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ABSTRACT The field of remote sensing has experienced rapid advancement owing to the widespread
utilization of image sensors, drones, and satellites for data collection. However, object detection in remote
sensing poses challenges owing to small objects with low resolution (LR), complex scenes, and limited data
for model training. Conventional methods rely on computationally intensive models and hardware setups
that are not suitable for real-time detection. To address this issue, we propose a novel sequential transfer
learningmethod based on generative adversarial networks (GANs) that generate super-resolved data fromLR
for embedded systems, enabling improved performance with limited data by combining learning from both
heterogeneous and homogeneous data. Additionally, we train the model sequentially, starting with the easiest
data and progressing to the most complex based on the complexity levels determined by the GAN-generated
images. The GAN model is trained on a diverse dataset of images and learned to generate high-resolution
images from the LR, capturing finer object details for enhanced accuracy and localization capabilities. The
proposed method acquires more robust features and enhances the generalizability and convergence of the
model. Furthermore, the trained model of the proposed method is deployed on embedded platforms, such
as Nvidia’s Jetson Nano and AGX Orin, for real-time remote-sensing object detection, with satisfactory
detection performance. Evaluation metrics, such as mAP@0.5, mAP@0.5–0.95, and F1 score were used
to assess the object detection accuracy. The experimental results demonstrated a significant improvement
in accuracy when the proposed method was implemented with YOLOv7, achieving detection performance
scores of 99.21, 98.57, 93.71, 78.38, 75.73, 48.68, 0.971, 0.971, and 0.911 on the VEDAI-VISIBLE, VEDAI-
IR, and DOTA datasets, respectively.

INDEX TERMS Embedded system, Jetson AGX Orin, Jetson nano, real-time detection, remote sensing
images, super-resolution, sequential transfer learning.

I. INTRODUCTION
Object detection is a crucial task in the field of computer
vision, involving the precise detection, localization, and
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categorization of objects within an image or video frame.
This technology finds applications in various fields, such as
autonomous vehicles [1], [2], security systems [3], industrial
robotics [4], medical imaging [5], and remote sensing [6],
[7]. However, detecting small targets in aerial images poses
a significant challenge owing to the low resolution (LR) of
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background-like targets, which limits the available image
information. Various techniques can be utilized to enhance
object detection in LR images. Super-resolution (SR) [8],
[9], [10], [11] and transfer learning (TL) [12], [13] are two
such techniques that have shown promise in improving object
detection accuracy.

SR is the process of increasing image resolution, gener-
ating the high-resolution images from an LR input while
preserving as much detail as possible. These high-resolution
images provide more accurate and detailed information for
object detection, aiding in the identification and localiza-
tion of small or blurry objects in LR images. In recent
years, deep learning-based methods have addressed both
tasks, with a growing interest in combining these approaches
to enhance performance and efficiency. Techniques, such
as SR have been leveraged to enhance input images for
object detection, resulting in improved accuracy and robust-
ness of detection algorithms. Mostofa et al. [14] utilized a
multi-scale generative adversarial network (GAN) to learn
hierarchical and discriminative features for small-object
detection, whereas Musunuri et al. [15] implemented an
object detection network to enhance object detection accu-
racy in deteriorated remote sensing images. Furthermore,
Lian et al. [16] designed a network based on attention
feature fusion to address small-object detection challenges
in traffic scenes, to resolve the problem of overlapping
image detection. Mu et al. [17] explored edge enhance-
ment in SR to preserve edges in retrieved images, thereby
improving small-object detection performance. The afore-
mentioned methods exemplify the optimized SR techniques;
however, they cannot effectively enhance object detection
accuracy.

TL is a machine learning technique in which a model
developed for one task is repurposed as the starting point for
the model for a second task. TL, particularly for LR images,
is effective when data or hardware resources are limited.
Yan et al. [18] proposed a depth regression–based convolu-
tional neural network (CNN) algorithm combined with TL
to address the challenges of object detection stemming from
varying object features. Hilal et al. [19] developed a model
to resolve the semantic gap among various datasets using
a deep transfer learning-based fusion model. Xu et al. [20]
successfully implemented an effective TL for small-object
detection to address the problem of limited training samples
and low-quality images. Suseela and Kalimuthu [21] utilized
TL-based SR in medical ultrasound images, Huang et al.
[22] enhanced infrared images to bridge the gap between
higher-dimensional feature spaces for improved model accu-
racy; and Talukdar et al. [23] employed TL in various
object detection networks, including R-FCN [24], SSD [25],
R-CNN [26], and Faster R-CNN [27], to enhance accu-
racy. However, thesemethods exhibited superior performance
on high-resolution images compared with LR images, large
datasets, and efficient resources. Therefore, to enhance detec-
tion accuracy with limited resources, this study introduces a
novel approach.

This study proposes a sequential TL method based on the
complexity of data utilized to train the learning model. This
method has been applied to enhance the object detection
accuracy for LR background-like targets in remote sensing
images. The proposed method serves as a training strat-
egy to enhance performance in scenarios of limited data
through a combination of learning between heterogeneous
and homogeneous data.

To prepare the data, a GAN-based SR model was utilized
as a preprocessing module to enhance the images from LR
to SR. These enhanced images were then organized based on
difficulty level to facilitate training in a structured curricu-
lum. Consequently, the proposed technique can acquire more
robust features, thereby enhancing both the generalizability
and convergence of the model.

In addition, the trained model resulting from the pro-
posed method was deployed on embedded platforms, such
as Nvidia’s Jetson Nano and Jetson AGX Orin for real-time
remote sensing object detection.

The remainder of this paper is organized as follows:
Section II discusses related studies, the proposed method is
examined in Section III, Section IV evaluates the effective-
ness of the proposed method, and the conclusions of the study
are presented in Section V.

II. RELATED WORKS
A. SR AND OBJECT DETECTION
Recently, the field of remote sensing has experienced rapid
advancements owing to the utilization of image sensors,
satellites, and drones. Object detection is crucial to locating
objects from space and involves automatic detection and
identification of objects in remote-sensing images. These
images captured from aerial or satellite platforms offer a
broad view of the Earth’s surface. Object detection in remote
sensing presents challenges, such as the presence of small-
sized objects, complex image backgrounds, and difficulty in
distinguishing objects from their surroundings. Variations in
illumination conditions can impact the appearance of objects,
whereas noise in images can further hinder the performance
of object detection algorithms.

Despite these challenges, significant progress has been
achieved in object detection in remote sensing owing to
the development of deep learning techniques. Deep learning
methods have proven effective in automatically identifying
objects by extracting features from images, significantly
enhancing the accuracy and robustness of object detection
algorithms. Mu et al. [17] small-object detection in aerial
images was explored to enhance the accuracy of LR images
using super-resolution techniques. Yan [7] focused on air-
craft detection by utilizing center-based proposal regions
to achieve precise identification of aircraft. Courtrai et al.
[28] investigated the challenge of detecting small objects
in satellite images, elevating their performance through the
integration of spatial super-resolution techniques. Chen et al.
[29] developed a model based on YOLOv3 with an atten-
tion mechanism to address issues, such as cloud occlusions
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FIGURE 1. Flowchart of proposed method based on ESRGAN for embedded systems.

and strong waves, thereby enhancing the accuracy of ship
detection.Wang et al. [30] developed amultiscale transformer
fusion approach incorporating a convolutional block attention
module for change detection.

Gong et al. [31] designed a context-aware CNN to enhance
the detection accuracy under varying illumination intensi-
ties, weather conditions, and image quality in high-resolution
remote sensing imagery. This network can simultaneously
maintain high efficiency and effectiveness. Liu et al. [32]
developed Road Net, a tool capable of automatically extract-
ing road networks from high-resolution urban scene images.
This tool predicts road surfaces, edges, and centerlines as
well as addresses, such as shadows and occlusions along road
signs. Tayara et al. [33] developed a convolution regression
network specifically tailored for vehicle detection, consider-
ing complex backgrounds, such as trash bins, air conditioning
units, and road marks.

Rabbi et al. [34] developed a model aimed at enhancing
the accuracy of object detection, particularly for noisy LR
images. Their method effectively addressed edge detection
issues by employing an edge-enhanced network to recover
edges, resulting in an enhanced image. Dong et al. [35]
applied a CNN to scale object features and detect objects
in spatial-resolution remote sensing images. This model
improves the detection quality of various remote-sensing
images. Rifat Arefin et al. [36] implemented a multi-image
SR technique using recurrent networks, which are end-to-
end deep neural networks based on the encoder-decoder
model. This approach aims to reduce the costs associatedwith
acquiring satellite imagery. Fernandez-Beltran et al. [37] pro-
posed single-frame SRmethods for analyzing remote sensing

frameworks. Failure to properly restore SR models can have
a negative impact the object detection performance. Thus, the
proposed method has been applied to improve the accuracy of
object detection in such cases.

B. TL IN OBJECT DETECTION
Deep learning models extract high-level features from vast
amounts of data, making them more advanced than conven-
tional machine learning techniques. However, data prepa-
ration can be costly and time-consuming owing to the
complexity and quality of datasets with annotations. TL helps
reduce the time required to create new datasets by leveraging
knowledge from models trained on large datasets to train
models on smaller datasets. Various types of TL methods
exist [38], such as instance-based (which assigns appropri-
ate weights to selected instances), mapping-based (which
refers to mapping instances from the source to the target
domain), network-based (which refers to reusing the partial
network transfer to the target domain), and adversarial-based
(which represents an adversarial transfer learning application
cable to both the source and target domains). Pan et al.
[39] developed a framework that combines cascaded con-
volutional neural networks with TL and geometric feature
constraints for air detection, addressing the limitations of
weakly supervised methods. However, these methods could
not extract an adequate number of features, and their detec-
tion accuracy required improvement. In response to these
challenges, Chen et al. [40] investigated a modified convolu-
tional network with a TL to address issues, such as narrowing,
sparsity, diversity, and class imbalance. Tong et al. [41] intro-
duced a novel mathematical model into a new framework for

VOLUME 12, 2024 102315



Y. R. Musunuri et al.: Object Detection Using ESRGAN With a Sequential Transfer Learning

quantifying transferability in multisource TL, utilizing deep
learning networks for training. Liu et al. [42] utilized TL to
enhance the performance of the YOLOv5 object detector for
tassel detection, a task known for its difficulty because of the
small size and complexity of objects of interest. By deriving
center points from Center Net to improve bounding boxes
and leveraging TL for additional reference data, significant
improvements were achieved. Li et al. [43] utilized TL to pro-
vide a tradeoff between accuracy and speed of the inference
of small targets using the YOLOv3 model. Their approach
involved pruning to reduce network size, thereby enhancing
detection accuracy and speed. Hong et al. [44] introduced
the spectral GPT to address the research gap in spectral data,
providing valuable insights for scene understanding in remote
sensing applications. Li et al. [45] proposed the LRR-Net for
hyperspectral anomaly detection, incorporating prior knowl-
edge into deep networks to guide parameter optimization.
Wu et al. [46] implemented the UIU-Net for infrared small-
object detection to address challenges, such as tiny object loss
and feature distinguishability with increasing network depth.
In another study, [47], they designed an ORSIm detector for
optical remote sensing imagery to tackle image deformations,
such as objective scaling and rotation by integrating diverse
channel feature extraction, feature learning, fast image pyra-
mid matching, and boosting the strategy. Carion et al. [48]
presented a detection transformer (DETR) to resolve the
non-maximum suppression procedure or anchor generation
problem, which explicitly encodes our prior knowledge about
the task. Feng et al. [49] implemented task-aligned one-stage
object detection (TOOD) to address spatial misalignments in
predictions between two tasks.

TL is a powerful technique widely utilized in remote
sensing and edge computing applications [50], [51], [52],
[53] to enhance embedded image processing performance.
In this context, a large dataset is typically a dataset of
natural images containing millions of images labeled with
object categories, whereas a smaller dataset is a dataset
of remote sensing images labeled with object categories.
Koshelev et al. [54] employed TL for drone-aided weed
detection. The convolution network was trained to boost the
segmentation performance and decrease computational cost.
Athanasiadis et al. [55] implemented a framework for embed-
ded systems using TL for object detection. This devised
a mechanism for automatic hyperparameter optimization to
accelerate the performance of themodel for real-time applica-
tions using SqeezeDet. Gadiraju and Vatsavai [56] leveraged
TL by utilizing pre-trained network weights as initial weights
for training remote sensing datasets or freezing layers to
enhance remote sensing classification performance on bench-
mark datasets. Ma et al. [57] developed a lightweight detector
through model compression by applying sparsity, channel
pruning, and layer pruning. This approach aims to opti-
mize the edge-device-oriented target detection method by
reducing computational complexity and memory consump-
tion. Sun et al. [58] proposed the BiFA-YOLO method for
ship detection in high-resolution SAR images. This method

addresses the challenges posed by multi-scale, arbitrary
directions, and dense arrangements, enabling quick and accu-
rate ship detection. While many existing methods focus on
TL, which involves the transfer of a pre-trained model, our
research aims to overcome data scarcity, expert knowledge
limitations, and resource constraints, making it a pivotal area
of study. Hence, we propose a novel strategy for improving
the accuracy of object detection in remote-sensing images.

FIGURE 2. Proposed method to enhancing the accuracy of the object
detection model.

III. PROPOSED METHOD
Detection of small objects in remote sensing images remains
a challenging task. To address the challenge of detecting
small objects in LR backgrounds, this study proposes a
method in which the model is first optimized with SR images
to enhance the LR images, followed by the application of a
novel strategy to enhance object detection accuracy. The pro-
posed model comprises three steps: an SR module utilizing a
GAN and an object detection module (M), as shown in Fig. 1.
The SR images generated in the first module were prepared
as a dataset (Y) for training, and the proposed method was
used in the second module, as shown in Fig. 2. M1,M2,M3,

and M4 are the corresponding weights for transferring to the
next task during the sequential process.

A. PROPOSED LEARNING METHOD
The proposed method is implemented on the optimized
network to enhance accuracy, addressing the challenge of
insufficient training data that can lead to information loss
when attempting to retrieve information from SR-generated
images. The proposed method, defined as the easy-to-hardest
data training strategy, follows a curriculum-based approach.
Subsequently, the model learns sequentially by transferring
knowledge from easier to more challenging data, considering
the complexity of the training data. To prepare the data,
a GAN-based SR model served as a pre-processing module
to enhance the images from LR to SR.

The SR module, based on an enhanced SR-GAN [59],
generated SR images from the LR input. The key components
of this module were the generator, discriminator, and loss
functions. The generator utilizes the LR image as input and
produces a high-resolution image, whereas the discriminator
distinguishes between real high-resolution and SR images
produced by the generator. A perceptual loss function is
utilized to enhance the visual quality of images produced

102316 VOLUME 12, 2024



Y. R. Musunuri et al.: Object Detection Using ESRGAN With a Sequential Transfer Learning

by the model. The image size of the LR input to the model
was 128 × 128, which was then super-revolved to 512 ×

512 on a scale four. The SR model presented in Fig. 1 and
it is expressed using Eq. (1).

ISR = HESRGAN (ILR) (1)

Here, HESRGAN is the convolution operation for feature
extraction ILR and output as ISR.

To train the proposed method, the dataset (Y) was initially
prepared with SR images sourced from publicly available
datasets [14]. These SR images were then categorized from
easiest to hardest data using conditions (a)–(c). Y was par-
titioned into N sub-sets Y1, Y2, Y3, Y4, . . . .., YN, where N
represents the total number of sets, with N increasing until
the model’s learning capacity reaches a minimum threshold.
To designate the subsequent set as the target, the following
requirements must be fulfilled: (a) A subsequent increase
in the probability of sampling and diversity. The diversity
is determined by the number of classes added to the next
set. (b) The training samples were gradually updated, with
the sample size of the training set increased, necessitating a
corresponding increase in the weight of the next target set.
(c) All samples within each set were accumulated to form
the final set, ensuring uniformity among all samples. These
conditions outline the transfer of the proposed strategy to the
next target set for model training and updates.

Each set was categorized based on its diversity, structural
complexity, and accumulation of images from one set to
another for VEDAI-VISIBLE [14], [15], VEDAI-IR [14],
[15], and DOTA [14], [15]. The number of categories varied
across datasets. VEDAI-VISIBLE and IR consisted of two
categories: cars and trucks. In contrast, the DOTA 1.0 dataset
included 15 categories: plane, ship, storage tank, baseball
diamond, tennis court, basketball court, ground track field,
harbor, bridge, swimming pool, large vehicle, small vehi-
cle, helicopter, roundabout, and soccer ball field. For the
DOTA experiment, we focused only on two categories—cars
and trucks—related to vehicles. Labels were manually anno-
tated using the annotated software. Structural complexity was
determined by the number of classes within a single image:
easy for less than two classes, moderate for less than four
classes, and high for more than four classes. Diversity was
achieved through image augmentation techniques, generating
new samples from existing ones.
Set Y1: This serves as the initial set, comprising 10% of

samples from the available dataset of 600 VEDAI-VISIBLE
images of autonomous vehicles, totaling 60 samples. The
initial set comprised 60 images with two classes and their
corresponding labels, exhibiting a low structural complexity
with no image augmentation.
Set Y2: This is the second set prepared using the num-

ber of classes and image augmentation. This set contained
60 images with their corresponding labels and augmented
images, such as image rotations at 90◦, 180◦, and 270◦. The
total number of images was 240 with corresponding labels
and moderate structural complexity.

Set Y3: This is the third set prepared using the number of
classes and image augmentation. It comprises 60 images with
labels and augmented images, such as image cropping, hori-
zontal flipping, vertical flipping, and horizontal and vertical
flipping, resulting in a total of 300 images with high structural
complexity.
Set Y4: This is the fourth set prepared by accumulating

Y1, Y2, and Y3. This set includes augmented images from
rotations at 90◦, 180◦, and 270◦, as image cropping, hori-
zontal flipping, vertical flipping, and horizontal and vertical
flipping. The total number of images was 600, with high
structural complexity.

The training process is described as follows: (a) First, Set
Y1 was trained with the pre-trained COCO [60] weights to
fine-tune the training dataset (Y ). (b) The pre-trained weights
from Set Y1 with TL were utilized to train Set Y2. TL is
the process of transferring knowledge from a pre-trained
model to address a related task. Among the various TL
techniques available, a fine-tuning method was utilized to
modify pre-existingmodel parameters for a new task utilizing
a limited amount of labeled data to prevent overfitting. The
proposedmethod can be explained as follows. After the initial
training on Set Y1, the model leveraged knowledge from Set
Y1 to train Set Y2. (c) Set Y3 was then trained using the
weights of sets Y2 and (d). Set Y4 was trained using all the
knowledge of the model up to SetY3. This sequential process
continues until the model achieves a minimum value of accu-
racy improvement, at which point the process is halted. The
procedure for the proposed method is described below.

Algorithm: Proposed Method for Object Detection
Input: Y: training dataset; C: complexity; T: transfer weights
Output: M: Optimal model to improve the accuracy until max.
1: Y ′

= sort (Y ,C)
2: {Y1,Y2, . . . ,Yk } = Y ′ where C (ya) < C (yb) , ya ∈ Yi, yb ∈

Yj, ∀i < j;
3: Y train = ∅;

4: for n = 1. . . k do
5: Y train = Y train ∪ T n−1

;

6: while not improve the accuracy for p epochs do
7: train

(
M ,Y train

)
8: end while
9: end for

B. OBJECT DETECTION MODEL (M)
The object detection module, an advanced version of
YOLO [60], is designed to enhance speed and accuracy by
utilizing a single neural network to predict bounding boxes
and class probabilities of objects in real-time images. The
key components of this module include feature extraction and
fusion layers, model scaling for concatenation, and a predic-
tion head to enhance the accuracy of the LR remote-sensing
images. The feature extraction layer employs an extended
efficient layer aggregation network to extract features and
uses them to expand, shuffle, and merge for enhanced
learning ability. The model is then scaled to accommodate
different inference speeds for real-time object detection.
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Finally, the head predicts the object classes in the image, and
optimization is conducted to enhance the image quality and
retrieve more accurate image information, thereby improving
the accuracy of the LR remote-sensing images, as shown in
Eq. (2).

YOutput = HYOLO (ISR) (2)

Here, HYOLO is the network used to classify the objects in the
SR images ISR.

C. LOSSES OF THE NETWORK
Finally, network loss occurs during the training. The multiple
loss functions are adversarial, perceptual and the detection
loss functions are expressed in the eq.(3), (4), and (5). The
adversarial loss is Ladv defined as the probability of discrim-
inator D

(
G

(
ILR

))
that reconstructed image G

(
ILR

)
is a real

high-resolution image.

Ladv =
min
G

max
D

[
EIHR∼Ptrain

(
IHR

) [
logD

(
IHR

)]]
+ EILR∼PG

(
ILR

) [[
log

(
1 − D

(
G

(
ILR

)))]]
(3)

Here Ptrain
(
IHR

)
and PG

(
ILR

)
define the probability distri-

bution of real high-resolution images with respect to their
LR images. Furthermore, the perceptual loss of the network
during training, as represented by eq. (4).

Lper =
1
N

N∑
n=1

1
CjWjHj

×

Cj∑
c=1

Wj∑
x=1

Hj∑
y=1

(
∅j

(
IHRn

)
c,x,y

− ∅j

(
G

(
ILRn

))
c,x,y

)2

(4)

Here ∅j is the jth convolution layer feature map, and
Cj,Wj and Hj are the feature maps of the network. The total
loss of the network is defined as the summation of adversarial,
and perceptual losses to optimize the network to retrieve the
high-frequency details for better object detection in the LR
remote sensing images. The loss function of the object detec-
tion model is shown in the eq. (5). It combines localization
loss, confidence loss, and classification loss.

Ldetection = λcoord

S2∑
i=0

B∑
j=0

1objij

(
xi − x̂i

)2
+

(
yi − ŷi

)2
+ λcoord

S2∑
i=0

B∑
j=0

1objij

(√
wi −

√
ŵi

)2

+

(√
hi −

√
ĥi

)2

+

S2∑
i=0

B∑
j=0

1ijobjl
(
Ci, Ĉi

)

+ λnoobj

S2∑
i=0

B∑
j=0

1ijobjl
(
Ci, Ĉi

)

+

S2∑
i=0

1obji

∑
c∈classes

l
(
pi (c) − p̂i (c)

)
(5)

Herein 1objij is the object detected by the jth boundary box
of grid cell i. xi, yi,wi, hi are the actual bounding box
coordinates and predicted bounding box coordinates are
x̂i, ŷi, ŵi, ĥi. Ci is the confidence score of actual box in cell i,
Ĉi is confidence score of the predicted box.

IV. EXPERIMENT RESULTS AND DISCUSSION
A. DATASETS TO PREPARE THE TRAINING DATA AND
METRICS
In the experiments, three public remote-sensing datasets for
object detection were utilized: VEDAI-VISIBLE [14], [15],
VEDAI-IR [14], [15], and DOTA [14], [15]. The first two
datasets consisted of 1210 images with resolutions of 1024×

1024 and 512 × 512. The third dataset (DOTA 1.0) com-
prised 2806 images captured by different sensors of various
resolutions ranging from 800 × 800 to 20,000 × 20,000.
The object detection performance was evaluated using mean
average precision (mAP) @ 0.5, @0.5–0.95, and F1 metrics
to evaluate the object detection performance. To train the
proposed method, we divided the datasets into a training set
(70%) and validation set (30%).

TABLE 1. Configuration details of experimental hardware and softwares.

B. HARDWARE DETAILS AND TRAINING PARAMETERS
The experimental procedure and results of the proposed
method are outlined in this section. All models were trained
and tested on a single deep learning computer equipped with
an NVIDIA RTX A6000 graphics card and CUDA. Experi-
ments were conducted on the VEDAI-VISIBLE, VEDAI-IR,
and DOTA datasets, with the configuration details of the
experimental equipment listed in Table 1. The training param-
eters are as follows: the optimizer was a stochastic gradient
descent algorithm used to minimize the loss function, with
momentum, weight decay function, initial learning rate, batch
size, intersection of union (IoU) threshold, epochs, and input
image size set at 0.937, 0.0005, 0.01, 16, 0.25, 300, and 512×

512, respectively. The confidence threshold for the prediction
box was set to 0.001 and the IoU threshold for non-maximum
suppression (NMS) was set to 0.65.

C. QUANTITATIVE RESULTS OF THE PROPOSED METHOD
WHILE IMPLEMENTING ON OBJECT DETECTION MODELS
In this section, we present the quantitative results
obtained by applying the proposed method to various
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TABLE 2. Comparison of detection performance of the proposed and existing state-of-the-art methods.

TABLE 3. Comparison of accuracy of pre-and post-proposed method.

state-of-the-art object detection models are listed in Table 2.
The evaluation focused on assessing the effectiveness of the
proposed method in enhancing model performance. In addi-
tion, the proposed method was utilized to compare the
detection outcomes of YOLO-and SR-optimized networks,
such as YOLOv3_SRGAN [14], YOLOV3_MSRGAN [14],
YOLOv3_EDSR [15], YOLOv5_ESRGAN [42], [59],
YOLOv7_ESRGAN [59], [60], Detectron2_ESRGAN [59],
[61], and YOLOv8_ESRGAN [59], [63]. Detectron2 [61]
is a modular and flexible object detection library devel-
oped by Facebook AI Research. Retina Net [62] is a
backbone that effectively addresses class imbalance dur-
ing the training of dense detectors by utilizing focal
loss. This method is widely applied in object detection,
instance segmentation, and panoptic segmentation. While
the existing models listed in Table 2 primarily focus on
SR-based object detection, they often fail to retain crucial
information and do not yield significant improvements in
accuracy. The proposed approach proves highly effective
in scenarios in which expert knowledge is lacking, lim-
ited labeled data, or constraints in hardware and software
resources.

Under such conditions, the proposed method enhanced
the performance of super-resolved LR remote-sensing
images. We compared our findings with those of ESRGAN
as Detectron2, YOLOv3, v5, v7, and v8. The results

presented in Table 2 revealed that the proposed method
outperformed the others and resulted in mAP@0.5 on
YOLOv8_ESRGAN and YOLOv7_ESRGAN (99.06, 99.21,
99.42, 98.57, 98.05, and 93.71), and F1 scores (0.969,
0.971, 0.988, 0.971, 0.956, and 0.911, respectively). When
compared with the baseline models YOLOv7_ESRGAN
and YOLOv8_ESRGAN, the proposed method demonstrated
significant improvements of 36% and 1.6% with the VEDAI-
VISIBLE data, 20% and 1.3% with the VEDAI-IR data, and
13% and 8.43% with the DOTA data, respectively. In addi-
tion to YOLO, the proposed method on Detectron2 was
mAP@0.5 (60.77, 54.55, and 77.20), and the F1 score (0.738,
0.693, and 0.846) evenly increased the accuracy by 7.63%,
20.51%, and 42.58% on three datasets, respectively. The
backbone of Detectron2 was trained with the focal loss, and
it aligned with the speed of previous one-stage detectors and
improved the accuracy.

To assess the efficacy of the proposed method in compari-
son to state-of-the-art techniques, we conducted an evaluation
using the mAP@0.5-0.95 metric, as shown in Table 3. The
experimental results demonstrated the effectiveness of the
proposed method in enhancing the performance of various
models along with the ESRGAN, such as YOLOv3, v5,
v7, and v8. Prior to the implementation of our method,
the mAP@0.5–0.95 values were 62.09, 22.66, 17.11, 60.51,
68.11, 32.15, 35.04, 66.08, 63.32, 27.95, 28.62, and 57.73.
Following the integration of our method, notable improve-
ments were observed, with mAP@0.5–0.95 values of 70.15,
60.85, 78.38, 74.27, 71.98, 63.34, 75.73, 79.76, 56.95, 57.02,
48.68, and 67.46 for VEDAI_VS, IR, and DOTA datasets,
respectively. Comparatively, YOLOv5 and v7 demonstrated
greater accuracy compared with YOLOv3, and v8, with
YOLOv8 exhibiting the most significant improvement in the
VEDAI-IR and DOTA datasets, whereas YOLOv7 exhibited
the most significant improvement in the VEDAI-VISIBLE
dataset. The red text in the results indicates the best-
performing models, whereas the green text signifies the
second-best performers.

Furthermore, we explored other object detection methods,
such as UIU-Net [46], ORSIm detector [47], DETR [48], and
TOOD [49]. While YOLO models and Detectron2 serve as
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versatile and robust general-purpose object detectors, special-
ized models, such as UIU-Net [46] and ORSIm detectors [47]
offer superior performance in particular applications. DETR
introduces a novel transformer-based approach that simpli-
fies the detection pipeline and enhances performance in
complex scenarios, whereas TOOD provides an efficient
one-stage detection solution with enhanced task alignment.
Each model possesses unique strengths that cater to diverse
use cases and application requirements. UIU-Net and ORSIm
demonstrated advancements in their specialized domains,
focusing on infrared small-object detection and optical
remote-sensing imagery. DETR showcases robust perfor-
mance due to its transformer-based architecture, albeit with
increased inference times. TOOD offers a balanced improve-
ment in accuracy and efficiency, although it may require more
computational resources and inference time compared with
YOLO.

All models demonstrated a significant enhancement in
mAP@0.5, 0.5–0.95, and F1 scores when the proposed
method was implemented. However, YOLOv7 and v8 exhib-
ited the highest performance gains in both mAP metrics and
F1 scores. The proposed method is easily adaptable to YOLO
owing to its simplicity, generalized models, pre-trained mod-
els, and seamless deployment into embedded systems, such as
Jetson AGX Orin. For embedded object detection, achieving
a tradeoff between accuracy and speed of inference is crucial.
Therefore, the proposedmethod can enhance the object detec-
tion capabilities of remote-sensing object-detection networks
with limited labeled data.

D. COMPARING THE PROPOSED METHOD ON LR,
SR AND GT
The primary objective of the proposed model is shown in
Fig. 3, illustrating the distinction between LR and SR along-
side the ground truth (GT). In LR images, objects appear
unclear or blurry, whereas the quality of SR images is
enhanced such that objects are visible. The object detection
accuracies of LR, SR, and GT, compared with those of both
TL and the proposed strategy, are shown in Fig. 3. The detec-
tion performance was notably poor for LR images, prompting
the development of an SR-based object detection network
with the proposed method.

E. ABLATION STUDIES
To assess the impact of each set in the proposed method,
we progressively increased the difficulty of data and
compared the differences between the sets (refer to
Tables 4 and 5). Based on experimental results, this strategy
is advantageous for enhancing model performance. The opti-
mal performance was observed in the final set because of the
sequential model learning. The proposed method involved
adjustments to network parameters, learning rate, and batch
size to optimize model performance. Our analysis indicates
that the number of sets required based on themodel’s learning
ability, is equal to the minimum value of the experimental
data, with the specific number varying based on the type

FIGURE 3. Comparison of LR, SR, and GT. (a). Conventional TL, (b). After
applying the proposed method.

TABLE 4. Comparison of accuracy of each set of the proposed method on
VEDAI-VS and VEDAI-IR.

TABLE 5. Comparison of accuracy of each set of the proposed method on
the DOTA dataset.

of data utilized. The performances of each set are listed in
Tables 4 and 5. Based on the experimental data, four sets were
required for both VEDAI-VISIBLE and VEDAI-IR. How-
ever, more than four sets were required for DOTA to reach
the minimum value rather than improve the performance
because the model converged faster on VEDAI-VISIBLE and
VEDAI-IR than on DOTA.

The performances of each set using the proposed method
are listed in Tables 4 and 5. As described in Section II, the ini-
tial performancemetrics for SetY1 in terms of mAP@0.5 and
F1 values were 15.40, 0.250, 12.23, 0.210, 15.61, and 0.253,
respectively. After incorporating pre-trained model weights,
the accuracy improved significantly, allowing the model to
learn from its previous training. In particular, set Y1_TL
weights were transferred to SetY2, resulting in performances
of 62.50, 0.617, 78.13, 0.738, 80.27, and 0.769. Set Y2
weights were then applied to SetY3, where the model learned
again, with accuracies of 97.77, 0.938, 97.48, 0.940, 91.63,
and 0.888. Set Y3 weights were transferred to Set Y4, which
achieved near-maximum accuracy, indicating that the model

102320 VOLUME 12, 2024



Y. R. Musunuri et al.: Object Detection Using ESRGAN With a Sequential Transfer Learning

FIGURE 4. Precision and recall curves for various datasets, such as (a).
VEDAI-VISIBLE, (b). VEDAI-IR, and (c). DOTA.

stopped learning when the proposed strategy was used at
99.21, 0.971, 98.57, 0.971, 93.71, and 0.911. The cumula-
tive performance of the proposed method is summarized in
Table 2, showcasing higher accuracy in object detection and
localization, particularly in challenging scenarios involving
low-resolution or degraded images. Learning increased by
58% for VEDAI-VISIBLE data, and 66% for VEDAI-IR
data after the pre-trained weights were transferred to set Y1.
Once the maximum accuracy was reached, learning increased
by 2% for both VEDAI-VISIBLE and VEDAI-IR datasets.
In DOTA, the initial learning increased by 65% owing to
the challenging and varied nature of the image data. In com-
parison, the accuracy peaked for both VEDAI-VISIBLE and
VEDAI-IR datasets. To analyze the three datasets, we con-
ducted comparisons across the four sets as DOTA did not
achieve maximum accuracy. According to Tables 3 and 4, the
proposed method is a solution for improving accuracy.

The experimental analyses delve into data using differ-
ent datasets from the pre- and post-implementation of our
method. A performance comparison of the three datasets:
VEDAI-VISIBLE, VEDAI-IR, and DOTA is shown in
Figs. 4 and 5. The precision and recall performances on vis-
ible and infrared data are shown in Figs. 4(a)–(c). Visible
images captured in the light spectrum perceptible to the
human eye offered rich color information crucial for object
differentiation and scene comprehension. Infrared images

FIGURE 5. mAP@0.5 and mAP@0.5-0.95 curves on various datasets, such
as (a). VEDAI-VISIBLE, (b). VEDAI-IR, and (c). DOTA.

capture the heat emitted by objects, allowing for visual
capabilities in low-light or nighttime conditions, proving
invaluable in surveillance, search and rescue, and military
applications. Thus, the precisions of the proposed method
for the three datasets were 0.9629, 0.9882, and 0.9339 for
YOLOv7 and 0.9660, 0.9896, and 0.9490 for YOLOv8. The
corresponding recall values were 0.9795, 0.9543, 0.8899 and
0.9730, 0.9862, 0.9624. The mAP@0.5 and 0.5–0.95 perfor-
mance on YOLOv5, v7, and v8 are shown in Figs. 5(a)–(c).
A comparison between pre- and post-proposed methods is
detailed in Tables 2 and 3. The proposed method was trained
on SR-augmented images to enhance the diversity of data for
LR images.

However, during image reconstruction, the SR model lost
edge information compared with the other models. This could
potentially impact the model’s performance during training.
Despite this, the proposed method learned from the data and
performed optimally. As shown in Figs. 4 and 5, the precision,
recall, and mAP were outperformed when compared with
the results of methods that do not incorporate the proposed
method, such as the YOLO models optimized with the SR
model. Most existing methods measure performance using
mAP@0.5. As mentioned in YOLOv8, the proposed method
was compared using mAP@0.5–0.95. The accuracy of the
proposed method increased with the mAP@0.5–0.95 metric
on detectron2, YOLOv3, v5, v7, and YOLOv8.
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TABLE 6. Configuration of embedded system.

FIGURE 6. Deploying on the embedded system, (a). NVIDIA Jetson AGX
Orin, and (b). Jetson Nano.

F. DEPLOYING THE TRAINED MODEL INTO THE
EMBEDDED SYSTEM FOR REMOTE SENSING OBJECT
DETECTION
Remote sensing involves acquiring data and imagery from
sensors on various platforms, such as satellites, airplanes,
or drones. In this context, object detection refers to identi-
fying and categorizing objects within these images.

Implementing object detection on embedded systems
presents challenges and considerations owing to resource
constraints, such as the selection of embedded platforms,
dataset preparation, model selection, training, optimization,
deployment, testing, and evaluation. Based on these param-
eters, we selected Nvidia’s Jetson AGX Orin and Jetson
Nano for our target applications, as shown in Fig. 6. The
configuration details of the embedded system are listed in
Table 6. AGX Orin was released in the spring of 2023 and is
currently the most powerful available Jetson board. It features
an Ampere GPU microarchitecture with 64 Tensor Cores and
two NVDLA (NVIDIA deep learning accelerator) engines.
These chips have been designed to efficiently perform stan-
dard neural network operations, such as convolutions. Thus,
the overall peak performance of AGX Orin is approxi-
mately 275 TOPS. Jetson Nano, released in June 2019, was
tailored for applications where reducing board size, power
consumption, and price are crucial factors. The hardware
acceleration featured an NVIDIA Maxwell GPU with a peak
performance of 472 GFLOPs. Therefore, it does not utilize
tensor cores or NVDLA engines for inference acceleration.

TABLE 7. Performance of trained networks in simulations performed on
NVIDIA Jetson Nano embedded system.

TABLE 8. Performance of trained networks in simulations performed on
Jetson AGX Orin embedded system.

Furthermore, these boards offer a cost-effective and effi-
cient solution for a wide range of vision-based tasks, such
as image classification, object detection, and segmentation.
While embedded boards may have limited computational
capabilities, they are sufficient for executing inference com-
putations in real time but not for training models. The training
of the proposed method was not conducted on the embed-
ded system but performed on a deep learning workstation,
as shown in Table 1, owing to the significant computational
resources required compared with the inference process.
Once themodel was trained andweights were obtained, it was
deployed on the target hardware for execution.

When the proposed method was deployed in an embedded
system, the model comprised 314 layers, 36487166 param-
eters, and 6M gradients. The proposed method effectively
enhanced the accuracy; however, it was less effective in
reducing the network complexity. The deployed system could
perform up to 275 TOPS in real time. The inference and
NMS times were employed as real-time metrics to measure
the speed of the model, as listed in Tables 7 and 8.
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FIGURE 7. Detection results on embedded system for DOTA: (a), (c). conventional TL, (b), (d). Proposed method.

FIGURE 8. Detection results on embedded system for VEDAI-VISIBLE, (a). conventional TL, (b). Proposed method.

FIGURE 9. Detection results on embedded system for VEDAI-IR, (a). conventional TL, (b). Proposed method.

We compared two embedded boards: Nvidia’s Jetson AGX
Orin and the Jetson Nano. The average inference times for

Nano and AGXOrin were 0.7867, 0.07879, 0.7847, 0.07276,
1.3458, and 0.07585, and the average NMS times were

VOLUME 12, 2024 102323



Y. R. Musunuri et al.: Object Detection Using ESRGAN With a Sequential Transfer Learning

FIGURE 10. Detection results on embedded system of the proposed method, (a). VEDIA-VISIBLE, (b) VEDIA-IR, and
(c). DOTA.
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0.0239, 0.00371, 0.0412, 0.00370, 0.2143, and 0.00391. The
runtime of AGX Orin was 10 times faster than that of Nano.
The tested remote-sensing images are shown in Figs 7, 8, 9,
and 10.

G. VISUALIZATION ANALYSIS ON THE EMBEDDED
SYSTEMS
This study leverages pre-trained weights of the model using
the proposed method on DOTA, VEDAI-VISIBLE, and
VEDAI-IR datasets with remote-sensing images. The results
of the object detection accuracy of the embedded system are
shown in Figs. 7, 8, 9, and 10, with Figs. 7(a), (c), 8(a),
and 9(a), showcasing the outcomes of the conventional TL.
In contrast, Figs. 7(b), (d), 8(b), 9(b), 10(a), 10(b), and 10(c)
showcase the results of the proposed method.

V. CONCLUSION
This study proposed a novel approach for enhancing object
detection performance. This method involved training the
model by sequentially transferring knowledge, allowing it
to learn progressively from the simplest to the most com-
plex data. Furthermore, we enhanced object detection by
adapting a pre-trained model for image generation using a
GAN. The proposed method learned more robust features,
enhancing generalizability and convergence. Experimental
results using benchmark datasets demonstrated the effective-
ness of the proposed approach, showcasing higher accuracy
in object detection and localization, particularly in challeng-
ing scenarios involving LR images. In addition, the trained
model of the proposed method was deployed on embedded
platforms, such as Nvidia’s Jetson Nano and Jetson AGX
Orin for real-time remote-sensing object detection. Finally,
experimental results revealed that the proposed method out-
performed conventional methods in terms of accuracy.
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