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ABSTRACT Cervical spine diseases, encompassing conditions like spondylolisthesis, disc degeneration,
and cervical spinal stenosis, stand as significant contributors to global disability. Precise classification
of these conditions is paramount for effective medical diagnosis. This paper introduces an innovative
methodology aimed at addressing the limitations of traditional convolutional neural networks (CNNs)
and pretrained models in this domain. We propose a novel approach dubbed Inv-AlxVGGNets, which
leverages concatenated pretrained architectures AlexNet and VGG, augmented by involutional neural
networks and residual layers. Unlike conventional CNNs that are location-specific and channel-agnostic,
involutional neural networks offer enhanced Adaptability to diverse visual patterns in medical images.
Focusing on a four-class cervical spine disease classification task utilizing MRI images, our study evaluates
the performance of Inv-AlxVGGNets (AlexNet with INN and VGG with residual layer models) as well as
machine learning algorithms. Our findings demonstrate superior performance in terms of accuracy, precision,
recall, and AUC ROC values. Notably, Inv-AIxVGGNets achieves an impressive 98.73% accuracy on the
testing set and 99.78% on the training set, underscoring its potential for precise cervical spinal disease
classification. In a comparative analysis, we highlight that conventional CNNs entail over 133 million
parameters, whereas Inv-AlxVGGNets require less than 8 million parameters, rendering them more efficient
and resource-friendly. This reduced parameter count is particularly advantageous in resource-constrained
scenarios, where computational resources and datasets may be limited. The promising results position
Inv-AlxVGGNets as a valuable tool for precise cervical spine disease classification, offering implications
for enhancing patient care in resource-constrained settings.

INDEX TERMS Cervical spine disease, involution neural network, convolutional neural network, deep
learning, machine learning, classification, medical image processing.

I. INTRODUCTION

Spinal cord injuries (SCIs) have profound and enduring
consequences, ranging from persistent disability to reduced
life expectancy and compromised quality of life [1]. Not
only do these injuries exact a toll on affected individuals,
but they also impose significant financial burdens on
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healthcare systems [2], [3]. In a parallel domain, degenerative
spinal conditions (DSCs) present a multifaceted spectrum of
pathologies that profoundly impact health and well-being,
affecting a substantial portion of the population at least once
in their lifetime [4]. Within the realm of degenerative spinal
conditions, cervical spine disease stands out for its com-
plexity and prevalence. This category encompasses a variety
of conditions, including osteoarthritis, degenerative disease,
metastatic tumors, and osteomyelitis, each presenting unique
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challenges in diagnosis and management [5]. Cervical disco-
genic disease, a form of osteoarthritis affecting the cervical
spine, is particularly troublesome among older arthritic
patients, often leading to symptomatic cervical radiculopathy
or myelopathy [6]. Moreover, cervical degenerative disease,
characterized by degenerative radiographic changes, can give
rise to debilitating symptoms, further complicating clinical
management [6]. Cervical spondylosis, another term for
degenerative disease of the cervical spine, is prevalent and is
primarily attributed to the natural aging process, manifesting
as axial neck pain, radiculopathy, or myelopathy [7]. On the
other end of the spectrum, osteomyelitis of the cervical
spine, although rare, presents a serious infectious threat
necessitating prompt diagnosis and aggressive surgical inter-
vention for optimal outcomes [8]. Accurate classification of
cervical spine disease is pivotal for determining appropriate
treatment strategies and prognosticating outcomes. However,
challenges abound, as exemplified by the complexities
encountered in direct laryngoscopy in patients with cervical
spine disease [7]. In the era of rapidly advancing technology,
particularly in the domains of artificial intelligence (AI) and
deep learning, there is burgeoning potential to revolutionize
the detection and classification of spinal disease. While
integrating such technologies into clinical practice poses
challenges, ongoing research holds promise for enhancing
patient outcomes [4]. Traditional diagnostic modalities, while
effective, are not without limitations, often plagued by
subjectivity and time constraints. The emergence of deep
learning, particularly Involutional Neural Networks (INNs),
presents an exciting opportunity to augment the precision
and efficiency of cervical spine disease classification [9].
Involution layers within neural network architectures have
demonstrated remarkable pattern-recognition capabilities in
medical imaging datasets(lumbar bm), laying the foundation
for a more nuanced approach to classification. In this
study, we propose an innovative model, Inv-AlxVGGNet,
which integrates elements from AlexNet and modified VGG
architectures with residual layer based on involution neural
networks, aiming to overcome the limitations inherent in
traditional convolution networks. This approach holds the
potential to enhance the accuracy and time complexity of
learned features, thereby facilitating more accurate classifi-
cation of cervical spine diseases. Contributions of this work
include

o The study introduces a novel neural network architecture
that combines the strengths of modified VGG with
residual layer and AlexNet models with involutional
neural networks.

« anovel approach to cervical spine disease classification
using involutional neural networks.

e The introduction of the Inv-AlxVGGNet, and the
demonstration of Inv-AlxVGGNet’ ability to achieve
accurate classification with fewer parameters than
traditional CNNs.

o The paper also evaluates the performance of InvNets on
a four-class cervical disease classification problem and
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underscores their potential for medical image analysis
tasks, particularly in resource-constrained scenarios.

The subsequent sections of the paper are organized as
follows: Section II presents literature review, section III
details the materials and methods employed, including data
collection and analysis procedures. Section IV presents the
study findings supported by tables and figures, followed
by Section V, which interprets the results, discusses their
implications, and addresses study limitations. Section VI
summarizes the main findings, reiterates their significance,
highlights study limitations, and suggests avenues for future
research.

II. LITERATURE REVIEW

The utilization of deep learning techniques in medical image
classification has seen significant advancements in recent
years. In this section, we review several studies that have
explored various approaches for diagnosing and classifying
cervical spine diseases, providing valuable insights into the
potential of deep learning methodologies in this domain.
One notable study by [8] introduced a computer-aided
diagnosis system based on deep learning to classify
cervical spine injuries as fractures or dislocations with
remarkable accuracy. The model, leveraging deep learning
architectures such as AlexNet and GoogleNet, achieved an
impressive accuracy score of 99.56%, demonstrating its
efficacy in clinical settings. Furthermore, the incorporation
of Saliency maps enhanced the spatial understanding of
specific classes, contributing to improved diagnostic preci-
sion. Similarly, [9] focused on developing a fully automated
artificial intelligence-aided method for cervical vertebral
maturation (CVM) classification using convolutional neural
networks (CNNs). Four CNN models, including VGG16,
GoogLeNet, DenseNet161, and ResNet152, were evaluated,
with ResNet152 emerging as the most effective model for
CVM classification. This study underscores the potential of
deep learning approaches in automating complex clinical
tasks such as CVM assessment. Addressing a specific patho-
logical condition related to the cervical spine, [10] proposed
a novel model for diagnosing foraminal stenosis using only
X-ray images. By integrating data preprocessing techniques
and transfer learning with a pre-trained ResNet50 model, the
proposed approach demonstrated significant improvements
in diagnostic accuracy, offering a cost-effective alternative
to MRI examinations. Moreover, [4] introduced a deep
learning model aimed at enhancing the early detection
and screening of degenerative spinal conditions (DSCs).
Trained on a dataset of spinal X-ray images, the model
achieved an overall accuracy of 89% in classifying various
DSCs, showcasing its potential for aiding clinicians in
timely diagnosis and treatment planning. Furthermore, [11]
evaluated the effectiveness of vision transformers (ViT)
for detecting cervical spine fractures, achieving a notable
accuracy of 98%. This study highlights the utility of novel
machine learning architectures in streamlining diagnostic
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processes while ensuring interpretability and ease of training.
Additionally, [12] proposed a deep learning model for
detecting lumbar degenerative disease and assessed its
generalization ability for detecting cervical degenerative
disease using transfer learning. The model exhibited robust
performance in both internal and external validation datasets,
underscoring its potential for clinical implementation. In the
realm of medical image classification beyond cervical spine
diseases, various studies have demonstrated the efficacy
of deep learning models such as AlexNet and modified
versions thereof [13], [14] [15]. These studies showcase
the versatility of deep learning approaches in tackling
diverse medical imaging challenges, ranging from pneumo-
nia detection to cervical cancer classification. Moreover,
concatenated models demonstrated promising results in
improving classification accuracy compared to traditional
CNN models. This highlights the importance of exploring
innovative architectures and techniques to enhance the diag-
nostic capabilities of deep learning models. While previous
research has made significant strides in cervical spine disease
detection and classification, our work contributes to this body
of literature in several key aspects. Firstly, we propose a novel
approach by integrating involutional neural networks with
the concatenated modified AlexNet and VGG architecture,
offering a comprehensive solution to address the limitations
of traditional convolutional networks. Secondly, our study
focuses specifically on multiclass classification of cervical
spine diseases, providing a detailed analysis of our model’s
performance in a clinically relevant context. Furthermore,
meticulous attention to dataset selection and preprocess-
ing techniques ensures the robustness and generalization
capability of our model. The related work underscores
the potential of deep learning methodologies in advancing
cervical spine disease diagnosis and classification. Our
proposed Inv-AlxVGGNet model represents a significant
advancement in this domain, offering superior performance,
reduced parameter count, and enhanced adaptability to
spatial variations. These findings hold promise for improved
diagnostic accuracy and patient care in the field of cervical
spine pathology.

Ill. MATERIALS AND METHODS

A. DATASET AND IMAGE PREPROCESSING

The dataset utilized in this study Collected from the
University of Gondar’s specialized medical College and
comprises a collection of cervical spine MRI images.this
dataset contains an anonymized clinical MRI study or
set of scans of 423 patients with symptomatic back and
neck pain. Each patient data can have one or more MRI
studies associated with it. Each study contained slices,
individual images taken from sagittal or axial views of the
upper vertebrae of spine. These images are categorized into
four groups: those depicting Healthy cervical spine,Cervical
spondylosis, Cervical herniated disc, and Cervical spinal
stenosis, as depicted in Figure 3 and Table 1. We affirm that
all procedures performed in this study were in accordance
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FIGURE 1. Proposed system model.

TABLE 1. Dataset before and after data augmentation.

Class before data augmen- | after data augmenta-
tation tion

Healthy Cervical | 216 865

Spine

Cervical Spondylosis | 184 735

Cervical ~ Herniated | 190 760

disc

Cervical Spine Steno- | 202 810

sis

with ethical standards and comply with the 1964 Helsinki
Declaration. Patient identification data were not collected.
Data Splitting: The dataset was split into training, validation,
and testing subsets utilizing the ‘train_test_split’ function
from ScikitLearn. This partitioning enabled the evaluation of
the model’s performance across varied data subsets, ensuring
its robustness. Image Resizing: In order to standardize
input dimensions, all images were resized to a consistent
size of 224 x 224 pixels using the ‘target_size’ parameter
within the Keras ImageDataGenerator. Label Encoding:
Categorical labels were encoded into numerical format using
one-hot encoding, facilitating the utilization of categorical
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FIGURE 2. Proposed model architecture.

FIGURE 3. MRI images of cervical spine diseases and a healthy cervical
spine: (a) cervical herniated, (b) cervical spinal stenosis, (c) cervical
spondylosis, and (d) healthy cervical spine.

cross-entropy loss during model training. Data Augmenta-
tion: To enhance the model’s generalization capabilities and
improve its robustness, various data augmentation techniques
were employed during training. These techniques were
seamlessly integrated into the data pipeline using the Keras
ImageDataGenerator and included random rotations, flips,
and zoom. By artificially increasing the diversity of the
training data, data augmentation aided the model in learning
more effectively.

B. THE ARCHITECTURE OF INVOLUTIONAL NEURAL
NETWORK

Involutional neural networks (INV-Nets) represent a
paradigm shift from traditional convolutional neural networks
(CNNs) by introducing a novel approach to feature extraction.
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Unlike conventional CNNs, which rely on spatial-agnostic
kernels, INV-Nets utilize location-specific and channel-
agnostic involution kernels. These involution kernels dynami-
cally adapt to specific spatial positions within the input tensor,
enabling more effective feature extraction. By generating
each kernel based on the input tensor, INV-Nets can
capture intricate details and subtle patterns, essential for
tasks such as image classification [16]. This adaptability
makes INV-Nets particularly well-suited for medical image
analysis, where precise feature extraction is crucial for
accurate diagnosis. Moreover, the reduced parameter count of
INV-Nets contributes to enhanced computational efficiency,
making them suitable for resource-constrained environments.
INV-Nets offer a promising alternative to traditional CNNss,
with the potential to significantly improve diagnostic
accuracy and efficiency in various applications, including
medical imaging tasks.

C. THE ARCHITECTURE OF CONVOLUTIONAL NETWORK

Convolutional neural networks (CNNs) are deep learning
architectures commonly used for image processing and
computer vision tasks. They consist of several layers, includ-
ing the convolution layer, pooling layer, fully connected
layer, and non-linear layer [17]. The convolutional layer
applies kernel filters to extract fundamental features from
input images [18]. The pooling layer combines successive
convolutional layers and downsamples the feature maps [19].
The fully connected layer is responsible for generating the
final output of the CNN. CNNSs use activation functions such
as Sigmoid, Tanh, ReLU, Leaky ReLU, Noisy ReLU, and
Parametric Linear Units to define the output of the neural
network [20]. Popular CNN architectures include LeNet,
AlexNet, and VGGNet. Efficient hardware and algorithmic
optimizations are necessary for real-time CNN inference,
as CNNs require large computational and energy resources.

D. PROPOSED MODEL ARCHITECTURE

Our methodology propose a novel methodology for cer-
vical spine disease classification by leveraging the output
features from both the AlexNet-inspired branch utilizing
Involution instead of traditional CNN, and the VGG-inspired
branch employing residual layers. These features are then
concatenated to serve as input to fully-connected layers for
classification. Our aim is to harness the combined strengths of
both architectures to achieve superior performance in cervical
spine disease classification tasks (see Figure 1 and Figure 2).
The integration of modified VGG with an AlexNet-based
involution neural network offers several compelling benefits:
Feature Enrichment: By combining the features learned by
both models, our approach enriches the representation of the
input data. While the VGG model captures certain aspects
of the input, the involution operations in AlexNet provide
adaptive processing of spatial information, resulting in a more
comprehensive feature set [21]. Improved Performance:
The concatenation of the output features from both branches
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FIGURE 5. Convolution Neural Network architecture.

has the potential to significantly enhance performance in
tasks such as image classification. This integration allows the
model to exploit the unique strengths of each architecture,
leading to improved accuracy and discriminative power.
Increased Model Capacity: Concatenating the output fea-
tures increases the model’s capacity to learn more complex
features, which is particularly advantageous for large and
diverse datasets. This expanded capacity enables the model
to capture subtle nuances in the input data, improving its
ability to generalize effectively. Robustness to Variations:
The involution operations employed in the AlexNet-based
branch enhance the network’s robustness to variations in
the input data, such as differences in scale or rotation.
This resilience is crucial for tackling the inherent challenges
in image recognition tasks, ensuring reliable performance
across diverse real-world scenarios. This section provides a
detailed overview of the architectural components and their
integration to form a robust framework for feature extraction
and classification.

1) VGG-INSPIRED LAYERS

VGG, a widely recognized convolutional neural network
(CNN) architecture, has showcased exceptional performance
across a spectrum of applications, spanning from the
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detection of plant diseases in agriculture [22], [23] to the
identification of lung and breast cancer severities [24], [25].
Among its variants, VGG-16 stands out for its effectiveness in
image classification tasks, owing to its utilization of Rectified
Linear Units (ReLU) activation function and a stack of
convolutional layers augmented with flatten, normalization,
dense, and drop-out layers. Often complemented by transfer
learning and deep learning techniques, VGG-16 has been
instrumental in achieving high accuracy rates in various
domains. In our study, we propose an enhanced VGG model
that integrates residual layers, marking a significant evolution
in neural network design. This novel architecture combines
the depth and comprehensive feature extraction prowess
of the VGG model with the gradient-preserving benefits
of residual connections. These skip connections facilitate
the training of deeper networks by enabling gradients to
flow more freely, thereby addressing the vanishing gradient
problem. Notably, our proposed architecture not only accel-
erates convergence and enhances accuracy during training but
also exhibits greater resilience against overfitting, making it
particularly suitable for intricate image processing tasks such
as medical image analysis. Implemented using modern deep
learning frameworks, this modified VGG model represents
a notable advancement in the field, offering a potent and
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efficient solution for diverse image-related applications.
The VGG-inspired model architecture begins with an input
layer defining the shape of input images as (224, 224, 1).
It follows the characteristic VGG pattern, starting with Block
1 consisting of two convolutional layers with 64 filters
each, followed by max-pooling to downsample the feature
maps. Block 2 builds upon this, increasing the number of
filters to 128 while maintaining the convolutional and max-
pooling structure. Notably, there’s a residual connection from
Block 1 to enhance gradient flow. Block 3 introduces a
convolutional layer with 256 filters followed by max-pooling,
excluding the last three convolutional layers of the original
VGG. Another residual connection from Block 1 is added to
Block 3. The architecture concludes with two fully connected
layers with 512 and 1024 neurons, respectively, and an output
layer with 4 neurons for classification tasks, employing
softmax activation. This model combines the effectiveness of
VGG’s stacked convolutional layers with the integration of
residual connections, offering a robust framework for image
classification tasks.

2) ALEXNET-INSPIRED LAYERS

The provided model architecture draws inspiration from
AlexNet, a groundbreaking convolutional neural network
(CNN) renowned for its pivotal role in advancing deep
learning for image classification tasks. AlexNet gained
prominence by winning the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) in 2012. In this architec-
ture, the input layer is configured to accept images with
dimensions of 224 x 224 pixels. Departing from traditional
convolutional layers, the model incorporates Involutional
Layers, a novel self-attention mechanism designed to capture
long-range dependencies within feature maps, followed
by Rectified Linear Unit (ReLU) activation functions to
introduce non-linearity. Max pooling layers with a (3, 3)
pool size and (2, 2) strides are interspersed after every two
Involution layers to downsample feature maps effectively.
The architecture also includes fully connected layers with
4096 neurons each, activated by ReLLU functions, followed
by dropout layers with a dropout rate of 0.5 to mitigate
overfitting. Finally, the model concludes with a dense output
layer comprising four neurons, representing the classification
classes, and utilizes the softmax activation function to output
class probabilities. By integrating Involution layers and
retaining the core principles of AlexNet, this architecture
offers a promising approach for image classification tasks,
showcasing advancements in deep learning methodologies.

3) INVOLUTION LAYERS

Innovatively, instead of traditional CNN convolutions,
involution layers are proposed. These layers dynamically
learn convolutional patterns within local receptive fields,
effectively reducing the number of parameters compared
to standard convolutions while maintaining efficiency. Key
aspects of involution layers include: Dynamic Convolutional
Patterns: Involution layers adaptively learn convolutional
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TABLE 2. Parameter configuration of proposed model.

Layer (type) Output Shape Param
Inputl (InputLayer) (None, 224, 224, 1) 0
Alex_inv_1 (Involution) (None, 224, 224, 1) 24
max_pooling2d (MaxPooling2D) (None, 111, 111, 1) 0
Input2 (InputLayer) (None, 224,224, 1) 0
Alex_inv_2 (Involution) (None, 111, 111, 1) 24
conv2d_6 (Conv2D) (None, 224, 224, 64) 640
conv2d_7 (Conv2D) (None, 224, 224, 64) 36928
max_pooling2d_1 (MaxPoolinng2D) | (None, 55, 55, 1) 0
max_pooling2d_3 (MaxPoolinng2D) | (None, 112, 112, 64) 0
Alex_inv_3 (Involution) (None, 55, 55, 1) 24
conv2d_8 (Conv2D) (None, 112, 112, 128) 73856
conv2d_9 (Conv2D) (None, 112, 112, 128) 147584
Alex_inv_4 (Involution) (None, 55, 55, 1) 24
max_pooling2d_4 (MaxPooling2D) | (None, 56, 56, 128) 0
conv2d_10 (Conv2D) (None, 56, 56, 128) 8320
add (Add) (None, 56, 56, 128) 0
Alex_inv_5 (Involution) (None, 55, 55, 1) 24
conv2d_11 (Conv2D) (None, 56, 56, 256) 295168
max_pooling2d_5 (MaxPooling2D) | (None, 28, 28, 256)

conv2d_12 (Conv2D) (None, 28, 28, 256) 16640
max_pooling2d_2 (MaxPooling2D) | (None, 27,27, 1) 0
add_1 (Add) (None, 28, 28, 256) 0
flatten (Flatten) (None, 729) 0
flatten_1 (Flatten) (None, 200704) 0
concatenate (Concatenate) (None, 201433) 0
dense_1 (Dense) (None, 32) 6445888
dropout_1 (Dropout) (None, 32) 0
dense_2 (Dense) (None, 64) 2112
dense_4 (Dense) (None, 4) 260
Total params: — 7027516
Trainable params: — 7027506
Non-trainable params: — 10

weights within small kernel sizes. Parameter Efficiency: The
use of involution contributes to model efficiency by reducing
parameter count while preserving performance.

4) MODEL CONCATENATION

The output features from both the AlexNet-inspired and
VGG-inspired branches are concatenated, serving as input
to fully-connected layers for classification. By concatenating
the strengths of both architectures, our approach aims
to achieve superior performance in cervical spine disease
classification tasks.

E. MODEL TRAINING

Dataset Splitting: The dataset was divided into training,
validation, and testing sets in a 60:20:20 ratio, respectively,
to train, validate, and test the deep learning model. Stratified
sampling was employed to ensure balanced class distributions
across the sets. Training Procedure: The model was
trained using the extracted features of the training set
with the Adam optimizer and categorical cross-entropy loss
function. Hyperparameters such as learning rate, batch size,
and number of epochs were fine-tuned through empirical
experimentation to optimize model performance. During
training, the model was trained using the extracted features
of the training set. The validation set was used to evaluate the
model’s performance and prevent overfitting by monitoring
its performance. After training, the model was tested on the
testing set to provide an unbiased estimate of its performance
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on unseen data. To achieve this splitting, the dataset was
initially divided into a training set (60%) and a temporary set
containing the remaining data (40%). Stratified sampling was
applied to ensure that the class distribution was preserved in
both sets. Subsequently, the temporary set was further divided
into a validation set (20% of the original dataset) and a test
set (20% of the original dataset) using a 50:50 split. This
stratified approach was maintained to ensure that each class
was proportionally represented in the training, validation, and
test sets, preserving the integrity of the original dataset’s class
distribution. Early Stopping: To prevent overfitting, early
stopping was employed based on the validation loss. Training
was halted when the validation loss failed to decrease over a
predefined number of epochs.

F. EVALUATION TECHNIQUES

Accurate assessment methodologies are crucial for validating
the classification efficacy of a system, especially in image
classification tasks where subtle distinctions are crucial.
In this investigation, various evaluation metrics were care-
fully selected to gauge the precision and efficiency of our
proposed model for cervical spine disease classification.
The initial metric employed was accuracy, a fundamen-
tal measure that quantifies the proportion of accurately
classified images within the test set. Accuracy serves as
a reliable indicator of overall classification performance,
offering a quick and intuitive assessment of the model’s
effectiveness. Additionally, precision, recall, and the F1
score were thoroughly evaluated, using the confusion matrix
to provide deeper insights into classification performance.
Precision measures the proportion of correctly classified
positive instances out of all instances classified as positive,
offering insights into the model’s ability to minimize false
positives. Recall, or sensitivity, quantifies the proportion
of correctly classified positive instances out of all actual
positive instances, providing valuable information on the
model’s ability to detect true positives. The F1 score, which
harmonizes precision and recall, offers a balanced measure of
the model’s accuracy, particularly valuable in scenarios with
imbalanced class distributions. Collectively, these evaluation
metrics offer a detailed and comprehensive assessment of
the proposed cervical spine disease classification model,
ensuring its suitability for image classification tasks where
accuracy and reliability are crucial.

Accuracy: Accuracy is the proportion of correct pre-
dictions made by the model out of all predictions made.
It measures how well the model classifies the samples. The
formula for accuracy is:

True Positives + True Negatives

Al =
ceuracy Total Samples

Recall (Sensitivity): Recall is the fraction of positive
instances that are correctly identified. It can be represented
as:

True Positive
Recall =

True Positive + False Negative

102194

Precision:
Precision is the fraction of positive predictions that are
actually correct. It can be represented as:

. True Positive
Precision =

True Positive + False Positive

F1 Score: F1 Score is the harmonic mean of precision and
recall. It is a single number that balances both the precision
and recall. It can be represented as:

2 x precision x recall

F1Score = —
precision + recall

where True Positives (TP): The number of instances that
were correctly classified as positive by the model. True
Negatives (TN): The number of instances that were correctly
classified as negative by the model. False Positives (FP):
The number of instances that were incorrectly classified as
positive by the model. False Negatives (FN): The number of
instances that were incorrectly classified as negative by the
model. Total Samples: The total number of instances in the
dataset.

AUC:

Area Under the Curve (AUC) is a commonly used per-
formance metric machine learning classification problems,
which evaluates the overall performance of a classifier.
In binary classification, a classifier outputs a predicted
probability for each sample to belong to one of two classes,
positive or negative. The AUC is the area under the Receiver
Operating Characteristic (ROC) curve, which plots the True
Positive Rate (TPR) against the False Positive Rate (FPR) for
different classification thresholds.

The equation for the ROC curve is:

TP
TPR = ——
TP+ FN

FP
FPR = ———
FP+TN

where TP, TN, FP, and FN are the number of True Posi-
tives, True Negatives, False Positives, and False Negatives,

respectively.
The equation for the AUC can be written as:
> TP FP
AUC = [ — 1ds
o TP+FN FP+TN

G. CLASSIFICATION

To classify cervical spine disease, we employed a combi-
nation of Multi Layer Perceptron (MLP), and traditional
machine learning classifiers such as SVM, KNN, and RF
techniques on top of Inv-AlxVGGNets. MLP: MLP-like
architectures have been used in image classification tasks,
particularly in medical image classification and hyperspectral
image classification. These MLP-like models are simple,
computationally efficient, and have strong generalization
capabilities. They require better input features from the
image, which can be achieved by using convolutional layers
and Involutional layers and complex transformations [26].
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The integration of machine learning, including MLP, in med-
ical image analysis can enhance diagnostic accuracy and
improve healthcare [27]. These studies highlight the potential
applications and techniques of MLP in medical imaging,
demonstrating its effectiveness in disease diagnosis, surgical
planning, and prognosis assessment. SVM: Support Vector
Machine (SVM) is a popular technique used in image classi-
fication. SVM is a mathematical model for classification and
regression that has been widely studied and improved over
the years. It has been applied in various image processing
approaches and algorithms, including vehicle classification
and medical image classification [28], [29]. SVM has also
been used in combination with deep neural networks for
image classification tasks, where the features learned by the
neural network are transferred to the SVM for prediction.
SVM has shown promising results in terms of accuracy
for image classification, with studies reporting accuracies
of greater than 90% [30]. The selection of an appropriate
approach and the quality of the labels significantly impact the
robustness of the SVM model. Overall, SVM is a powerful
tool for image classification and continues to be an active
area of research. KNN: NN algorithm has been widely used
in image classification. It is one of the oldest, simplest, and
accurate algorithms for pattern classification and regression
models. Researchers have also improved the KNN algorithm
to enhance its accuracy. One study optimized the selection
strategy of K value using genetic algorithm, resulting in
a nearly 10% improvement in classification accuracy [31].
Another study proposed a CNN-KNN architecture for brain
tumor detection and classification. The CNN-KNN method
effectively detects and classifies various forms of tumors
with a promising accuracy of 95.7% [32]. Among the two
types of classifiers used in the CNN-KNN architecture,
KNN performed the best accuracy. RF: Random forest
models have been used in image classification in various
studies. For example, Winterauer et al. developed a random
decision forest model for fast identification of microplastics
in environmental samples using Fourier-transform infrared
spectra [33]. Other study proposed a breast cancer detection
model based on ResNet and random forest models to
improve the efficiency and accuracy of image processing and
classification [34]. Reference [34] presented a Self-Attention
Random Forest (SARF) model for the classification of breast
cancer histopathological images, achieving high accuracy
and outperforming other methods. Additionally, Gupta and
Kumar used a random forest classifier to classify emotions
in emojis and small texts, achieving a high classification
accuracy [18], [35]. These studies demonstrate the effec-
tiveness of random forest models in image classification
tasks.

H. HARDWARE AND SOFTWARE SPECIFICATIONS

In this study, our hardware setup included an Intel(R)
Core(TM) i5-10210U Multi core CPU with Maximum Turbo
Frequency of 4.2GHz. The software stack comprised Python
version 3.9.13 as the primary programming language, along
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TABLE 3. Results of individual models with convolutional neural network.

classifier Accuracy Precision Recall (%) | Fl-score
(%) (%) (%)

AlexNet 82.73 83.08 81.64 82.35

VGG 84.62 83.13 82.78 82.95

with key libraries and frameworks. Specifically, we utilized
Keras version 2.11.0 for deep learning model development
and training, scikit-learn version 1.0.2 for various machine
learning tasks, and OpenCV for image processing and
computer vision applications. These software versions were
chosen for their compatibility and functionality, ensuring
robustness and efficiency throughout the experimentation
process.

IV. RESULTS

In the results section, we present an in-depth analysis
of our proposed approach’s performance. We evaluated
key performance metrics, including training and validation
accuracy, as well as loss. The confusion matrix was employed
to examine the behavior of distinct classes. Additionally,
we generated ROC curve plots to visualize the model’s
performance at various threshold levels. To provide context
for our findings, we compared our results with other state-of-
the-art approaches, highlighting the strengths and advantages
of our proposed method.

A. RESULTS OF INDIVIDUAL ARCHITECTURES

We conducted an analysis of both AlexNet-inspired and
VGG-inspired models based on Involutional Neural Net-
works (INNs) and Convolutional Neural Networks (CNNs)
to evaluate their impact on the overall model performance.
For each feature extractor, we assessed its effectiveness using
a fully connected (FC) classifier. Initially, we utilized the
original architectures of AlexNet and VGG16. The outcomes
are presented in Table 3 and Table 4. The VGG model demon-
strated better performance when utilizing a fully connected
layer combined with a SoftMax classifier, achieving a testing
accuracy of 84.62%. Subsequently, we tested individual
models of our proposed architecture, which include an
involution-based AlexNet and a VGG-inspired model with
residual layers. The results showed that the AlexNet model
performed slightly better than the VGG-inspired model,
achieving an accuracy score of 88.51%. This improvement
over the original AlexNet and VGG models without any alter-
ations suggests the effectiveness of incorporating involutional
neural networks and residual layers in our architecture.

B. RESULTS BEFORE AND AFTER DATA AUGMENTATION

We conducted experiments to evaluate the impact of data
augmentation techniques on the performance of our proposed
model. Initially, we assessed the performance of Convolu-
tional Neural Networks with Residual layers and Involutional
Neural Networks without applying any data augmentation.
The results, as depicted in the Figure 6 and summarized in

102195



IEEE Access

B. M. Abuhayi et al.: Inv-AlxVGGNets: Cervical Spine Disease Classification

TABLE 4. Results of individual models with involutional neural network
and residual layers.

classifier Accuracy Precision Recall (%) | Fl-score
(%) (%) (%)

AlexNet 88.51 88.08 87.64 87.85

with INN

VGG with | 87.21 86.11 86.88 86.49

Residual

layers

Training and Validation Accuray
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FIGURE 6. Learning curve of proposed model before data augmentation
(a) and after data augmentation (b).

Table 5, revealed comparable accuracies between the models
with and without data augmentation. However, a noticeable
gap in the learning curves between training and validation
results indicated the presence of overfitting. Overfitting
occurs when a model performs well on the training data
but poorly on the validation or testing dataset, reflecting
its limited generalization ability. To mitigate this issue,
we applied data augmentation techniques such as flipping,
rotation, and zooming to the dataset. The subsequent results
demonstrated improvements in the model, as evidenced by
enhanced validation accuracy and reduced disparity between
training and validation accuracies. This enhancement sug-
gests an improvement in the models’ generalization ability,
addressing the overfitting problem effectively and increase
the performance of the proposed model.

C. RESULTS AFTER IDENTIFYING OPTIMAL HYPER
PARAMETERS

After we have experimented with different hyperparameters
such as learning rate, loss function and activation functions as
shown in Table 6 and Figure 5 the proposed model achieved
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TABLE 5. Results of proposed study before and after data augmentation.

classifier Accuracy Precision Recall (%) | Fl-score
(%) (%) (%)

Proposed 87.29 86.01 87.10 86.55

model

without

Augmenta-

tion

Proposed 92.62 91.75 90.89 91.32

model with

Augmenta-

tion

TABLE 6. Optimal hyperparameters for the proposed model.

list of hyperparameters optimal values
Learning Rate 0.01
optimizer adam

loss function categorical cross entropy
activation function ReLu and Softmax

batch size 32

EarlyStopping monitor=loss, patience=2

99.78% training accuracy and a 98.73% testing accuracy after
trained for 40 epochs. As we can see from Figure 7 (a) the
model shows no overfitting problem. And Figure 7 (b) shows
the loss for training and validation which indicates training
loss focuses on how well the model fits the training data,
while validation loss evaluates its performance on unseen
data. Monitoring both these metrics helps us understand
the model’s behavior during training and aids in preventing
overfitting. and the proposed model was able to achieve
much less than 1%. A shown in Figure 7(c) the results have
further been explained through the use of confusion matrix
which summarizes the performance of a the model on a set
of test data. It provides a clear breakdown of accurate and
inaccurate predictions based on the model’s output. And in
our model as we can see from the figure out of 173 images
of healthy cervical spine sets 173 were correctly classified
as healthy cervical spine and out of 147 images of cervical
spondylosis only one of them were misclassified as cervical
spine stenosis. and from 152 images of cervical herniated disc
one image were misclassified as cervical herniated disc and
finally from 162 images of cervical spinal stenosis 6 images
were classified as cervical spondylosis. This meticulous
analysis not only validates the high accuracy metrics reported
but also offers valuable insights into the model’s strengths
and areas for potential improvement, ultimately enhancing
our understanding of its performance characteristics and
informing future optimization efforts.

D. RESULTS OF MACHINE LEARNING CLASSIFIERS

In this section, we embarked on a comprehensive exploration
of classical machine learning classifiers, including Support
Vector Machine (SVM), Random Forest, Decision Tree, and
K-Nearest Neighbors (KNN). Our evaluation methodology
leveraged Receiver Operating Characteristics (ROC) Curves
and the Area Under the Curve (AUC), as illustrated in the

VOLUME 12, 2024



B. M. Abuhayi et al.: Inv-AlxVGGNets: Cervical Spine Disease Classification

IEEE Access

Training and Validation Accuray

Accuracy

—— Training Accuracy
0.65 —— Validation Accuracy

0 10 20 30 40
Epoch

(a)

Training and Validation Loss

—— Training Loss
—— Validation Loss

—_— A
0.0
0 10 20 30 40
Epoch
160
Healthy 0 [ 0 140

120

Cervical spondylosis 0
100

80

True label

Cervical herniated disc 0

60

40
Cervical spinal stenosis 0

20

Predicted label

(©

FIGURE 7. Learning curve of proposed model (a) training and validation
accuracy, (b) training and validation loss, and (c) confusion matrix.

accompanying Figure 8 and Table 8, to provide nuanced
insights into classifier performance. As shown in Table 7 by
employing Grid Search, we meticulously fine-tuned various
hyperparameters for each classifier to optimize predictive
accuracy. Notably, for SVM, we identified optimal param-
eters, including a regularization parameter (C) of 44216.28,
a gamma value of 1000, and an RBF kernel. The Decision
Tree classifier was trained with a maximum leaf node of
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TABLE 7. Hyperparameters of machine learning classifiers.

Random Forest

Max depth: [4,5,6,7,8],
Max  Features: [’auto’,
’sqrt’, ’log2’], Estimators:
[10,30,40,50,100,200,500],

Classifier Range for GreadSearchCv | optimal Hyper-
parameters
SVM C: logspace of (-2, 10, 10), | C=44216.28,
gamma: logspace of (-9, | gamma=1000,
3,10) RBF kernel

Criterion: entropy,
max depth: 8, max
features: log2, es-
timators: 42

Criterion: [’gini’, ’entropy’]
Max leaf nodes: [2, 100],
Min sample split: [2,4,6,8]

Max leaf nodes:
95, min sample

Decision Tree

split: 6
K-Nearest Neigh- | K:[1,20] K=7
bors
TABLE 8. Results of machine learning classifiers.
classifier Accuracy (%) | AUC (%)
SVM with AlexNet 92.37 93
SVM with VGG 90.44 91
SVM with Proposed 95.23 96
RF with AlexNet 89.30 90
RF with VGG 83.23 86
RF with Proposed 94.66 95
KNN with AlexNet 86.98 88
KNN with VGG 83.58 85
KNN with Proposed 92.12 93
DT with AlexNet 72.01 75
DT with VGG 71.98 73
DT with Proposed 85.22 86

95 and a minimum sample split of 6, while the Random
Forest classifier utilized an entropy criterion, a maximum
depth of 8, log2 maximum features, and 42 estimators.
Similarly, KNN was trained with a k value set to 7.
Initially, our experimentation focused on evaluating classifier
perforance of each individual models AlexNet and VGG with
Involutional Nets and residual layers, yielding AUC scores of
0.90, 0.88, 0.75, and 0.93 for Random Forest, KNN, Decision
Tree, and SVM for AlexNet with INNs, respectively. And for
VGG with residual layers an AUC scores of 0.86, 0.85, 0.73,
and 0.91 for Random Forest, KNN, Decision Tree, and SVM
respectively was achieved. Subsequently, upon concatenating
both architectures and incorporating featured data with ML
classifiers, we observed notable improvements, with AUC
scores of 0.96, 0.86, 0.93, and 0.95, for SVM, DT, KNN, and
RF classifiers respectively. This underscored the efficacy of
concatenating different architectures in enhancing classifier
performance. These results underscored the pivotal role of
involutional neural networks, residual layers and integration
of different modes in enhancing classifier robustness and
overall predictive accuracy. By systematically evaluating the
impact of various methodologies, our study provides valuable
insights into effective strategies for optimizing classifier
performance in complex data domains, ultimately advancing
the state-of-the-art in machine learning applications.

E. COMPARATIVE ANALYSIS OF TIME COMPLEXITY

In this section, we investigated the impact of the number of
parameters on the time complexity of Convolutional Neural
Networks (CNNs) and involutional neural networks in image
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FIGURE 8. ROC curves for four different classification algorithms SVM,
KNN, RF, and DT with AlexNet-inspired model(b), VGG-inspired model
(c) and Proposed model (a).

classification tasks. We started by training a CNN model
on a dataset of 224 by 224 MRI images using individual
architectures of AlexNet and VGG models that is based
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TABLE 9. Impact of model parameters on CNN and INN training time and
accuracy.

Model Accuracy (%) | Parameter Time
(sec/epoch)
CPU

AlexNet 90.11 46763396 79

VGG 89.09 138357544 201

Concatinated | 91.75 133130212 190
(AlexNet and
VGG)

AlexNet based | 94.91
on Involution
VGG with | 92.36
Residual layers

Proposed 98.73

25759878 57

103870660 181

7027516 21

on Covolutional Neural Networks and record the training
time. we then asses the results of concatenated AlexNet
and VGG Models that is based on Convolutional Network.
As shown in Table 9 our results showed that the time it took to
train concatenated model was higher compared to individual
models and Alex model took less time to train compared to
individual and concatenated models, it took 79 sec/epoch to
train the model with 46763396 total parameter count. The
increase in training time can be attributed to the increase in
the number of computations required to process the larger
number of parameters. Therefore, it is crucial to carefully
consider the trade-off between training time and model
accuracy when deciding on the appropriate CNN model.
Next, we investigated the impact of increasing the number
of parameters on the time complexity of our proposed con-
catenated Involutional Neural Network model with residual
layers for cervical spine disease classification. We compared
three different versions of the model, each with different
number of layers and parameters. The first model (AlexNet
with INNs) had 25759878 parameters. The second model
(VGG with residual layers) had 103870660 parameters.
The third model (concatinated AlexNet and VGG model)
had 7027516 parameters, which was the proposed model.
As expected, we observed an increase in the time required
to train the models as the number of parameter increased.
The first model (AlexNet based INN) took 57 sec/epoch to
train, while the second (VGG with Residual layers) and third
model (concatenated) took 181 sec/epoch and 21 sec/epoch,
respectively. This increase in training time can be attributed
to the increase in the number of computations required to
process the larger number of parameters. However, it is
important to note that while increasing the number of layers
and parameters may improve the accuracy of the model,
it may not necessarily result in a proportional increase in
performance.

V. DISCUSSION

This paper introduces an innovative approach to cervi-
cal spine disease classification through the integration of
Involutional Neural Networks (InvNets) with the concate-
nated AlexNet and VGG architectures with residual layers.
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Our research addresses a four-class cervical spine disease
classification problem, with the objective of distinguishing
between various cervical spine disease types based on MRI
data. A comparative analysis of InvNets and traditional
Machine Learning classifiers is presented, employing diverse
evaluation parameters. Our results indicate that the proposed
model (Inv-AlxVGGNets) surpasses conventional machine
learning classifiers in terms of accuracy, precision, recall, and
other values. This enhanced performance is attributed to the
distinctive features of InvNets. In contrast to conventional
CNNs that utilize spatial-agnostic and channel-specific
convolution kernels, InvNets employ location-specific and
channel-agnostic involution kernels. This design enables
the network to adapt to varied visual patterns across
spatial locations, augmenting its capacity to capture intri-
cate features in medical images. The evaluation outcomes
of Inv-AlxVGGNets demonstrate an impressive accuracy
rate of 98.73%. This noteworthy accuracy, coupled with
a significantly reduced parameter count, underscores the
efficacy of InvNets for tasks in medical image analysis.
Particularly in resource-constrained environments, InvNets
emerge as a promising solution for accurate cervical spine
disease classification. Comparative analyses with alternative
machine learning methods underscore the superiority of
our proposed model. Decision Trees, KNN, and SVM
methods exhibit lower accuracy rates and potential overfitting
concerns. In contrast, our hierarchical approach, amalga-
mating concatenated AlexNet and VGG architecture with
InvNets, achieves a balanced trade-off between accuracy and
computational efficiency.

Our research findings hold significant practical implica-
tions, particularly for regions with fewer doctors and special-
ists. By leveraging advanced deep learning techniques, our
methodology for cervical spine disease classification offers
several potential benefits for improving healthcare access and
delivery in underserved areas. Firstly, our methodology can
serve as a valuable tool for expanding access to specialized
healthcare services in regions where there is a scarcity of
doctors and specialists. By automating the classification of
cervical spine diseases, healthcare facilities in underserved
areas can provide timely diagnoses without relying solely on
the availability of specialized professionals. This can help
bridge the gap in healthcare access between urban and rural
areas, ensuring that patients in remote regions receive the care
they need. In addition to expanding access to specialized care,
our methodology can also optimize workflow efficiency and
empower primary care providers in underserved areas. With
limited availability of specialists, primary care providers
often bear the responsibility of diagnosing and managing
a wide range of health conditions, including cervical spine
diseases. Our methodology can provide them with a reliable
tool for cervical spine disease classification, enhancing their
diagnostic capabilities and confidence in managing patients
with spinal conditions. Moreover, our methodology supports
telemedicine initiatives by enabling remote consultations
and diagnosis. Integrated into telemedicine platforms, our

VOLUME 12, 2024

model allows primary care providers in remote regions to
securely transmit MRI images for automated classification
by our model. This facilitates timely diagnosis and treatment
recommendations without the need for patients to travel
long distances to see specialists in person. Furthermore,
our methodology can contribute to capacity building and
training efforts in underserved areas by exposing local
healthcare providers to advanced deep learning techniques.
By implementing our model in healthcare facilities, local
providers can expand their skill sets in medical image
analysis, ultimately strengthening the healthcare workforce
and improving patient care over the long term.

However, it is essential to acknowledge several limitations
of our study. Firstly, the dataset used was sourced from
a single institution, potentially limiting the generalizability
of our findings. Future research should aim to validate our
approach on larger, more diverse datasets encompassing
multiple demographics and clinical settings. Secondly, our
study focused exclusively on MRI images for cervical spine
disease classification. Expanding our investigation to include
other imaging modalities, such as CT scans or X-rays, could
provide a more comprehensive understanding of our model’s
performance across different clinical scenarios. Furthermore,
while our model showcased superior performance compared
to traditional machine learning classifiers, it is essential to
consider the computational resources required for training
and inference. Future research should explore optimization
techniques to enhance the efficiency and scalability of our
model, making it more feasible for deployment in real-world
clinical settings.

Despite these considerations, the proposed model’s robust
performance and reduced computational requirements posi-
tion it as a promising candidate for practical applications
in the medical domain. Future research directions include
developing methods for model interpretability, integrating
multiple imaging modalities, exploring transfer learning
techniques, and conducting prospective studies to evaluate
the clinical impact of our model in real-world healthcare
settings. Collaborating with healthcare practitioners to assess
the model’s effectiveness in clinical decision-making and
patient outcomes is crucial for validating its utility and
facilitating its integration into routine clinical workflows.

VI. CONCLUSION

In this study, we have presented an innovative method-
ology, Inv-AlxVGGNets, for precise classification of cer-
vical spine diseases using MRI images. By leveraging
concatenated pretrained architectures AlexNet and VGG,
augmented by involutional neural networks and residual
layers, we have addressed the limitations of traditional
convolutional neural networks (CNNs) and pretrained models
in this domain. Our study demonstrates superior performance
of Inv-AlxVGGNets in terms of accuracy, precision, recall,
and AUC ROC values, achieving an impressive 98.73%
accuracy on the testing set and 99.78% on the training set.
Importantly, Inv-AlIxVGGNets requires significantly fewer
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parameters compared to conventional CNNs, making it
more efficient and resource-friendly, especially in resource-
constrained settings. These promising results highlight the
potential of Inv-AlxVGGNets as a valuable tool for precise
cervical spine disease classification, with implications for
enhancing patient care in various healthcare settings.
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