given in the Fig.9. It is evident that DJaya algorithm
with local search operators achieved smaller RPI values,
indicating that algorithm with local search operators has
a noticeable effect on improving the behavior of DJaya
algorithm.

FIGURE 9. The effectiveness of DJaya operators.

FIGURE 10. Means plots with 95% Tukey’s HSD confidence intervals for
all the comparison algorithms.

D. COMPARISON WITH OTHER ALGORITHMS
To ensure the validity of the presented algorithm, 100 test
instances of different sizes are used for verification, and then
the scalability of the algorithm was verified by analyzing
the instances of different sizes. The experimental setup in
this section is the same as the one mentioned above, and
the evaluation index utilized is RPI. In order to obtain

VOLUME 12, 2024 101711

Y. Cui et al.: Effective Discrete Jaya Algorithm for Multi-AGVs Scheduling Problem

TABLE 6. Experimental outcomes for the instances comprising of 30 tasks.

TABLE 7. Experimental outcomes for the instances comprising of 40 tasks.

accurate experimental results, each algorithm operates on
100 instances, and each instance is repeated for 30 times.
The experimental results of each algorithm are obtained after
the CPU reaches a predefined 5s. The experimental results
consist of minimum (Min), maximum (Max) and average
values (Ave) of RPI. We choose four comparison algorithms,
namely Discrete Artificial Bee Colony algorithm (DABC)
[8], Discrete Invasive Weed Optimization algorithm (DIWO)
[19], Greedy Iterative algorithm (IG) [21], Improved Greedy
Iterative algorithm (IIG) [18].

In this section, all the algorithms are compared using
instances with a task size of 10 to validate the effectiveness of
the algorithms in handling small-sized tasks. The average RPI

FIGURE 11. The RPI of algorithms on all tasks.

values for DABC, DIWO, IG, IIG, and DJaya are 27.01%,
27.03%, 26.84%, 26.84%, and 4.11%, respectively in Table 4.

101712 VOLUME 12, 2024

Y. Cui et al.: Effective Discrete Jaya Algorithm for Multi-AGVs Scheduling Problem

TABLE 8. Experimental outcomes for the instances comprising of 50 tasks.

FIGURE 12. The convergence curves of the algorithms.

It can be seen that the DJaya algorithm exhibits the lowest
RPI value, which is highlighted in black in the table and
outperforms the other algorithms.

Table 5-8 correspond to instances with task sizes of 20,
30, 40, and 50, respectively. The average RPI values for
the DJaya algorithm in these instances are 6.83%, 6.64%,

8.89% and 8.91% respectively. It can be observed that the
DJaya algorithm has the lowest RPI value compared to
the other algorithms, which is highlighted in black in the
tables. To further prove the effectiveness of the presented
algorithm, a statistical method called multi-factor analysis
of variance (ANOVA) is adopted, considering the RPI

VOLUME 12, 2024 101713

Y. Cui et al.: Effective Discrete Jaya Algorithm for Multi-AGVs Scheduling Problem

values obtained from all algorithms and the factors of
comparison algorithms and task scales. The Fig.10 presents
95% confidence interval mean values for the five comparison
algorithms. It is evident that the DJaya algorithm has the
smallest RPI value among the five algorithms, indicating
its superior performance. The Fig.11 also illustrates the
correlation between five comparison algorithms and task
scales. The horizontal axis stands for task scale, and the
vertical axis stands for the RPI value. It can be observed
that the DJaya algorithm consistently achieves the lowest
RPI value across the five task sizes. While the differences
in RPI values among the other four algorithms are not sig-
nificant, they all exhibit a considerable gap compared to the
DJaya algorithm, highlighting its effectiveness in addressing
the proposed problem. Therefore, the DJaya algorithm is
feasible

The above content can be summarized as follows:
(1) The DJaya algorithm outperforms the other four

algorithms in the task size range of 10-50.
(2) The DJaya algorithm consistently achieves the lowest

RPI value across all task sizes.
(3) The DJaya algorithm exhibits excellent perfor-

mance and effectiveness in addressing the proposed
problem.

E. COMPARISON OF CONVERGENCE
To evaluate the convergence performance of the algorithm
presented, an evolution plot can effectively illustrate the
changes in transportation costs for AGVs at different time
points within a cycle. It was mentioned earlier that the CPU
running time is 5 seconds. It is shown in Fig.12(a)-(d), the
x-axis represents various time points in a single production
cycle, and the y-axis indicates the attained minimum
transportation cost.

These four instances correspond to task sizes of 20, 30,
40, and 50 tasks. From the Fig.12, it is evident that the
performance of the DABC, DIWO, IIG, and IG algorithms
exhibits certain differences compared to the DJaya algorithm
across the four different scale instances.

In summary, by comparing the maximum, minimum, and
average RPI values of different algorithms at different scales,
as well as convergence graphs and algorithm comparison
graphs, we have validated that presented DJaya algorithm
is more valid than the other four comparison algorithms in
handling our problem.

VII. CONCLUSION AND FUTURE RESEARCH
This paper has investigated the AGV scheduling problem
with dynamic unloading time in a matrix manufacturing
workshop. As far as we know, there are relatively few studies
on this problem. The objective is to minimize the overall
transportation cost, which contains travel cost, penalty cost,
and vehicle cost. To solve this problem, this paper provides a
comprehensive solution, proposes an efficient Jaya (DJaya)
algorithm, and comprehensively evaluates all algorithms
on 110 examples based on Foxconn Technology Group.

In the experimental part, the parameters of the algorithm
are first calibrated, in order to determine under which
parameter the algorithm can achieve the best effect. Secondly,
the effectiveness of the proposed heuristic algorithm and
the DJaya operators is proven, and it is proven that the
proposed strategies are effective. Then, all the algorithms
are tested under different task sizes, and it is proven that
the proposed algorithms can achieve the best effect under
different task sizes. Finally, the convergence performance
of all the algorithms is compared. It can intuitively see
the change of AGV transportation cost at different time
points in a cycle. The experimental results show that DJaya
algorithm is superior to the other four algorithms in solving
the problem studied. Overall, main contributions are as
follows:

(1) Formulated the MAGVSDUT and established a
mixed-integer linear programming model.

(2) Proposed a heuristic based on ant colony algorithm to
generate high quality initial solutions.

(3) Proposed an efficient DJaya algorithm with advanced
techniques, such as two DJaya operators in the updating
mechanism for balancing algorithmic exploitation and explo-
ration, and a sequence insertion operator for facilitating the
population find better solutions.

This study focuses on the normal production conditions of
the workshop. In future research work, we will further focus
on the following topics:

(1) We should consider other characteristics of the studied
problems, such as the occurrence of uncertain factors like
AGV failures, AGV variable speeds, AGV collisions, the
problem of multi-objective [38], [39], [40], [41], a lim-
ited number of AGVs [42], and energy saving problems
[43].

(2) We will also explore more problem-oriented strategies
to enhance DJaya algorithm, such as collaborative strat-
egy [44], [45].and local search methods.

(3) Applying the DJaya algorithm to closely related
scheduling problems such as flow shop scheduling problem,
job shop scheduling problem, and dynamic production
scheduling.

REFERENCES
[1] J. Zhang, Y. Lv, Y. Li, and J. Liu, ‘‘An improved QMIX-based

AGV scheduling approach for material handling towards intelligent
manufacturing,’’ in Proc. IEEE 20th Int. Conf. Embedded Ubiquitous
Comput. (EUC), Dec. 2022, pp. 54–59.

[2] Y. Xiong and J. L. Mao, ‘‘Research on scheduling of multi-load AGV
system with limited buffer capacity,’’ Electron. Sci. Technol., vol. 31,
pp. 72–77, 2018.

[3] Y. Xi, N. B. Ahmad, and A. Al Mamun, ‘‘Research on improving e-
commerce logistics service customer satisfaction through application of
AGV in intelligent warehouse,’’ in Proc. Int. Conf. Emerg. Technol. Intell.
Syst., vol. 2, 2022, pp. 61–73.

[4] L. Ou, J. Peng, J. Chen, X. Zou, F. Sun, and B. Yang, ‘‘Research on multi
AGV control system and scheduling algorithm of warehouse automation,’’
in Proc. Int. Conf. Frontier Computing., 2021, pp. 1710–1716.

[5] I. Aziez, J.-F. Cǒté, and L. C. Coelho, ‘‘Fleet sizing and routing of
healthcare automated guided vehicles,’’ Transp. Res. E, Logistics Transp.
Rev., vol. 161, May 2022, Art. no. 102679.

101714 VOLUME 12, 2024

Y. Cui et al.: Effective Discrete Jaya Algorithm for Multi-AGVs Scheduling Problem

[6] Y. Yang, M. Zhong, Y. Dessouky, and O. Postolache, ‘‘An integrated
scheduling method for AGV routing in automated container terminals,’’
Comput. Ind. Eng., vol. 126, pp. 482–493, Dec. 2018.

[7] C. Kui, B. Li, and W. Wenya, ‘‘Research on integrated scheduling of
AGV and machine in flexible job shop,’’ J. Syst. Simul., vol. 34, no. 3,
pp. 461–469, 2022.

[8] W.-Q. Zou, Q.-K. Pan, T. Meng, L. Gao, and Y.-L. Wang, ‘‘An effective
discrete artificial bee colony algorithm for multi-AGVs dispatching
problem in a matrix manufacturing workshop,’’ Exp. Syst. Appl., vol. 161,
Dec. 2020, Art. no. 113675.

[9] W. Y. Szeto, Y. Wu, and S. C. Ho, ‘‘An artificial bee colony algorithm for
the capacitated vehicle routing problem,’’Eur. J. Oper. Res., vol. 215, no. 1,
pp. 126–135, Nov. 2011.

[10] X. Ge, L. Li, and H. Chen, ‘‘Research on online scheduling method for
flexible assembly workshop of multi-AGV system based on assembly
island mode,’’ in Proc. IEEE 7th Int. Conf. Cloud Comput. Intell. Syst.
(CCIS), Nov. 2021, pp. 371–375.

[11] L. Meng, C. Zhang, Y. Ren, B. Zhang, and C. Lv, ‘‘Mixed-integer
linear programming and constraint programming formulations for solving
distributed flexible job shop scheduling problem,’’ Comput. Ind. Eng.,
vol. 142, Apr. 2020, Art. no. 106347.

[12] M. Tian, H. Sang, W. Zou, Y. Wang, M. Miao, and L. Meng, ‘‘Joint
scheduling of AGVs and parallel machines in an automated electrode foil
production factory,’’Exp. Syst. Appl., vol. 238,Mar. 2024, Art. no. 122197.

[13] D. B. M. M. Fontes and S. M. Homayouni, ‘‘Joint production and
transportation scheduling in flexible manufacturing systems,’’ J. Global
Optim., vol. 74, no. 4, pp. 879–908, Aug. 2019.

[14] Y. Hu, H. Yang, and Y. Huang, ‘‘Conflict-free scheduling of large-scale
multi-load AGVs in material transportation network,’’ Transp. Res. E,
Logistics Transp. Rev., vol. 158, Feb. 2022, Art. no. 102623.

[15] H. Tang, X. Cheng, W. Jiang, and S. Chen, ‘‘Research on equipment
configuration optimization of AGV unmanned warehouse,’’ IEEE Access,
vol. 9, pp. 47946–47959, 2021.

[16] H. Niu, W. Wu, Z. Xing, X. Wang, and T. Zhang, ‘‘A novel multi-tasks
chain scheduling algorithm based on capacity prediction to solve AGV
dispatching problem in an intelligent manufacturing system,’’ J. Manuf.
Syst., vol. 68, pp. 130–144, Jun. 2023.

[17] Q. Liu, N. Wang, J. Li, T. Ma, F. Li, and Z. Gao, ‘‘Research on flexible job
shop scheduling optimization based on segmented AGV,’’ Comput. Model.
Eng. Sci., vol. 134, no. 3, pp. 2073–2091, 2023.

[18] X.-J. Zhang, H.-Y. Sang, J.-Q. Li, Y.-Y. Han, and P. Duan, ‘‘An
effective multi-AGVs dispatching method applied to matrix manufacturing
workshop,’’ Comput. Ind. Eng., vol. 163, Jan. 2022, Art. no. 107791.

[19] Z.-K. Li, H.-Y. Sang, J.-Q. Li, Y.-Y. Han, K.-Z. Gao, Z.-X. Zheng,
and L.-L. Liu, ‘‘Invasive weed optimization for multi-AGVs dispatching
problem in a matrix manufacturing workshop,’’ Swarm Evol. Comput.,
vol. 77, Mar. 2023, Art. no. 101227.

[20] Z.-K. Li, H.-Y. Sang, X.-J. Zhang, W.-Q. Zou, B. Zhang, and L.-L. Meng,
‘‘An effective discrete invasive weed optimization algorithm for multi-
AGVs dispatching problem with specific cases in matrix manufacturing
workshop,’’ Comput. Ind. Eng., vol. 174, Dec. 2022, Art. no. 108755.

[21] W.-Q. Zou, Q.-K. Pan, and M. F. Tasgetiren, ‘‘An effective iterated greedy
algorithm for solving a multi-compartment AGV scheduling problem in a
matrix manufacturing workshop,’’ Appl. Soft Comput., vol. 99, Feb. 2021,
Art. no. 106945.

[22] Y.-Z. Li, J.-Z. Zou, Y.-L. Jia, L.-L. Meng, and W.-Q. Zou, ‘‘An improved
genetic algorithm for multi-AGV dispatching problem with unloading
setup time in a matrix manufacturing workshop,’’ Int. J. Ind. Eng. Comput.,
vol. 14, no. 4, pp. 767–784, 2023.

[23] W. Zou, J. Zou, H. Sang, L. Meng, and Q. Pan, ‘‘An effective population-
based iterated greedy algorithm for solving the multi-AGV scheduling
problem with unloading safety detection,’’ Inf. Sci., vol. 657, Feb. 2024,
Art. no. 119949.

[24] W.-Q. Zou, Q.-K. Pan, L.-L. Meng, H.-Y. Sang, Y.-Y. Han, and J.-Q. Li,
‘‘An effective self-adaptive iterated greedy algorithm for a multi-AGVs
scheduling problem with charging and maintenance,’’ Exp. Syst. Appl.,
vol. 216, Apr. 2023, Art. no. 119512.

[25] X. Wang, W. Zou, L. Meng, B. Zhang, J. Li, and H. Sang, ‘‘Effective
metaheuristic and rescheduling strategies for the multi-AGV scheduling
problem with sudden failure,’’ Exp. Syst. Appl., vol. 250, Sep. 2024,
Art. no. 123473.

[26] R. Venkata Rao, ‘‘Jaya: A simple and new optimization algorithm for
solving constrained and unconstrained optimization problems,’’ Int. J. Ind.
Eng. Comput., vol. 7, no. 1, pp. 19–34, 2016.

[27] J. Mumtaz, Z. Guan, L. Yue, Z. Wang, S. Ullah, and M. Rauf, ‘‘Multi-
level planning and scheduling for parallel PCB assembly lines using
hybrid spider monkey optimization approach,’’ IEEE Access, vol. 7,
pp. 18685–18700, 2019.

[28] M. Rauf, Z. Guan, L. Yue, Z. Guo, J. Mumtaz, and S. Ullah, ‘‘Integrated
planning and scheduling ofmultiplemanufacturing projects under resource
constraints using raccoon family optimization algorithm,’’ IEEE Access,
vol. 8, pp. 151279–151295, 2020.

[29] Q. S. Khalid, M. Arshad, S. Maqsood, M. Jahanzaib, A. R. Babar, I. Khan,
J. Mumtaz, and S. Kim, ‘‘Hybrid particle swarm algorithm for products’
scheduling problem in cellular manufacturing system,’’ Symmetry, vol. 11,
no. 6, p. 729, May 2019.

[30] G. Wang, Y. Chen, J. Mumtaz, and L. Zhu, ‘‘A study of mixed-flow
human-machine collaborative disassembly line balancing problem based
on improved artificial fish swarm algorithm,’’ Eng. Proc., vol. 45, no. 1,
p. 40, 2023.

[31] K. Gao, Y. Zhang, A. Sadollah, A. Lentzakis, and R. Su, ‘‘Jaya,
harmony search and water cycle algorithms for solving large-scale real-
life urban traffic light scheduling problem,’’ Swarm Evol. Comput., vol. 37,
pp. 58–72, Dec. 2017.

[32] R. Buddala and S. S. Mahapatra, ‘‘An integrated approach for scheduling
flexible job-shop using teaching–learning-based optimization method,’’
J. Ind. Eng. Int., vol. 15, no. 1, pp. 181–192, Mar. 2019.

[33] R. H. Caldeira and A. Gnanavelbabu, ‘‘Solving the flexible job shop
scheduling problem using an improved Jaya algorithm,’’ Comput. Ind.
Eng., vol. 137, Nov. 2019, Art. no. 106064.

[34] J. Fan, W. Shen, L. Gao, C. Zhang, and Z. Zhang, ‘‘A hybrid Jaya
algorithm for solving flexible job shop scheduling problem consid-
ering multiple critical paths,’’ J. Manuf. Syst., vol. 60, pp. 298–311,
Jul. 2021.

[35] K. Gao, A. Sadollah, Y. Zhang, R. Su, and K. G. J. Li, ‘‘Discrete
Jaya algorithm for flexible job shop scheduling problem with new job
insertion,’’ in Proc. 14th Int. Conf. Control, Autom., Robot. Vis. (ICARCV),
Nov. 2016, pp. 1–5.

[36] R. Ruiz and C. Maroto, ‘‘A genetic algorithm for hybrid flowshops with
sequence dependent setup times and machine eligibility,’’ Eur. J. Oper.
Res., vol. 169, no. 3, pp. 781–800, Mar. 2006.

[37] H.-Y. Sang, Q.-K. Pan, P.-Y. Duan, and J.-Q. Li, ‘‘An effective
discrete invasive weed optimization algorithm for lot-streaming flowshop
scheduling problems,’’ J. Intell. Manuf., vol. 29, no. 6, pp. 1337–1349,
Aug. 2018.

[38] J.-Q. Li, X.-R. Tao, B.-X. Jia, Y.-Y. Han, C. Liu, P. Duan, Z.-X. Zheng,
and H.-Y. Sang, ‘‘Efficient multi-objective algorithm for the lot-streaming
hybrid flowshop with variable sub-lots,’’ Swarm Evol. Comput., vol. 52,
Feb. 2020, Art. no. 100600.

[39] B. Zhang, Q.-K. Pan, L. Gao, L.-L. Meng, X.-Y. Li, and K.-K. Peng,
‘‘A three-stage multiobjective approach based on decomposition for an
energy-efficient hybrid flow shop scheduling problem,’’ IEEE Trans. Syst.,
Man, Cybern., Syst., vol. 50, no. 12, pp. 4984–4999, Dec. 2020.

[40] L. Meng, C. Zhang, B. Zhang, K. Gao, Y. Ren, and H. Sang, ‘‘MILP
modeling and optimization of multi-objective flexible job shop scheduling
problem with controllable processing times,’’ Swarm Evol. Comput.,
vol. 82, Oct. 2023, Art. no. 101374.

[41] X. Han, W. Cheng, L. Meng, B. Zhang, K. Gao, C. Zhang, and P. Duan,
‘‘A dual population collaborative genetic algorithm for solving flexible
job shop scheduling problem with AGV,’’ Swarm Evol. Comput., vol. 86,
Apr. 2024, Art. no. 101538.

[42] L. Meng, W. Cheng, B. Zhang, W. Zou, W. Fang, and P. Duan,
‘‘An improved genetic algorithm for solving the multi-AGV flexible job
shop scheduling problem,’’ Sensors, vol. 23, no. 8, p. 3815, Apr. 2023.

[43] L. Meng, P. Duan, K. Gao, B. Zhang, W. Zou, Y. Han, and C. Zhang,
‘‘MIP modeling of energy-conscious FJSP and its extended problems:
From simplicity to complexity,’’ Expert Syst. Appl., vol. 241, May 2024,
Art. no. 122594.

[44] X. He, Q.-K. Pan, L. Gao, L. Wang, and P. N. Suganthan, ‘‘A greedy
cooperative co-evolutionary algorithm with problem-specific knowledge
for multiobjective flowshop group scheduling problems,’’ IEEE Trans.
Evol. Comput., vol. 27, no. 3, pp. 430–444, Jun. 2023.

[45] Q.-K. Pan, L. Gao, and L.Wang, ‘‘An effective cooperative co-evolutionary
algorithm for distributed flowshop group scheduling problems,’’ IEEE
Trans. Cybern., vol. 52, no. 7, pp. 5999–6012, Jul. 2022.

VOLUME 12, 2024 101715

Y. Cui et al.: Effective Discrete Jaya Algorithm for Multi-AGVs Scheduling Problem

YINGYING CUI received the Bachelor of Engi-
neering degree from the Department of Mathe-
matics and Information Engineering, Dongchang
College, Liaocheng University, Liaocheng, China.
She is currently pursuing the master’s degree
with Liaocheng University. Her research interests
include intelligent optimization and scheduling.

BAOXIAN JIA received the Ph.D. degree in
educational big data from Tsinghua University,
in 2019. He is currently an Associate Professor
with the School of Computer Science, Liaocheng
University. His research interests include educa-
tion big data and e-commerce.

HONGYAN SANG received the M.S. degree from
the School of Computer Science, Liaocheng Uni-
versity, Liaocheng, China, in 2010, and the Ph.D.
degree in industrial engineering from Huazhong
University of Science Technology, Wuhan, China,
in 2013. Since 2003, she has been with the
School of Computer Science, Liaocheng Univer-
sity, where she became a Professor, in 2021.

LEILEI MENG received the B.S. degree in
mechanical engineering from Chang’an Univer-
sity, Xi’an, China, in 2014, and the Ph.D. degree
from the School of Mechanical Science and
Engineering, Huazhong University of Science
and Technology, Wuhan, China, in 2020. He is
currently a Lecturer with the School of Computer
Science, Liaocheng University, Liaocheng, China.
His research interests include modeling, optimiza-
tion of scheduling problems, tool wear prediction,
and sustainable manufacturing.

BIAO ZHANG received the B.S. degree from
Shandong University of Technology, Zibo, China,
in 2012, and the Ph.D. degree from Huazhong
University of Science and Technology, Wuhan,
China, in 2019. He is currently a Lecturer with the
School of Computer Science, Liaocheng Univer-
sity, Liaocheng, China. He has authored more than
40 refereed articles. His research interests include
machine learning and intelligent optimization.
He is a Guest Editor of Symmetry.

WENQIANG ZOU received the M.S. degree
in computer application technology from Liaon-
ing University of Science and Technology, in
2011. He studied for a Ph.D. degree with the
School of Mechatronic Engineering and Automa-
tion, Shanghai University, Shanghai, China. He
is working with the School of Computer Sci-
ence, Liaocheng University. His research interests
include AGV scheduling and routing, intelligent
optimization, and scheduling algorithms.

101716 VOLUME 12, 2024

