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ABSTRACT For autonomous mobile robots to work safely in human-coexistent environments, human-
velocity estimation is essential. However, the human body periodically fluctuates to the front, rear, right,
and left while walking. Also, a significant estimation error occurs due to the vibration of sensors installed
in the robot. Quick trajectory adjustment requires high-accuracy and low-latency estimation, but these are
in a trade-off relationship. We thus propose a human velocity estimation system (VES) using the Kalman
filter (KF) and least squares (LS) with adjustable window size (AWS) to control the accuracy and latency.
The VES adjusts two window sizes to calculate a system noise distribution for KF and a velocity vector for
LS using a newly proposed cost function, including accuracy (direction and magnitude) and latency (time
delay) costs. To select window sizes suitable for walking trajectories and individual gaits, we collected human
walking data, calculated the three costs, and selected the window sizes with the minimum cost. The results of
experiments using a laser range finder installed on a mobile robot indicate that the cost function could reveal
window sizes to increase accuracy or reduce latency depending on walking trajectories and individual gaits,
and the VES with AWS could enhance the performance of estimating human walking velocity for mobile
robots.

INDEX TERMS Autonomous mobile robot, human-walking velocity estimation, Kalman filter, least
squares, adjustable window size.

I. INTRODUCTION
Estimating human walking velocity with high accuracy
and low latency is essential for autonomous mobile robot
navigation in human-coexisting environments [1], [2], [3],
[4]. Commonly used robot navigation methods, such as the
velocity obstacle approach [5], [6], [7] and the potential
method [8], assume that the robot can measure human
velocity with high accuracy and low latency (in real-time).

The associate editor coordinating the review of this manuscript and

approving it for publication was Pinjia Zhang .

However, this assumption is not satisfied in real situations
due to the system noise and observation noise in velocity
estimation systems. Lower accuracy and higher latency
prevent the robot from adequately predicting a human’s path,
i.e., the coordinates and timing of interference with the
human, so the robot will change the path repeatedly in a short
time or get stuck with selecting a non-optimal path [9].

To filter the above noises out, the Kalman filter (KF)
and its derivatives are widely applied for estimating human
presence and tracking humans [10], [11], [12]. KFs are
effective in reducing observation noises while combining
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FIGURE 1. Human information estimated from LRF data when human is naturally walking straight toward LRF. (a) Human walking trajectory, which has
large lateral deviation due to natural lateral swing. (b) Magnitude of walking velocity. (c) Direction of walking velocity.

other sensor data. In [13], the robot detects the legs of
pedestrians using random forest based on point clouds from
a laser range finder (LRF) and follows the pedestrians using
the tracked trajectories derived by extended Kalman filters
(EKFs). In [14], the robot follows runners at a high speed
(5 m/s) in outdoor environments using KF. In [15], the robot
detects and tracks a target pedestrian occluded by obstacles
and other pedestrians based on KF. While many studies have
focused on human tracking, there have been relatively few
studies on human-velocity estimation for human-symbiotic
mobile robots.

Humans have characteristics that periodically sway lat-
erally, longitudinally, and vertically while walking due
to their bio-mechanical structure [16]. Fig. 1 (a) shows
human trajectory estimated using point clouds from an
LRF, where we can observe a 90-mm sway in the lateral
direction. Figs. 1 (b) and (c) show the velocity magnitude
and direction calculated by the simple time differential
of a human trajectory estimated from an LRF, where
the estimated values largely deviated from the expected
value (ground truth). This directly indicates that a large
velocity-estimation error occurs when the velocity estimation
system (VES) adopts simple derivation methods. In addition,
human velocity varies with the characteristics of humans,
e.g., waking gaits, environmental conditions, and vibration
noises due to the robot’s movement. If VES does not apply the
appropriate filters to remove the above noises, the robot will
suffer fatal effects, such as misunderstanding the human’s
intention, selecting a non-optimal path, or chattering robot
behavior [17]. Filters such as KFs can mitigate the above
fluctuating noises, but too strong filtering will distort the
original walking trajectories, e.g., phase delay.

Some studies have developed special noise filters to reduce
human fluctuating noises [13], [18]. However, they do not
consider differences in individual walking gaits and various
walking trajectories, nor do they control estimation accuracy
and latency. Thus, developing a VES that can optimize
accuracy and latency while adapting to various conditions
remains challenging. As a simple but expandable system,
we propose a VES with adjustable window sizes (AWS)
comprising KF, least squares (LS), and cost functions. First,
the VES derives the current human position using KF, which

uses both LRF data and the predicted position from the
estimated velocity while considering system and observation
noises. The system noise is expressed as distribution, which
we can adjust by changing a window size e to define the
distribution. It then estimates human velocity using LS, which
adopts a window size ℓ suitable for walking conditions.
Conventionally, these window sizes are fixed after suitable
values are found, e.g., optimizing a sliding window size for
vehicle localization [19]. However, adjusting the window
sizes for KF and LS affects the performance of VES: for
example, quick meandering movements require real-time
followability and high responsiveness, so KF needs a small
noise, and LS needs a small window. On the other hand, when
high anti-noise estimation is required, KF needs a large noise,
and LS needs a large window.

In summary, we propose a VES that can adjust accuracy
and latency. To achieve this, we estimate a human trajectory
using KF and calculate a velocity using LS. A window size
adjustment system adjusts e for calculating a system noise
in a KF process and ℓ for calculating a velocity in an LS
process, based on a cost function to learn {e, ℓ} suitable
for the purpose (high accuracy, low latency, or a balance
between the two). This study contributes to developing a
framework for a human velocity estimation system that
enables a measurement performance suitable for the target
conditions and enhances the performance of mobile robot
navigation.

II. RELATED AND REQUIRED WORKS
We refer to the related works on estimating walking velocity
with a function to control accuracy and latency and explain
the requirements for the proposed VES.

A. RELATED WORKS
The inverted pendulum model is a popular model of human-
walking dynamics [20]. An inverted pendulum roughly
approximates the motion of the walker’s center of mass.
Reference [21] revealed that lateral sway is 4.5 cm on aver-
age. Reference [22] tracked pedestrians with shoe-mounted
inertial sensors based on EKF. Reference [23] recognized
intentional actions of a human from the relative movements
between a human and a robot using a clustering method.
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Reference [24] estimated walking parameters based on
a wrist-mounted inertial sensor using KF and a zero-
velocity update. Reference [25] compared two walking
speed estimation methods using shank- and foot-mounted
inertia measurement units (IMU). Reference [26] proposed
an approach to mitigate walking speed estimation errors by
estimating the low-frequency noise components. Moreover,
pedestrian localization and tracking systems using KF [27]
and a particle filter [28] have been proposed for autonomous
vehicles. Many studies have focused on human tracking, and
a few have addressed human-velocity estimation. However,
they used IMUs positioned on shoes or bodies, which can
directly measure the acceleration of the human. In our
case, we use an LRF to indirectly measure human position,
whichmakes accurate velocity estimation extremely difficult.
We thus need a VES suitable for using the human position
obtained from LRF.

In information processing, stronger filtering can reduce
the noise from the signal, but it will distort even the correct
signal due to past time-series data, and the time-series trend
will include latency. As is well known, the relationship
between noise reduction and high fidelity (and realtimeness)
is generally a trade-off [29]. Mobile robots require safe and
efficient navigation, needing a high-accuracy and low-latency
VES. At the same time, their importance or priority depends
on tasks and environments, so a VES also requires a function
to adjust accuracy and latency. However, to date, there have
been no studies on such adjustment functions.

B. REQUIRED WORK: VES WITH AWS
As explained in Section I, to estimate a human velocity with
high accuracy and low latency, our VES needs a window-size
adjustment function to findwindow sizes suitable for walking
trajectories and individual gaits. We thus developed a VES
with AWS that can control the estimation accuracy and
latency using our cost function. Fig. 2 shows the overview of
our proposed system. It learns suitable window sizes based
on costs calculated using differences from ground truth and
then measures human velocity based on the selected window
sizes for KF and LS.

III. VELOCITY ESTIMATION SYSTEM (VES)
We explain the theory and system configurations of our VES
consisting of KF and LS, as shown in Fig. 3. Table 1 lists
the symbols used in the VES. In this study, we applied a
first-order Kalman filter to each axis independently.

A. OBSERVED HUMAN POSITION (SYSTEM INPUT)
Many studies on estimating human presence and tracking
use RGBD image sensors installed in the environment (not
robots) [12], [27], or depth sensors installed in the robot [30],
[31], [32]. LRF can collect point clouds with higher accuracy,
reliability, and robustness than image and depth sensors [13],
[15]. In this study, the VES adopts an LRF to obtain the point
clouds of pedestrians. It detects humans from point clouds

FIGURE 2. System overview of walking velocity estimation using Kalman
filter and least squares with adjustable window size. The system learns
suitable parameters based on costs calculated using differences from
ground truth.

FIGURE 3. Diagram of human velocity estimation system, including KF
and LS. KF consists of prediction and modification phases. a and b are
constant value derived by experiments. LS means least squares.

TABLE 1. Symbols for human velocity estimation system.

and estimates their position and posture using the human
detection system proposed in our previous study [3]. The
human detection system first extracts 5–15 successive point
clouds corresponding to a human in our experimental setting.
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Then, it estimates eclipses from the extracted point clouds and
calculates the human posture from the angle of long and short
axes. We denote the observed human position in the target
whole trajectoryY ∈ (step k = 1, · · · , K ). (k) is the human
position at step k and consists of y1 (k) (longitudinal axis) and
y2 (k) (lateral axis), which are given by

Y = { (1) , . . . , (k) , . . . , (K )} ,

(k) = {y1 (k) , y2 (k)}T . (1)

B. STATE AND OBSERVATION EQUATIONS FOR KF
We denote the state vector of the human position x(k) as

(k) = {x1 (k) , x2 (k)}T . (2)

The VES estimates the velocity using LS, which is
a commonly used approximation method. The estimated
velocity using the window size ℓ, (k)|ℓ, is simply given by

(k) |ℓ= LS ( (k − ℓ) , . . . , (k − 1) , (k)) , (3)

where LS(·) is the least squares function, and its argument is
a time series data. To save space, please refer to [33] for a
detailed calculation. The state equation is thus given by

(k) = (k − 1) + (k − 1) |ℓ · 1t + ϵ (k) , (4)

where ϵ(k) is the system noise at step k , and 1t is the time
gap between each step.

Then, we define the observation equation, which associates
(k) with (k), as following:

(k) = (k) + ω (k) , (5)

where ω (k) is the observation noise at step k . The
measurement noise of a sensor is often applied to ω (k).

C. PREDICTION AND CORRECTION PHASES FOR KF
Wefirst explain the prediction phase.We denote the priori and
posterior state vectors (i.e., human position) at step k as ˆ

−(k)
and ˆ

+(k), respectively, and the priori and posterior error
distributions at step k as σ 2

ˆ
− (k) and σ 2

ˆ
+ (k), respectively.

σ 2
ϵ (k) is the system noise distribution at step k . In the

prediction phase, the priori state vector ˆ
−(k) and the prior

error distribution σ 2
ˆ

− (k) can be given by

ˆ
−

(k) = ˆ
+

(k − 1) + (k − 1) |ℓ·1t, (6)

σ 2
ˆ

− (k) = σ 2
ˆ

+ (k − 1) + σ 2
ϵ (k) . (7)

Next, for the correction phase, we denote the Kalman gain
as K (k). As Fig. 4 shows, the posterior state vector ˆ

+(k)
and the posterior error distribution σ 2

ˆ
+ (k) are given by

ˆ
+

(k) = ˆ
−

(k) + K (k)
(

(k) − ˆ
−

(k)
)
, (8)

σ 2
ˆ

+ (k) = {1 − K (k)} σ 2
ˆ

− (k) . (9)

Then, K (k) is updated by using

K (k) =
1

1 + σ 2
ω(k)

/
σ 2

ˆ
− (k)

, (10)

where σ 2
ω(k) is the observation noise distribution at step k .

FIGURE 4. Relationships among Kalman gain K (k), posterior probability,
prior probability, and observation distribution.

D. VELOCITY ESTIMATION USING LEAST SQUARES
As explained earlier, (k)|ℓ is the estimated velocity using
the window size ℓ at step k . It consists of θ (k) (direction,
angle) and r (k) (magnitude, speed), and is denoted by

(k) |ℓ = { θ (k) |ℓ, r (k) |ℓ}
T . (11)

A large error would occur if we calculate the velocity using
the simple time differential of the human’s position. We thus
adopt ˆ

+(k) to the LS-based velocity estimation (3). The
estimated velocity (k)|ℓ is redefined by

(k)|ℓ= LS
(
ˆ
+

(k − ℓ) , . . . , ˆ
+

(k − 1) , ˆ
+(k)

)
. (12)

The estimated velocity in the whole trajectory V̂|l is finally
given by

V̂|ℓ = { (1) |ℓ, . . . , (k)|ℓ, . . . , (K ) |ℓ} . (13)

IV. ANALYSIS OF ADJUSTABLE WINDOW SIZE
Estimation accuracy and latency of the VES with KF and LS
have a trade-off relationship corresponding to window sizes.
To effectively reduce error and latency, we here analyze the
significance of adjusting window sizes.

A. ADJUSTABLE WINDOW SIZE
From the equations in the previous subsections, we can
identify the system noise distribution σ 2

ϵ (k), the observation
noise distribution σ 2

ω(k), and the window size of LS ℓ as the
variable parameters.We assign themeasurement error of LRF
to σ 2

ω(k), as explained before, so we develop a system to
adjust σ 2

ϵ (k) and ℓ to control the accuracy and latency.

B. DISPLACEMENT AND SYSTEM NOISE RELATIONSHIP
We first define the displacement of human (k) calculated
using the window size e as de (k), which is given by

de (k) = | (k) − (k − e)| . (14)

Here, we analyze the relationship between de (k) and
the system noise distribution σ 2

ϵ (k). From (8), ˆ
+(k) is

determined by K (k), which is the interior division ratio of
ˆ
−

(k) and (k). σ 2
ω(k) is fixed to the measurement error of

LRF, so K (k) decreases when σ 2
ϵ (k) is smaller while K (k)

increases when σ 2
ϵ (k) is larger, as indicated in (7) and (10).

We consider a situation in which a human walks in the y1
direction (Fig. 5 (a)). In this case, y1 displacement de (k) will
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FIGURE 5. Relationship between pedestrian’s displacement in y1–y2
coordinates and σ2

ϵ(k). Larger σ2
ϵ(k) is effective in responsiveness for

longitudinal (y1) axis while smaller σ2
ϵ(k) is effective in accuracy for

lateral (y2) axis.

FIGURE 6. Policy of adjusting window sizes for (a) Kalman filter and
(b) least squares for controlling accuracy and latency.

be large and must be only a signal to be measured (Fig. 5 (b)),
so responsiveness needs to be increased, i.e., σ 2

ϵ (k)|e needs
to be large to trust more in (k). At the same time, the y2
displacement de (k) will be small and should be ideally zero
since it is caused by lateral sway or sensor noises (Fig. 5 (c)),
so noise suppression needs to be stronger, i.e., σ 2

ϵ (k)|e needs
to be small to trust more in ˆ

−(k).
Based on the above analysis, we summarize the effects

of AWS in controlling estimation accuracy and latency by
focusing on the relationship between de (k) and σ 2

ϵ (k)|e.
Larger de (k) implies that the walking velocity is fast and/or
the walking behavior change is large, so the system requires
higher responsiveness. Alternatively, small de (k) implies that
the effect of noise, such as lateral sway on de (k), becomes
relatively significant, so the system requires higher noise
suppression. Consequently, as shown in Fig. 6 (a), when
de (k) is large, the system increases the responsiveness by
making σ 2

ϵ (k)|e larger (trust in (k)). When de (k) is small,
the system increases estimation accuracy by making σ 2

ϵ (k)|e
smaller (trust in ˆ

−(k)).

C. WINDOW SIZE FOR LEAST SQUARES
We here explain how to adjust ℓ. As Fig. 6 (b) shows, a larger
ℓ will provide more filtering effect, so the result has higher
noise suppression, while a smaller ℓwill provide less filtering
effect in real time, so the result has higher responsiveness.

Thus, controlling the balance between accuracy and latency
using ℓ is easier than that using e.

D. MODIFICATION AND OPTIMIZATION
Based on the above analyses, we modify the prediction
phase (7) by adopting the system noise distribution when
using e σ 2

ϵ (k)|e as follows

σ 2
ˆ

− (k) = σ 2
ˆ

+ (k − 1) + σ 2
ϵ (k) |e. (15)

Then, we modify the definition of human velocity (11)
and (13) by adopting the window size for KF e as follows

(k) |e,ℓ =
{

θ (k) |e,ℓ, r (k) |e,ℓ
}T

,

V̂|e,ℓ =
{

(1) |e,ℓ, . . . , (k)|e,ℓ, . . . , (K ) |e,ℓ
}
. (16)

The challenge here is how to find the optimal set {e, ℓ} for
the VES. We explain the adjustment system in Section V.

V. WINDOW SIZE ADJUSTMENT SYSTEM
We found that the accuracy and latency can be controlled by
adjusting e and ℓ. We here explain a window size adjustment
system we developed.

A. FLOW OF SELECTING OPTIMAL WINDOW SIZES
As discussed in Section IV, the system uses the human
trajectory Y and the window size {e, ℓ} and then outputs
V̂|e,ℓ, as shown in Figs. 2 and 3. The system learns
the characteristics of a human’s movement in the target
environments and selects {e, ℓ} to meet the required accuracy
and latency. To this end, we first propose a cost function to
evaluate the accuracy and latency of V̂|e,ℓ. Then, we collect
actual human walking data, calculate the costs, and select the
window size set {e, ℓ} suited to the purpose, as shown in
Fig. 2.

B. COST FUNCTION
We propose a cost function for three elements to evaluate the
velocity direction C

(
v̂θ

)
, the velocity magnitude C

(
v̂r

)
, and

the time delay for a human to change the direction C(km).
km is the time delay [s]. Each element varies in magnitude
and dimension, so we standardize these three values. We first
calculate the root mean square error (RMSE) of the training
data (e.g., trajectories of human A) for each element. We then
standardize the RMSE data by e×ℓ patterns of the RMSE.
They are given by

C
(
v̂θ

)
=

√√√√ 1
K ·H

∑
H

∑K
k=1

(
v̂θ (k)−vθT (k)

)2
1

e·ℓ·K ·H

∑
e,ℓ

∑
H

∑K
k=1

(
v̂θ (k)−vθT (k)

)2 ,

(17)

C
(
v̂r

)
=

√√√√ 1
K ·H

∑
H

∑K
k=1

(
v̂r (k)−vrT (k)

)2
1

e·ℓ·K ·H

∑
e,ℓ

∑
H

∑K
k=1

(
v̂r (k)−vrT (k)

)2 ,

(18)

C(km) =

√√√√ 1
M ·H

∑
H

∑M
m=1 (km − kmT )2

1
e·ℓ·M ·H

∑
e,ℓ

∑
H

∑M
m=1 (km − kmT )2

. (19)
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FIGURE 7. Example of determining response time for a human to change
moving direction.

We denote vθT (k) as the true value of velocity direction,
vrT (k) as the true value of velocity magnitude in the traveling
direction, and kmT as the true value of the time delay for a
human to change the direction. K is the number of steps (data
length),H is the number of training sets (participants) (= 11),
and M is the number of turning patterns (= 1 or 2).
When selecting a window size {e, ℓ}, we need to combine

the cost of all three elements. We define the total cost C by
multiplying the weight coefficients {α, β, γ } as

C = α · C
(
v̂θ

)
+ β · C

(
v̂r

)
+ γ · C (km) , (20)

where {α, β, γ } must satisfy α + β + γ = 1 since the ratio
should be kept constant. In this study, we adopt {α, β, γ } =

{1/3, 1/3, 1/3} for balancing all terms of cost equally, but
we can arbitrarily adjust according to the environment, e.g.,
social norms or robot attributes.

C. TIME DELAY TO CHANGE DIRECTION km
We here define km and kmT . Fig. 7 shows the process to
determine km, where humans turn the direction from 15◦

to −15◦, as an example. Humans take a couple of seconds to
complete the turn. We first determined the time of starting a
turn (t = 0), regarded as the time of passing through a turning
point for simplicity, as shown in Figs. 9 (b) and (c). We then
determined the time of finishing the turn ke, regarded as the
time when a human walks the target trajectory±θm [◦] during
a certain period sm [s] to confirm the end of a turn. Finally,
we calculate km (= ke−sm) as the timewhen the direction first
enters within θm, as the minimum delay of the system. We set
θm = 5◦ and sm = 0.1 s for the experimental conditions in this
study.

Then, we define kmT , which is difficult to define since it
should vary with the amount of turning direction, walking
speed, and so on. Reference [34] reported that the time for
humans to take a step is 0.5 s, and [35] reported that the
upper limit of the pelvic rotation angle when humans turn is
30◦, which means that a turn of 60◦ takes 1.0 s (two steps).
In this study, we thus estimate kmT by using proportional
interpolation of the angle difference 1vθ from the current
to target trajectories when turning. kmT is thus given
by

kmT = 0.5·1vθ
/
30. (21)

FIGURE 8. Specification of robot equipped with omni wheels and LRF.

FIGURE 9. Overview of (a) Experiment 1 (straight walking),
(b) Experiment 2 (single turn), and (c) Experiment 3 (zigzag walking with
robot moving).

Note that the speed variables are not included in (21) since
humans are required to walk naturally at a constant speed in
the experiments.

VI. EVALUATION EXPERIMENTS
The robot and LRF specifications we used in this study are
shown in Fig. 8. The experimental conditions and scenes
are shown in Figs. 9 and 10, respectively. This study was
approved by the Ethics Review Committee on Research with
Human Subjects of Waseda University. We obtained written
informed consent from each participant in this study.

A. DISPLACEMENT AND SYSTEM NOISE MODEL
To clarify the relationship between accuracy and latency,
we first performed Exp. 1 to model the relationship between
de (k) and σ 2

ϵ (k)|e with 11 participants aged 21–30. The
participants walked straight with four different angles to
the LRF (the robot), as shown in Fig. 9 (a). We asked the
participants to walk at 1.0 m/s. Note that the ground truth
of the velocity was guaranteed by practicing constant-speed
walking before the experiments started. We collected point
clouds and then calculated de (k) and σ 2

ϵ (k)|e using the five
different e = {0.2, 0.4, 0.6, 0.8, 1.0}, which are enough to
extract the trends of the results. The tolerance latency of 0.5 s
would be acceptable for social robots since humans take 0.5 s
for one step during a walk [34], so we set the maximum
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FIGURE 10. Experimental scenes (Experiment 3). Participants walk by
referring to marks on ground indicating target path.

FIGURE 11. Results of Experiment 1: Relationship between human
displacement de and system noise distribution σ2

ϵ .

tolerable latency to 0.5 s and searched for the minimum
σ 2

ϵ (k)|e within 0.5 s. Fig. 11 shows the relationship between
de (k) and σ 2

ϵ (k)|e for each e.We found that de (k) and σ 2
ϵ (k)|e

have a proportional relationship, as

σ 2
ϵ (k) |e = a · de (k) + b, (22)

where a and b are the constant values shown in the
lower-right part of Fig. 11. All plots include the results of
11 participants and four trajectories, so we can regard the
equations as capturing general tendencies. The experimental
results show that updating σ 2

ϵ (k)|e according to observed
human displacement de (k) has the potential to enable the
VES to adjust estimation accuracy and latency.

B. WINDOW SIZE ANALYSIS USING COSTS
Based on the displacement and system noise model, we ana-
lyzed the relationship among the window size {e, ℓ} and
three costs. In Exp. 2, we prepared three different trajectories
with a turning point (15◦, 30◦, and 45◦) in the middle of the
path (Fig. 9 (b)). The other experimental conditions were the
same as Exp. 1. We calculated each cost using 25 {e× ℓ}

patterns = {(0.2, 0.4, 0.6, 0.8, 1.0) × (0.2, 0.4, 0.6, 0.8,
1.0)} by (17)–(19). As Fig. 12 shows, we found that the
three costs have different tendencies and that the cost maps
between accuracy (C

(
v̂θ

)
and C

(
v̂r

)
) and latency (C (km))

have a roughly inversed relationship, i.e., larger ℓ and smaller
e lead to high accuracy while smaller ℓ leads to low latency.
The results also show that C

(
v̂θ

)
, C

(
v̂r

)
, and C (km)were the

smallest in {e, ℓ} = {0.2, 0.6}, {0.2, 1.0}, and {0.2, 0.4},
respectively, as indicated by the red dots in Fig. 12. When
applying {α, β, γ } = {1/3, 1/3, 1/3} as explained before,

the total cost C of V̂|e,ℓ was the lowest in {e, ℓ} = {0.2,
0.6}. These findings confirm that window sizes can be used
to control the estimation accuracy and latency.

C. COMPARISONS IN DIFFERENT TRAJECTORIES
To evaluate the applicability of the proposed system, we pre-
pared more complex conditions with Exp. 3. A pedestrian
changes its walking direction several times while the robot
(LRF) moves (Fig. 9 (c)). The robot’s trajectory is a straight
line because we here inspect the impact of vibration noises
due to the robot’s movement. The human’s walking direction
and distance are in order of 75◦(2 m), 0◦ (2 m), and 45◦

(2 m). The robot moves straight at 0.4 m/s. We asked the
same 11 participants from Exps. 1 and 2 to walk at 1.0 m/s.
Fig. 13 shows the three cost maps, indicating a trade-off
relationship between accuracy and latency, the same as in
Exp. 2. Compared with Exp. 2, C

(
v̂r

)
was almost exactly the

same, C
(
v̂θ

)
was similar, and C (km) was largely deviated.

The deviated C (km) occurred because km would not converge
when participants frequently changed their behaviors in a
short time. This indicates that we need to redefine km in
the future. C

(
v̂θ

)
, C

(
v̂r

)
, and C (km) were the smallest in

{e, ℓ} = {0.2, 0.8}, {0.4, 0.8}, and {0.4, 0.4}, respectively,
as indicated by the red dots in Fig. 13. When applying {α, β,
γ } = {1/3, 1/3, 1/3}, the total cost C of V̂|e,ℓ was the lowest
in {e, ℓ} = {0.2, 0.8}.
In Exps. 2 and 3, the shapes among the three cost maps

are different. Moreover, the shapes of each cost map in
Exp. 2 are also different from those in Exp. 3. Our above
analysis confirms that the proposed VES with AWS can
extract different characteristics to optimize accuracy and
latency depending on walking trajectories.

D. PERFORMANCE OF VES WITH AWS
To evaluate the performance of controlling accuracy and
latency in the proposed VES with AWS, we calculated the
RSME of v̂θ , v̂r , and km for Exps. 2 and 3, as shown in Fig. 14.
We compared the RMSEs calculated using individually
optimized parameters (direction, magnitude, and time delay),
mean of 25 {e× ℓ} patterns, parameters with the maximum
cost, and equally balanced parameters. Using individually
optimized parameters enhanced the target elements but
degraded others, i.e., accuracy vs. latency. In contrast, the
selection of equally balanced parameters ({e, ℓ} = {0.2, 0.6}
for Exp. 2 and {0.2, 0.8} for Exp. 3) led to all three elements
achieving a high performance.

Here, we analyzed the effect of the equally balanced
parameters (EBP). The EBP reduced the velocity direction
RMSE to 1.86◦ and 5.11◦ for Exps. 2 and 3, respectively.
In Exp. 3, the walking trajectory changes several times, and
the robot’s movement generates noises in point clouds, which
made the direction RSME in Exp. 3 larger than that in Exp.
2, but the VES could select optimal window sizes {e, ℓ} that
enable the direction RSME to minimize. Moreover, the EBP
reduced the velocity magnitude RMSE to 0.0464 m/s and
0.146 m/s for Exps. 2 and 3, respectively. Even in Exp. 3,
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FIGURE 12. Results of Experiment 2. Three costs (direction, magnitude, time delay) are calculated in 25 patterns of (e, ℓ), and the total cost is calculated
using {α, β, γ } = {1/3, 1/3, 1/3}. Results show that (e, ℓ) = (0.2, 0.6) is the lowest cost (0.77). Red dots are (e, ℓ) with the lowest cost.

FIGURE 13. Results of Experiment 3. Three costs (direction, magnitude, time delay) are calculated in 25 patterns of (e, ℓ), and the total cost is calculated
using {α, β, γ } = {1/3, 1/3, 1/3}. Results show that (e, ℓ) = (0.2, 0.8) is the lowest cost (0.72). Red dots are (e, ℓ) with the lowest cost.

FIGURE 14. Performance of velocity estimation system with adjustable window size, including individually optimized parameters (direction,
magnitude, and time delay), mean of 25 {e × ℓ} patterns, parameters with maximum cost, and equally balanced parameters for Exps. 2 and 3.
Individually optimized parameters enhanced the target performance but degraded others. In contrast, equally balanced parameters achieved all
three criteria simultaneously.

the VES could accurately estimate a velocity. Furthermore,
the EBP decreased the time delay RMSE to 0.201 s and
0.218 s for Exps. 2 and 3, respectively. These values meet
the requirement of being smaller than the time required for a
human to take one step (i.e., 0.5 s) [34].
We next statistically analyzed the RSMEs using different

optimized methods, including the three individually opti-
mized parameters (direction, magnitude, and time delay)
and equally balanced parameters. We adopted the Friedman
test for multiple comparisons of three element’s RMSE.
Then, we applied Scheffe’s paired comparison of different
optimized methods as a post-hoc test. The results of the

statistical test are summarized in Table 2. The Friedman test
revealed statistical differences in all conditions. Moreover,
Scheffe’s paired comparison revealed that using individually
optimized parameters, the VES could statistically improve
the target elements than non-target elements for Exps. 2 and 3.

The above analysis confirmed that the proposed VES with
AWS had a higher performance corresponding to the target
purpose than when the VES selected other parameters.

E. OPTIMAL PARAMETERS FOR INDIVIDUALS
Finally, we investigate individual differences among partic-
ipants. Fig. 15 shows selected parameters in the direction,
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TABLE 2. Statistical analysis of three element’s RSME for different
optimized methods in Exps. 2 and 3.

FIGURE 15. Parameters with lowest cost for direction, magnitude, and
time delay for each pedestrian for (a) Exp. 2 and (b) Exp. 3. The best
parameters to minimize estimation error or time delay are different, and
these parameters also differ among individuals. Several parameters had
the minimum cost.

magnitude, and time delay for the 11 participants in Exps.
2 and 3. As shown in Fig. 15 (a), the optimal parameters
in Exp. 2 were similar among individuals, and in particular,
the parameters in the magnitude were almost identical ({e,
ℓ} = {0.2, 1.0}). The walking trajectory in Exp. 2 was
straight, so no individual differences appeared. However, the

parameters for the direction are spread along the ℓ axis,
meaning that the VES could deduce that lateral sway during
walking differed among participants. The parameters for the
time delay were slightly deviated. As shown in Fig. 15 (b),
optimal parameters in Exp. 3 were more deviated than
Exp. 2, and those for time delay were remarkable. These
results imply that the way of turning, e.g., turning radius
and angular velocity, deviates largely depending on the
participant. We confirmed from this analysis that the VES
with AWS could reveal the existence of optimal window sizes
suitable for individuals.

F. LIMITATION AND FURTHER IMPROVEMENTS
Through this study, we found that the proposed framework
was capable of identifying window sizes suitable for walking
trajectories and individual gaits for time-series-based velocity
estimation and that the proposed VES with AWS could
improve the estimation performance following a target
purpose. The newly proposed cost function was useful for
controlling estimation accuracy and latency. Moreover, the
proposed system could be applied to a use case where an
LRF is installed on a mobile robot. The preliminary results
of this study would contribute to developing individually
optimized measurements using data based on the robot’s
movement experience. However, there are some limitations
to be addressed in the future, as follows.

1) AUTOMATIC PARAMETER TUNING SYSTEM
In this study, the weight coefficients {α, β, γ } are temporally
set to 1/3 (as described in subsection V-B). However, these
coefficients should be tuned in accordance with the purpose
or situation, e.g., when a robot needs to plan an accurate
trajectory by suppressing the human’s lateral sway, overtake
a human by suppressing the human’s longitudinal sway,
or immediately avoid a human who may be approaching
from out of sight. Moreover, the proposed VES currently
learns the window sizes suitable for a condition beforehand,
but the robot should be able to adjust window sizes
autonomously in the introduced environments [36]. We plan
to develop an automatic parameter tuning system to tune the
above coefficient in real time while combining error-tolerant
navigation [17] if the system makes a judgment error.

2) DEFINITION OF TIME DELAY
In Exp. 3, C (km) deviated largely because participants
frequently changed their behaviors in a short time, so we
need to modify how to define km and kmT . Specifically,
we will observe walking behaviors using a skeleton-based
gait model when turning and introduce a system to predict a
pedestrian’s motion using other obtainable information, such
as head movement and gaze.

VII. CONCLUSION AND FUTURE WORK
In this paper, we proposed a new approach to estimating
human walking velocity with a function to control accuracy
and latency. The proposed velocity estimation system (VES)
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consists of a Kalman filter (KF), least squares (LS), and a
window-size adjustable system. The adjustable system tunes
a window size e for calculating a system noise in KF and a
window size ℓ for calculating a velocity in LS by using a cost
function including accuracy (velocity angle and magnitude)
and latency (time delay) that can learn {e, ℓ} suitable for an
intended purpose (high accuracy, low latency, or a balance
between the two). Experiments in which a robot was moving
and humans were continuously changing their behaviors
demonstrated that the proposed VES significantly improved
the measurement performance thanks to selecting the appro-
priate window sizes compared to using other parameters. Our
proposed method adopts a relative improvement strategy by
optimizing system parameters, such as [37], not an absolute
improvement strategy by collecting mathematical models,
so it can be applied to other estimation methods that handle
time-series data as a relative improvement approach. This
study will contribute to developing a framework for a VES
that can enable measurement performances suitable for the
target conditions and enhance the performance of mobile
robot navigation.

In future work, to achieve high-accuracy and low-latency
estimation in a real unstructured environment, we will
modify the cost function for finding the optimal window-
size parameters, create a model to automatically update the
weight coefficients, and perform experiments under a variety
of conditions to evaluate and improve our proposed system.
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