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ABSTRACT The Willow Catkin Optimization Algorithm (WCO) is a newly proposed meta-heuristic
algorithm in recent years that has a simple structure and excellent optimization searching ability, but
the WCO algorithm could benefit from improvements in both convergence speed and solution diversity.
In this paper, the parallel technology is introduced into the WCO algorithm, and by proposing two new
communication strategies, the Random Mean (RM) method and the Optimal Flight (OF) method, the goal
is to utilize all solution information obtained by each subpopulation in the parallel strategy to enhance
the algorithm’s performance. Additionally, the WCO algorithm has been hybridized with the Differential
Evolution Algorithm (DE), and a mutation mechanism has been introduced to improve the diversity of
solutions. The resulting algorithm is called the Hybrid Parallel Willow Catkin Optimization Algorithm
(HPWCO). In this paper, the HPWCO algorithm is tested on the CEC2017 benchmark function set and
applied to five real-world engineering optimization problems with constraints, and the experimental results
were compared with three types of algorithms: the classical algorithm, the newly proposed algorithm, and
the parallel algorithm. The results indicate that the HPWCO performs excellently.

INDEX TERMS Meta-heuristic algorithm, willow catkin optimization algorithm, parallel strategy, cec2017,
engineering optimization problem.

I. INTRODUCTION
The Willow Catkin Optimization Algorithm (WCO) [1],
[2] is a highly efficient meta-heuristic algorithm recently
proposed. The algorithm is inspired by the way willow catkin
reproduces in nature. Every spring, the seeds of the willow
tree ripen and explode, forming willow catkins that float in
the wind and eventually fall to a suitable location to establish
roots and germinate. The algorithm’s exploration process
can be compared to the fluttering of a willow catkin in the
wind, taking root on the ground, as the algorithm moves
from the phase of exploration to the phase of exploitation.
The wind is a complex fluid motion, and willow catkins
will fly in all directions due to the different wind speeds
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and directions to which the willow is subjected. This feature
ensures solution diversity and enables the algorithm to
conduct a comprehensive global search. In addition, when the
willow catkins are too close to each other, the phenomenon
of sticking to each other occurs, and many of them take root
in the neighborhood, which makes the algorithm have good
local development ability as well.

Although the WCO algorithm has the advantages of
fewer parameters and lower complexity, it leaves room
for improvement, such as the lower convergence speed,
and the algorithm’s development capability deserves further
improvement. The above problems have existed in the field
of meta-heuristic algorithms for a long time, and after a
long period of development, many algorithmic enhancement
strategies have been proposed, such as the compact technique
proposed to save the memory occupied by the algorithm
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when it is running [3], [4], [5] and the surrogate-assisted
technique to improve the algorithmic operation efficiency
[6], [7], [8]. To enhance the meta-heuristic algorithm’s
ability to solve real optimization problems, the algorithm is
improved to be applicable to multi-objective problems so that
it can be applied to problems involving multiple conflicting
optimization objectives [9], [10], [11]. In addition, applying
Taguchi’s strategy can help the population construct higher
quality individuals and estimate the optimal parameters
suitable for the algorithm [12], [13], [14]. To address the
intricacies of optimization in algorithms, it is crucial to
consider the impact of each parameter’s configuration and the
effective coordination and promotion between parameters.
In light of this, an adaptive strategy improvement algorithm
has been proposed, which dynamically adjusts its parameters
during operation to align with the unique characteristics of
the problem being solved [15], [16], [17]. The No Free
Lunch theorem (NFL) states that no single algorithm can
solve every problem. Consequently, a certain combination
of two distinct meta-heuristic algorithms allows for shared
learning experiences and improved algorithmic performance
[18], [19], [20], [21].

In this paper, we improve the performance of the WCO
algorithm by integrating parallel techniques, called the Paral-
lel Willow Catkin Optimization Algorithm (PWCO). Various
types of parallel methods have been categorized, including
CPU-based parallel strategy, GPU-based parallel strategy,
and distributed computing frameworks such as Spark [22],
[23], [24]. In this paper, we use a parallel technique that incor-
porates a communication strategy. The focus of this paper is
on communication strategies using parallel techniques rather
than on the parallelization of algorithms through hardware.
Consequently, the parallel mechanism presented in this paper
is essentially a multiple swarm strategy. The algorithm
that introduces the parallel communication strategy divides
the initial population into several subpopulations, each of
which performs the algorithm’s operations independently,
and after a certain number of iterations, each subpopulation
communicates with each other through the communication
strategy to improve the diversity of the population and the
quality of the solution. When the original population was
divided into subpopulations, the number of individuals was
evenly distributed among the subpopulations, resulting in a
significantly lower number of individuals in the subpopu-
lations than in the original population. Due to the limited
number of subpopulations and the potential undersampling of
algorithmic results, the algorithm is susceptible to becoming
trapped in a local optimum and wasting valuable resources.
Therefore, it is essential to implement efficient commu-
nication strategies to facilitate information transfer across
different populations. Two new communication strategies are
proposed in this paper. The first is known as the Random
Mean (RM) method, and the second is called the Optimal
Flight (OF) method. Additionally, this paper introduces the
Differential Evolution Algorithm (DE) [25], [26], [27], [28]
in WCO, which makes the algorithm increase the mutation

mechanism and improve the diversity of the solutions [18].
To differentiate between the dominant algorithms, this
paper utilizes a hybrid approach in that each subpopulation
has a small probability of mutating through differential
evolution when performing algorithmic operations. In this
paper, the improved WCO algorithm is called the Hybrid
Parallel Willow Catkin Optimization (HPWCO) Algorithm.
Compared to the original WCO algorithm, it has faster
convergence and better solution quality.

Meta-heuristic algorithms are capable of solving complex
optimization problems, including neural network training
[29], [30], [31], wireless sensor network layout optimization
[32], path planning problems [33], and feature selection
problems [34] due to their better parallel search capability
and global search capability. Solving real engineering design
optimization problems is an important manifestation of
the combination of meta-heuristic algorithm theory and
practice. The objective is to model and solve real engineering
design problems to minimize costs, maximize benefits,
and minimize resource usage. Meta-heuristic algorithms are
crucial in achieving these goals. Meta-heuristic algorithms
are versatile and adaptable, making them capable of handling
complex and variable engineering problems that involve
multiple design variables, complex objective functions, and
numerous constraints. They can find near-optimal solutions
in a reasonable amount of time, avoiding the issue of being
trapped in a solution space with local optimal solutions.
This paper applies the HPWCO algorithm to the classical
engineering design optimization problem and compares
its results with those of other excellent algorithms. The
experimental results demonstrate that the HPWCO algorithm
has significant advantages.

The remaining parts of the article are as follows:
Section II is the related work, which briefly introduces the
WCO algorithm and DE algorithm related to the HPWCO
algorithm proposed in this article; Section III describes the
parallel communication strategy proposed in this article and
how to hybridize the algorithm with the DE algorithm;
Section IV describes in detail the HPWCO algorithm in
the CEC2017 benchmark function set with other algorithms
and analyzes the experimental results; Section V applies the
HPWCO algorithm proposed in the article to five real-world
engineering optimization problems; and finally summarizes
the work done in this paper and looks forward to future
research in Section VI.

II. RELATED WORKS
A. WILLOW CATKIN OPTIMIZATION ALGORITHM
The WCO algorithm simulates willow catkin reproduction
that flutters in the wind and takes root on the ground. The
wind movement is simulated to update individual locations.
Once the willow catkins fall to the ground, they grow
into willow trees and produce new catkins for searching
the solution space. Different position update formulas are
utilized when two catkins are too close and likely to
stick together. This phenomenon relates to the issue of
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multiple individuals repeatedly surveying the same area
while exploring the solution. If frequent repetitions of
exploration occur, it hinders the search for an optimal solution
and increases the likelihood of getting trapped in a local
minimum. To address this, a more decentralized position
updating formula can partially evade the problem.

The initialization formula for willow is displayed in
Equation (1).

Xi = r × (UB− LB) + LB, i = 1, 2, . . . ,N (1)

where Xi represents the ith willow, r is a randomly generated
number between 0 and 1, LB indicates the lower bound of the
solution space, UB indicates the upper bound of the solution
space, and N represents the total number of willows.

The movement of the willow catkin is related to the
blowing of the wind; hence, the wind is modeled before the
introduction of the method for updating the willow catkin’s
position. In the WCO algorithm, the wind is represented by
vectors, and these vectors are classified into vectors u and v.
The representation vectors of the wind can be obtained by
utilizing the equations given below.{

u = −ws× cos(wd)
v = −ws× sin(wd)

(2)

where ws stands for wind speed and wd stands for wind
direction, ws and wd are calculated from Equation (5) or
Equation (8), depending on the sticking state of the willow
catkins.

After acquiring the wind’s representation vector,
Equation (3), as shown beneath, can be employed to update
the position of the willow catkins.

X t+1
i = X ti + α × (u× v) + (2 − α)(Pg − X ti ) (3)

The willow’s position after moving is represented by X t+1
i ,

while its current position is represented by X ti . The variable
α controls the transition from the phase of exploration to the
phase of exploitation, and Pg represents the position of the
optimal individual in the current iteration. The equation for
calculating the transition variable α is shown below.

α = c× e−( t
1000 )

2
(4)

where c is a constant with a value of 2, which is consistent
with the original paper on the WCO algorithm, and t
represents the current iteration number.

The position of willow catkins is updated based on their
adhesion state. The occurrence of adhesion between the
catkins is determined by comparing the Euclidean distance di
between them and the radius of susceptibility to adhesion R.
If di is greater than R, adhesion between the willow flakes
is unlikely, and Equation (5) shows the updating formula for
wind speed ws and wind direction wd.{

ws = r × R
wd = r × 2R

(5)

If di is less than R, it indicates that the willows are prone to
sticking to each other. In this case, use Equation (8) to update
the wind speed ws and wind direction wd.

K =
DW∑D
i=1DW i

(6)

DW = 1 −
|Pg − Xi|
∥Xi − Pg∥

(7)
ws = µ × (

∑D

i=1
Ki |Pg − Xi|) + (1 − µ) × r × R

wd = arccos(
Xi · Pg

∥Xi∥ × ∥Pg∥
) + r ×

π

8

(8)

where the variable K represents the weight of the distance
between the willow and the optimal individual in each
dimension over the total distance between the willow and the
optimal individual, and K is calculated from Equation (6) and
Equation (7).The variable µ is a random number within the
range of 0.4 to 0.6.

Algorithm 1 shows the pseudocode for the willow opti-
mization algorithm.

Algorithm 1Willow Catkin Optimization Algorithm
Require: N : Number of populations; T : Max number of

iterations; LB: Lower bound; UB: upper bound; Dim:
Problem dimension

Ensure: Location of the optimal individual;Optimal fitness
value

1: Using Equation (1) to initialize the population and
calculate individual fitness values

2: Compare the individual fitness values to obtain the
optimal individual Pg

3: for t = 1:T do
4: Use Equation (4) to calculate the α

5: for i = 1:N do
6: if di > R then
7: Use the Equation (5) to generate wind speed and

wind direction
8: else
9: Use the Equation (6) - Equation (8) to generate

wind speed and wind direction
10: end if
11: Updating willow catkin’s locations using

Equation (2) and Equation (3)
12: Calculate the fitness value for each individual
13: Get the new optimal individual position with the

optimal fitness value
14: Updating the optimal individual Pg
15: end for
16: end for

B. DIFFERENTIAL EVOLUTION ALGORITHM
The DE algorithm comprises three primary stages: mutation,
crossover, and selection. The initialization equation for
the population is similar to Equation (1). The mutation
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mechanism of the DE algorithm is called rand/1/bin, which
is realized through Equation (9).

X ′off t+1
= X ta + F × (X tb − X tc) (9)

In generation t , Xa represents the individual that will undergo
mutation.F is a constant in the interval [0, 2]. Xb and Xc are
two randomly selected individuals from the population, and
they are not the same as each other. Specifically, a, b, and c
belong to [1, Np], and a ̸= b ̸= c. The temporary offspring
resulting from the above mutation is denoted by X ′off t+1.
The crossover mechanism is represented by the following

equation.

Xoff t+1
i,j =

{
X ′off t+1

i,j if r ≤ Cr

X ti,j otherwise
(10)

where Cr is called the crossover rate and is a constant in
the interval [0, 1], the crossover occurs at generation t for
each individual i, and j represents the jth dimension of the
individual.

The crossover operation is followed by individual selec-
tion, the individual with the better fitness value is selected
for the next iteration, and the selection operation is realized
through Equation (11).

X t+1
i =

{
Xoff t+1

i if fit(Xoff t+1
i ) ≤ fit(X ti )

X ti otherwise
(11)

Algorithm 2 shows the pseudocode for the DE algorithm.

Algorithm 2 Differential Evolution Algorithm
Require: N : Number of populations; T : Max number of

iterations; LB: Lower bound; UB: upper bound; Dim:
Problem dimension

Ensure: Location of the optimal individual;optimal fitness
value

1: Using Equation (1) to initialize the population and
calculate individual fitness values

2: for t = 1:T do
3: for i = 1:N do
4: Three individuals were selected at random
5: The mutation operation was performed by applying

Equation (9) to generate temporary offspringX ′offi
6: The crossover operation was performed by applying

Equation (10) to generate Xoffi
7: Use Equation (11) to select the individuals that go

to the next iteration
8: Get the new optimal individual position with the

optimal fitness value
9: end for

10: end for

III. HYBRID PARALLEL WILLOW CATKIN OPTIMIZATION
ALGORITHM
A. TWO NEW PARALLEL COMMUNICATION STRATEGIES
The parallel strategy divides the population into subpopula-
tions, each of which independently performs the algorithmic

process. This approach has been proven to effectively
improve the running efficiency, convergence speed, and
performance of algorithms on high-dimensional problems.
Various parallel algorithms, such as the Parallel Compact
Gannet Optimization Algorithm (PCGOA), Parallel Parti-
cle Swarm Optimization Algorithm (PPSO), and Parallel
Compact Differential Evolution Algorithm (PCDE), have
demonstrated the benefits of this technique in practice.
However, the arithmetic process of each subpopulation
may be affected due to the reduced number of indi-
viduals. Additionally, it is important to fully utilize the
information generated by each subpopulation. Therefore,
an effective communication strategy between subpopulations
is indispensable. PCGOA proposes two strategies, random
replacement and optimal replacement, PCDE proposes an
optimal elite strategy and a mean elite strategy, and PPSO
proposes three communication strategies based on the degree
of the connection between the parameters. There are a host
of other parallel communication strategies used in algorithm
improvement, and all of them contribute greatly to the
performance of parallel algorithms [35]. In light of the
preceding algorithms that introduce parallel mechanisms, this
paper proposes two novel parallel communication strategies
and incorporates them into the WCO algorithm with the
objective of enhancing the algorithm’s overall performance.

This paper presents two new communication strategies.
The first strategy is the Random Mean (RM) method, which
involves selecting a random number of subpopulations,
calculating the mean of their optimal individuals, and
determining the corresponding fitness value, which replaces
the worst individual in each group. Fig 1 depicts the workflow
of communication strategy 1. The second communication
strategy is called the Optimal Flight (OF) method. Firstly, the
optimal individual of each group is perturbed by the Lévy
flight. Then, it is compared with the optimal individual of
its disjoint subpopulation. if the individuals that have been
perturbed by the Lévy flight are better, the best individuals
in the disjoint group are replaced. In this paper, disjoint
subpopulations are defined by the following Equation.

i′ = (i+ 2) mod g (12)

where i is the subpopulation number, g is the number of
subpopulations, and i′ is the number of disjoint subpop-
ulations of subpopulation i. Fig 2 depicts the workflow
of communication strategy 2. Substituting disjoint groups
allows for optimal information transmission through multiple
paths in the population. This diversity of information transfer
paths helps to cover the search space across different regions,
increasing the likelihood of finding a globally optimal
solution. Additionally, the Lévy flight perturbation introduces
greater randomness, aiding in the exploration of jumps in the
search space. At the end of each iteration, the subpopulations
communicate and select two strategies, as shown below.{

Strategy1 if β ≥ r
Strategy2 otherwise

(13)
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FIGURE 1. Random mean method.

FIGURE 2. Optimal flight method.

The variable r represents a random number within the range
[0, 1], β is a number that decreases with each iteration, and
the decreasing equation is a quadratic decrease expressed in
Equation (14). The decay process is shown in Fig 3.

β = (1 −
t
T
)2 (14)

The variable t represents the current number of iterations,
while T represents the maximum number of iterations.
Briefly, the purpose of the two communication strategies is
to sequentially check each subpopulation after each iteration

and migrate the superior individuals, thus maintaining
population diversity and accelerating the convergence speed.

The function that decline quadratically has a straightfor-
ward structure. Its rate of decrease accelerates gradually
as the number of iterations increases, and it is slightly
slower than the function that decreases exponentially. These
properties increase the likelihood of selecting strategy 1 to
guide the poorer individuals in exploring the solution space.
During the exploitation phase of the algorithm, strategy two
offers more opportunities to escape the current region and
avoid getting stuck in a local optimum. As the recursion

102400 VOLUME 12, 2024



S.-C. Chu et al.: HPWCO Algorithm Applied for Engineering Optimization Problems

FIGURE 3. The function curve of the parameter β.

continues, the likelihood of selecting strategy 2 increases
and accelerates, which aligns with the algorithm’s running
process. In addition, both strategies have the probability of
being selected during the algorithm’s runtime due to the
introduction of random numbers.

The purpoe of the RM exchange strategy is to fully
utilize the location information of the optimal individuals
in each subpopulation and guide the poorer individuals to
converge to these regions. Randomly selecting the number
of subpopulations to calculate the mean value can introduce
a certain degree of randomness, which helps to increase the
diversity of the search space, explore the solution space more
comprehensively, and accelerate the convergence process of
the populations. The use of the OF exchange strategy aims to
help the algorithm explore the search space more extensively
through the random wandering property of the Lévy flights,
especially in the presence of local optimal solutions, and to
be able to jump out of these local optimal solutions more
easily. The idea of these two communication strategies is
analogous to the behavior of multiple willow catkins attached
to an animal’s fur, which share information and navigate
randomly through the wind in nature. The WCO algorithm
that incorporates these two communication strategies is called
the ParallelWillowCatkin Optimization Algorithm (PWCO).

B. HYBRID PWCO ALGORITHM WITH DIFFERENTIAL
EVOLUTIONARY ALGORITHM
This section presents a combination of the PWCO algorithm,
which integrates two communication strategies, with the DE
algorithm. By mixing these two algorithms, the diversity
of solutions can be effectively improved, increasing the
likelihood of discovering potential solutions. In addition,
different algorithms excel at solving specific problems, and
combining them can leverage their complementary strengths
to tackle more complex issues. The PWCO algorithm has
superior global search capabilities, while the DE algorithm
is more focused on local exploitation. Differential Evolution

TABLE 1. Comparison of the number of different subpopulations.

can guide the search in a more promising direction. The
hybrid method used in this paper is differential evolution with
a small probability P for each subpopulation. To differentiate
the algorithm that plays a dominant role, the probability
P is set in the interval [0.25, 0.5] [18]. In the remaining
experiments, a P-value is randomly generated using a random
number that determines the probability of executing the DE
algorithm.

The number of subpopulations g is an important parameter
of the algorithm proposed in this paper. In order to determine
the appropriate value of g, The algorithms were evaluated
with regard to their performance when subjected to varying
values of g. The experiments were carried out on the
CEC2017 benchmark set of functions, and each algorithm
has a population size of 60, 50 iterations, and the maximum
number of evaluations is 30,000. Each function is run
independently 50 times to calculate the mean value, and the
result is as illustrated in Table 1.

The data in bold indicates the optimal value of the current
function. The last row of data in the table indicates the
total number of optimal values achieved by the algorithms
with different g values. The data indicates that the count of
optimal functions achieved by the algorithm decreases with
the increase in subpopulations. The highest count of optimal
functions is obtained when the subpopulation count is 3.
In subsequent experiments, the number of subpopulations, g,
is set to 3.
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TABLE 2. Notations and description.

This paper introduces the Hybrid Parallel Willow
Algorithm (HPWCO), which combines the parallel technique
with differential evolutionary guidance. The algorithm flow
is described below:

• Divide the population into g subpopulations, initialize
the value of µ for each subpopulation, µ ∈ [0.4, 0.6],
determine the value of P, P ∈ [0.25, 0.5].

• Each subpopulation generates a random number, which
is compared with P. If it is greater than P, the
subpopulation goes to step 3, and vice versa for step 4.

• Updating the position of subpopulation individuals
through the WCO algorithm’s algorithmic process.

• Updating the position of subpopulation individuals
through the arithmetic process of the DE algorithm.

• Calculate the value of β for this iteration and generate
a random number that lies within the interval between
zero and one to comparewithβ. If this randomnumber is
greater than β, strategy one is used for communication,
and vice versa, strategy two is used for communication.

• Repeat steps 2 through 5 until the termination require-
ment has been satisfied.

The pseudocode of the HPWCO algorithm is shown in
Algorithm 3. The flowchart of the HPWCO algorithm is
shown in Fig 4. The primary symbols and their definitions
are listed in Table 2.

IV. EXPERIMENTS
A. ALGORITHM SELECTION AND PARAMETER SETTING
The performance of the HPWCO algorithm proposed in
this paper is compared with three types of algorithms,
the first type is the classical algorithm and their vari-
ants including the Particle Swarm Optimization Algorithm

Algorithm 3 Hybrid Parallel Willow Catkin Optimization
Algorithm
Require: N : Number ofPopulations; t: Current number of

iterations; T : Max number of iterations; LB: Lower
bound; UB: Upper bound; Dim: Problem dimension;
fes: Number of current function calls;Maxfes: Maximum
number of function calls

Ensure: Location of the optimal individual; optimal fitness
value

1: t = 0, g = 5
2: // Initialization Phase //
3: for i=1 : g do
4: Use Equation (1) to initialize all individual positions

of Group[i]
5: Calculate the fitness of all individuals in Group[i]
6: end for
7: while t < or fes < MaxfesS do
8: for i = 1:g do
9: if P ≤ rand then
10: // WCO //
11: UseAlgorithm 1 to update all individual positions

of Group[i]
12: else
13: // DE //
14: UseAlgorithm 2 to update all individual positions

of Group[i]
15: end if
16: Calculate the fitness of all individuals in Group[i]
17: end for
18: Use Equation (14) to calculate the β-value for the

current number of iterations
19: if β ≥ rand then
20: // Communication Strategy 1 //
21: Randomly select x groups and calculate the mean of

their optimal solution, denoted temp
22: for i = 1:g do
23: Group[i].worst = temp
24: end for
25: else
26: // Communication Strategy 2 //
27: for i = 1:g do
28: temp = Group[i].best + Lévy flight
29: if temp < Group[i′].bestfintess then
30: Group[i].best = temp
31: end if
32: end for
33: end if
34: Get the new optimal individual position with the

optimal fitness value
35: t = t + 1
36: end while

(PSO,1995) [36], [37], [38], the Differential Evolutionary
Algorithm (DE,1997), the Multiple adaptation Differen-
tial Evolution Algorithm (MadDE, 2021) [39], the Breed
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FIGURE 4. Flowchart of HPWCO.

TABLE 3. Parameter setting for comparison algorithm.

Particle Swarm Optimization Algorithm(BreedPSO, 2020)
[40], the second type is the recently proposed algorithms
including TumbleweedAlgorithm (TA,2022), Bamboo Forest
Growth Algorithm (BFGO,2023), and the original algorithm
of HPWCO, which is the Willow Catkin Optimization
Algorithm (WCO,2023), the third type of algorithms are the
algorithms improved by using parallel strategy, Parallel Com-
pact Cuckoo Search Algorithm (PCCS,2020) [41], Parallel
Compact Gannet Optimization Algorithm (PCGOA,2023)
[42], and Parallel Compact Willow Catkin Optimization
Algorithm(PCWCO, 2024) [43]. Table 3 shows the parameter
settings for these algorithms. All parameters refer to the
original paper for the algorithm.

B. COMPARISON OVER CEC2017
In this section, the performance of the HPWCO algorithm
is compared with other algorithms using CEC2017 as a
benchmark function set. CEC2017, presented at the Congress
on Evolutionary Computation 2017, covers different types
of optimization problems for testing the performance
of different algorithms. The benchmark function enables
the effective comparison of the performance of different
algorithms in solving the same problem under a unified
framework. CEC2017 contains four types of functions:

F1-F2 are unimodal functions, F3-F9 are multimodal func-
tions, F10-F19 are composition functions, and F20-F29
are hybrid functions [44]. The four types of functions
test different aspects of the algorithm’s capabilities: uni-
modal functions reflect well on the exploitation capabilities
because they have only one optimum; multimodal functions
have many local optima and mainly test the exploration
capabilities; and composition and hybrid functions reflect
the ability to avoid the local optimum. To ensure a fair
performance comparison, all algorithms were evaluated
with 30 populations, 500 iterations, and 15,000 function
evaluations. Each function was independently run 30 times,
and the mean was calculated. The symbol (<) means the
performance is weaker than HPWCO, the symbol (=) means
the same performance as HPWCO, and the symbol (>) means
the performance is better than HPWCO.

Table 4 shows the experimental results on 10 dimensions.
Compared with the original WCO algorithm and DE
algorithm, HPWCO outperforms them both in unimodal
functions; all multimodal functions outperform WCO; and
9 out of 10 hybrid algorithms outperform DE, which
indicates that the HPWCO algorithm fully combines the
excellent exploratory ability of WCO with the diversity
of the DE algorithm’s solution. Compared with parallel
algorithms proposed in recent years, HPWCO only slightly
underperforms PCCS in function F24, and 17 out of 20 com-
position and hybrid functions outperform PCGOA, indicating
the excellent performance of the HPWCO algorithm. The
MadDE algorithm had a slight advantage over HPWCO in
7 of the 20 combination and hybrid functions, but in most
cases, the HPWCO algorithm achieved superior results, with
22 of the overall 29 functions outperforming MadDE.

Table 5 shows the results of the algorithms tested on
30 dimensions. From the data, it can be seen that the HPWCO
algorithm outperforms at least 25 benchmark functions
compared to WCO, TA, BFGO, PSO, DE, BreedPSO,
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TABLE 7. 30-Dimensional CEC2017 runtime comparison.

PCGOA, PCWCO,and PCCS, the HPWCO algorithm out-
performs the original WCO algorithm and the DE algorithm
in unimodal functions and outperforms the original WCO
algorithm in all of the hybrid and composition algorithms,
which indicates that the exploration capability has been
enhanced after improvement, and they can better avoid
falling into the local optimization; the HPWCO algorithm
outperforms other algorithms in all multimodal functions,
which shows the excellent exploration ability of HPWCO;
compared to algorithms that also adopt the parallel strategy
to improve, HPWCO outperforms the PCCS algorithm in the
composition functions, and all hybrid functions outperform
the PCGOA algorithm, which reflects the excellent explo-
ration ability of the HPWCO algorithm in the excellence
among parallel algorithms.

Table 6 shows the experimental results on 50 dimensions.
HPWCO algorithm outperforms the DE algorithm in six out
of seven multimodal functions, which is more than 90%
better than other algorithms, outperforms PCCS in 9 out
of 10 hybrid functions, and outperforms PCCS in all the
composition functions. It shows that in high-dimensional
problems, the exploration ability of the HPWCO algorithm
and its ability to avoid falling into the local optimum are
still outstanding. The HPWCO algorithm outperforms the
MadDE algorithm in all unimodal and multimodal functions,
but the HPWCO algorithm performs similarly to the MadDE
algorithm in combined and hybrid functions. Compared with
the original algorithm, HPWCO achieves superior results on
all test functions, and the improvement of the strategy in
this paper makes the WCO algorithm better at solving high-
dimensional problems.

Table 7 presents the running times of the HPWCO
algorithm in comparison with the original WCO algorithm,
the DE algorithm, and other variants of the WCO algorithm,
the PWCO algorithm, on the 30-dimensional CEC2017
benchmark function set. It is evident that the incorporation of
multiple selection and mutation strategies results in a longer
running time for the algorithm compared to the original
algorithm. However, the findings confirm that the HPWCO
algorithm attains the optimal quality of the solution.

C. STATISTICAL ANALYSIS
To further prove the significant difference between the
HPWCO algorithm and the other algorithms, the Friedman
average rankings of all algorithms were calculated, and the
ranking results are shown in Table 8, from which it can be
seen that the HPWCO algorithm achieves the best average
rankings in the experimental results on the benchmark
function sets of 10, 30, and 50 dimensions, and the rankings
of the individual algorithms are more intuitively reflected in
Figure 5. Significant differences indicate that HPWCO can

TABLE 8. Friedman average rank.

FIGURE 5. Friedman average rank.

show better performance when facing different optimization
problems.

Furthermore, Wilcoxon rank sum tests were conducted on
30 independent experiments of eleven comparison algorithms
with varying dimensions. Table 9 presents the results of
the Wilcoxon rank sum tests on a 10-dimensional problem
space; Table 10 displays the outcomes of the Wilcoxon rank
sum tests on a 30-dimensional problem space; and Table 11
illustrates the outcomes of the Wilcoxon rank sum tests on
a 50-dimensional problem space. In the table, the symbol
‘‘+’’ indicates that HPWCO performs better on the test
function, the symbol ‘‘=’’ indicates similar performance, and
the symbol ‘‘−’’ indicates that other algorithms outperform
HPWCO.

As illustrated in Table 9, when the problem space is
10 dimensions, HPWCO achieves 242 superior outcomes
out of all 290 comparisons, representing 83.4% of the total,
thereby demonstrating the remarkable efficacy of HPWCO in
comparison to the other ten algorithms. Table 10 illustrates
that when the problem space is 30 dimensions, HPWCO
exhibits a slight inferiority to the MadDE algorithm on F11,
F13, F15, F17, F19, and F25. However, the overall results
of HPWCO demonstrate a superior performance to MadDE
on 20 out of 29 functions, indicating a more favorable
overall outcome. On function F13, both PSO and its variant
BreedPSO yielded similar results to HPWCO. On F16,
DE, MadDE, and HPWCO exhibited comparable outcomes.
Similarly, PCGOA andHPWCO achieved comparable results
on F1 and F12. Furthermore, 275 out of the 290 comparisons
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TABLE 9. Results of the Wilcoxon rank sum test for the 10-dimensional CEC2017 benchmark function set.

TABLE 10. Results of the Wilcoxon rank sum test for the 30-dimensional CEC2017 benchmark function set.

yielded satisfactory outcomes, representing 94.8% of the total
comparisons. As illustrated in Table 11, when the problem
space is expanded to 50 dimensions, the MadDE algorithm

outperforms HPWCO on F16, F17, F19, F22, and F25 and
achieves comparable results on F3, F5, F11, F15, F26, and
F28 due to its effectivemultiple adaptation strategy. However,
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TABLE 11. Results of the Wilcoxon rank sum test for the 50-dimensional CEC2017 benchmark function set.

HPWCO remains the superior algorithm overall. Of the
290 comparative results, 271 were favorable, representing
93.4% of the total. In conclusion, the results demonstrate
that HPWCO is significantly more effective than the other
algorithms.

D. CONVERGENCE ANALYSIS
In this section, the convergence speed of the HPWCO
algorithm will be compared with that of other algorithms.
Fig 6 shows the convergence curves of 15 functions from
the set of 29 benchmark functions in 30 dimensions,
containing unimodal, multimodal, composition, and hybrid
functions. We can see that the HPWCO algorithm shows
faster convergence speed in all types of functions, which is
significantly prompted by the fact that HPWCO can better
balance the phase of exploration and phase of exploitation,
and the introduction of the communication strategy, as well
as the DE algorithm, enables the algorithm to leverage the
solution data and increase the diversity of the solution.

V. ENGINEERING OPTIMIZATION PROBLEMS
In this section, the HPWCO algorithm is applied to five
real-world engineering optimization problems: multiple disk
clutch brake design [45], step-cone pulley problem [46],
speed reducer design [47], planetary gear train design [48],
and robot gripper problem [49]. All of these problems have
certain constraints, and in this paper the constraints will be
dealt with by the penalty function method, which transforms

the constrained into the unconstrained, and the transforms
will be shown in equation (15).

min : L(x) = f (x) + σ
∑
i=1

g(Ci(x)) (15)

where L(x) represents the unconstrained function obtained,
f (x) represents the optimization problem to be solved, σ

represents the penalty coefficient, which is set to 1010 in
this paper, g(Ci(X )) represents the penalty function, which is
specifically expressed as shown in Equation (16), and Ci(X )
is a set of constraints for the optimization problem.

g(Ci(x)) = max(0,Ci(x))2 (16)

A. MULTIPLE DISK CLUTCH BRAKE DESIGN
The main objective of the multiple disk clutch brake design
problem is to minimize the mass of a multiple disk clutch
brake. The problem has five variables, which are inner radius
(x1), outer radius (x2), disk thickness (x3), factor force (x4),
and several friction surfaces (x5), and this problem contains
eight nonlinear constraints.

The mathematical model of the problem is shown below.
• f (x⃗) = π (x22 − x21 )x3(x5 + 1)

The constraints are shown as follows.
• g1(x⃗) = −pmax + prz ≤ 0
• g2(x⃗) = przvsr − vsr,maxpmax ≤ 0
• g3(x⃗) = 1R+ x1 − x2 ≤ 0
• g4(x⃗) = −Lmax + (x5 + 1)(x3 + δ) ≤ 0
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FIGURE 6. Convergence curves for the 30-dimensional CEC2017 benchmark function set.

• g5(x⃗) = sMs −Mh ≤ 0
• g6(x⃗) = T ≥ 0
• g7x⃗ = −vsr,max + vsr ≤ 0
• g8(x⃗) = T − Tmax ≤ 0

• Mh =
2
3µx4x5

x32−x31
x22−x21

N .mm

• ω =
πn
30 rad/s

• A = π (x22 − x21 )mm
2

• prz =
x4
A N/mm2
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TABLE 12. Comparison results for each algorithm used to solve the
multiple disk clutch design problem.

• vsr =
πRsrn
30 mm/s

• Rsr =
2
3
x32−x31
x22x

2
1
mm

• T =
Izω

Mh+Mf
• 1R = 20mm,Lmax = 30mm, µ = 0.6
• vsr,max = 10m/s, δ = 0.5mm, s = 1.5
• Tmax = 15s, n = 250rpm, Iz = 55 Kg.m2

• Ms = 40Nm,Mf = 2Nm, pmax = 1
The range of values of the variables is shown below.

• 60 ≤ x1 ≤ 80
• 90 ≤ x2 ≤ 110
• 1 ≤ x3 ≤ 3
• 0 ≤ x4 ≤ 1000
• 2 ≤ x5 ≤ 9
The problem has been solved using the HPWCO algorithm

and has been compared with other algorithms, and the
specific experimental results are shown in Table 12, where
the values in bold are the optimal results obtained from the
experiments.

B. STEP-CONE PULLEY PROBLEM
The main objective of the step-cone pulley problem is to
minimize the weight of four stepped conical pulleys in terms
of five variables, four of which are the diameters of each stage
of the pulleys, and the last variable is the width of the pulleys.
The problem contains 11 nonlinear constraints to ensure that
the transmit power must be 0.75hp.

The mathematical model for this problem is defined as
shown below.

1) f (x⃗) = ρx5

[
x21a1 + x22a2 + x23a3 + x24a4

]
2) a1 = 11 +

(
N1
N

)2
3) a2 = 1 +

(
N2
N

)2
4) a3 = 1 +

(
N3
N

)2
5) a4 = 1 +

(
N4
N

)2
The constraints are shown below.

• h1(x⃗) = C1 − C2 = 0
• h2(x⃗) = C1 − C3 = 0
• h3(x⃗) = C1 − C4 = 0
• gi=1,2,3,4(x⃗) = −Ri ≤ 2
• gi=1,2,3,4(x⃗) = (0.75 × 745.6998) − Pi ≤ 0

TABLE 13. Comparison results of each algorithm for the step-cone pulley
problem.

• Ci =
πxi
2

(
1 +

Ni
N

)
+

(
Ni
N −1

)2
4a + 2a, i = (1, 2, 3, 4)

• Ri = exp
(
µ

{
π − 2 sin−1

{(
Ni
N − 1

)
xi
2a

}})
, i =

(1, 2, 3, 4)
• Pi = stx5 (1 − Ri)

πxiNi
60 , i = (1, 2, 3, 4)

• t = 8mm, s = 1.75Mpa, µ = 0.35
• ρ = 7200kg/m3, a = 3mm
• N = 350,N1 = 750,N2 = 450
• N3 = 250,N4 = 150

The range of values for the variables is shown below.
• 0 ≤ x1, x2 ≤ 60
• 0 ≤ x3, x4, x5 ≤ 90
The HPWCO algorithm proposed in this paper is applied

to the step-cone pulley problem and compared with other
algorithms, and it can be seen from the specific data in
Table 13 that the HPWCO algorithm gives more excellent
results compared to other algorithms.

C. SPEED REDUCER DESIGN PROBLEM
The speed reducer design problem has seven design variables,
and the main objective is to minimize the weight of the speed
reducer while satisfying the following constraints: bending
stresses on the gear teeth, surface pressures, lateral deflection
of the shaft, and stresses on the shaft. The seven design
variables are the face width (x1), the module of the teeth
(x2), the number of gear teeth (x3), the length of the first
shaft between the bearings (x4), the length of the second shaft
between the bearings (x5), the diameter of the first shaft (x6),
and the diameter of the second shaft (x7).

The mathematical model of the problem is described as
shown below.

• f (x⃗) = 0.7854 x1x22a1 − a2 + a3 + a4
• a1 = 3.3333 x23 + 14.9334 x3 − 43.0934
• a2 = 1.508 x1

(
x26 + x27

)
• a3 = 7.4777

(
x36 + x37

)
• a4 = 0.7854

(
x4x26 + x5x27

)
The constraints are shown below.

• g1(x⃗) =
27

x1x22x3
− 1 ≤ 0

• g2(x⃗) =
397.5
x1x22x

2
3

− 1 ≤ 0

• g3(x⃗) =
1.93 x34
x2x46x3

− 1 ≤ 0

• g4(x⃗) =
1.93 x35
x2x47x3

− 1 ≤ 0
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TABLE 14. Comparison results for each algorithm used to solve the speed reducer design problem.

• g5(x⃗) =

[
(745( x4

x2x3
))2+16.9×106

] 1
2

110x36
− 1 ≤ 0

• g6(x⃗) =

[
(745( x5

x2x3
))2+157.5×106

] 1
2

85x37
− 1 ≤ 0

• g7(x⃗) =
x2x3
40 − 1 ≤ 0

• g8(x⃗) =
5x2
x1

− 1 ≤ 0
• g9(x⃗) =

x1
12x2

− 1 ≤ 0

• g10(x⃗) =
1.5 x6+1.9

x4
− 1 ≤ 0

• g11(x⃗) =
1.1 x7+1.9

x5
− 1 ≤ 0

The range of values of the variables is shown below.

• 2.6 ≤ x1 ≤ 3.6
• 0.7 ≤ x2 ≤ 0.8
• 17 ≤ x3 ≤ 28
• 7.3 ≤ x4, x5 ≤ 8.3
• 2.9 ≤ x6 ≤ 3.9 s
• 5.0 ≤ x7 ≤ 5.5

The experimental results for the speed reducer design
problem are shown in Table 14, where the HPWCO algorithm
achieves optimal results compared to the other algorithms.

D. PLANETARY GEAR TRAIN DESIGN
The main objective of the planetary gear train design problem
is to minimize the maximum error in the automotive gear
ratio. The total number of teeth in the automated planetary
gear system is calculated to minimize the maximum error.
The problem contains 6 integer variables and 11 different
geometric and assembly constraints.

The problem can be defined as shown below.

• f (x⃗) = max |ik − i0k | , k = 1, 2, . . . ,R
• i1 =

x6
x4

, i01 = 3.11, i2 =
x6(x1x3+x2x4)
x1x3(x6−x4)

• i02 = 1.84, iR = −
x2x6
x1x3

, i0R = −3.11

The constraints are shown below.

• g1(x⃗) = x9(x6 + 2.5) − Dmax ≤ 0
• g2(x⃗) = x8(x1 + x2) + x8(x2 + 2) − Dmax ≤ 0
• g3(x⃗) = x9(x4 + x5) + x9(x5 + 2) − Dmax ≤ 0
• g4(x⃗) = |x8(x1 + x2) − x9(x6 − x3)| − x8 − x9 ≤ 0
• g5(x⃗) = −(x1 + x2) sin( π

x7
) + x2 + 2 + δ22 ≤ 0

• g6(x⃗) = −(x6 − x3) sin( π
x7
) + x3 + 2 + δ33 ≤ 0

• g7(x⃗) = −(x4 + x5) sin( π
x7
) + x5 + 2 + δ55 ≤ 0

• g8(x⃗) = (x3 + x5 + 2 + δ35)2 − a1(x⃗) + a2(x⃗) ≤ 0
• a1(x⃗) = (x6 − x3)2 + (x4 + x5)2

• a2(x⃗) = 2(x6 − x3)(x4 + x5) cos
(
2π
x7

− β
)

• g9(x⃗) = x4 − x6 + 2x5 + 2δ56 + 4 ≤ 0
• g10(x⃗) = 2x3 − x6 + x4 + 2δ34 + 4 ≤ 0
• h1(x⃗) =

x6−x4
x7

= integar
• δ22 = δ33 = δ55 = δ35 = δ56 = δ34 = 0.5
• β =

cos−1((x4+x5)2+(x6−x3)2−(x3+x5)2
)

2(x6−x3)(x4+x5)
• Dmax = 220

The range of values of the variables is shown below.
• 17 ≤ x1 ≤ 96
• 14 ≤ x2 ≤ 54
• 14 ≤ x3 ≤ 51
• 17 ≤ x4 ≤ 46
• 14 ≤ x5 ≤ 51
• 48 ≤ x6 ≤ 124
• xi = integar, i = 1, 2, . . . , 6
• x7 = (3, 4, 5)
• x8, x9 = (1.75, 2.0, 2.25, 2.75, 3.0)
The experimental results for the planetary gear train

system design problem are shown in Table 15, where the
HPWC algorithm outperforms the other algorithms for which
comparisons were made, except for the PCCS algorithm,
which achieves the same results as the HPWCO algorithm.

E. ROBOT GRIPPER PROBLEM
In the robot gripper problem, the difference between the
minimum force and the maximum force generated by the
robot gripper is used as the objective function. The problem
contains seven design variables and six nonlinear design
constraints related to the robot.

The mathematical model of the robot gripper problem is
shown as follows.

• f (x⃗) = −minz Fk (x, z) + maxz Fk (x, z)
The constraints are shown as follows.

• g1(x⃗) = −Ymin + y(x⃗,Zmax) ≤ 0
• g2(x⃗) = −y(x⃗,Zmax) ≤ 0
• g3(x⃗) = Ymax − y(x⃗, 0) ≤ 0
• g4(x⃗) = y(x⃗, 0) − YG ≤ 0
• g5(x⃗) = x6 + x4 − (x1 + x2)2 ≤ 0
• g6(x⃗) = x22 − (x1 − x4)2 − (x6 − Zmax)2 ≤ 0
• g7(x⃗) = Zmax − x6 ≤ 0

• α = cos−1
(
x21+g2−x22

2x21g
2

)
+ ∅

• g =

√
x24 + (z− x7)2

• β = cos−1
(
x22+g2−x21

2x2g

)
− ∅
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TABLE 15. Comparison results for each algorithm used to solve the planetary gear train design problem.

TABLE 16. Comparison results for each algorithm used to solve the robot gripper problem.

• ∅ = tan−1
(

x4
x6−z

)
• y(x⃗, z) = 2(x5 + x4 + x3 sin(β + x7))
• Fk =

Px2 sin(α+β)
2x3 cos(α)

,Ymin = 50
• Ymax = 100,YG = 150,Zmax = 100,P = 100

The range of values of the variables is shown as follows.

• 10 ≤ x1, x2, x5 ≤ 150
• 100 ≤ x3 ≤ 200
• 0 ≤ x4 ≤ 50
• 100 ≤ x6 ≤ 300
• 1 ≤ x7 ≤ 3.14

The experimental results for the robot gripper problem
are shown in Table 16 and the HPWCO algorithm achieves
optimal results compared to the other algorithms.

VI. CONCLUSION
This paper proposes the hybrid parallel willow catkin
optimization algorithm, which is based on the original willow
catkin optimization algorithm by introducing the parallel
technique and mixing it with the DE algorithm. The addition
of two new communication strategies makes the convergence
speed of the WCO algorithm improve, which can better
avoid falling into the local optimum, and the introduction of
the DE algorithm makes the diversity of solutions improve.
Data comparisons with ten other algorithms (WCO, PSO,
DE, MadDE, BreedPSO, TA, BFGO, PCCS, PCGOA, and
PCWCO) on the 10, 30, and 50 dimensional CEC2017 bench-
mark function sets are performed to verify the performance of
the HPWCO algorithm. In addition, the HPWCO algorithm is
applied to five real-world engineering optimization problems
and comparedwith the other algorithms, and the experimental
data show that HPWCO achieves excellent results. In the
future, the HPWCO algorithm can be further improved for

multi-objective problems, and there is also some room for
improvement in memory utilization.
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