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ABSTRACT Identifying features significantly influencing the target outcome is crucial for understanding
complex relationships, reducing computational costs, and improving model generalization in high-
dimensional data. While powerful for discovering intricate relationships, deep learning-based feature
selection methods often overlook inherent group structures in data, such as gene pathways or categorical
variables. Consequently, these methods may fail to select informative features within the relevant groups,
potentially leading to the selection of less informative features and ultimately, lower model performance.
To address this challenge, we propose a novel deep learning-based feature selection method that achieves
both intra-group and inter-group sparsity. By introducing a penalty term that encourages group sparsity,
our method effectively selects informative groups of features, thereby improving model performance.
We validate our approach through experiments on synthetic and real-world datasets with predefined group
structures. Our method achieved a 2.5∼ 8.2% reduction in prediction RMSE and a 0.3∼ 1.9% improvement
in prediction accuracy compared to existing methods. Furthermore, our approach demonstrated a 50%
increase in the selection of biologically relevant features, enhancing model interpretability and alignment
with relevant scientific literature. These results confirm the effectiveness of our method in leveraging group
structures to improve both performance and interpretability.

INDEX TERMS Deep learning, embedded feature selection, intra-group sparsity, inter-group sparsity.

I. INTRODUCTION
High-dimensional data is prevalent in various fields, includ-
ing critical domains like medicine and biology. Identifying
an informative subset of features that significantly influence
the target outcome is crucial. This not only fosters a deeper
understanding of the underlying complex relationships
between features [1], [2], [3], but also reduces experimental
costs and improves model generalization [4], [5]. Feature
selection is a well-established area with proposed solutions
like wrapper [6] and filter [7], [8] methods. Deep learning
(DL) methods have become a powerful tool for embedded
feature selection, which selects relevant features while
concurrently performing model selection [9], [10], [11], [12],
[13]. This is particularly advantageous since DL methods
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can uncover complex relationships between features and the
target outcome, enabling the selection of feature subsets that
have higher discriminative or predictive power.

Earlier methods have addressed the non-differentiable
objective function in feature selection by approximating it
with Lasso [14] or elastic net penalization [10], [15]. More
recent work tackles this challenge by employing continuous
relaxation, which models feature selection as a process
involving binary random variables [12], [13]. Such relaxation
makes the objective function differentiable with respect to
the distribution parameters that govern the binary random
variables, allowing for techniques like REINFORCE [16]
or reparameterization tricks for discrete random variables –
such as using Concrete [17], Hard Concrete (HC) [18], and
Gaussian approximation [12] – to be applied.

However, when data has inherent group structures (e.g.,
gene pathways in gene expression data or one-hot encoded
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categorical variables), identifying important groups of fea-
tures alongside individual features becomes crucial for
understanding their relationships with the target outcome.
While modifications on Lasso-based regularization have
addressed this challenge by augmenting a group-level L2
penalty to promote inter-group sparsity [19], [20], [21],
the above DL-based feature selection methods primarily
focus on achieving individual feature-level sparsity (using
L0-penalty), neglecting the underlying group structures in
the data. Consequently, these methods may fail to select the
most informative features within the most relevant groups,
potentially leading to degradation in model performance.
Contribution:We propose a novel DL-based feature selec-

tion method that achieves both intra- and inter-group sparsity.
To achieve this goal, we introduce a novel penalty term that
encourages inter-group sparsity, which is a reformulation
of the group-sparsity regularization from group Lasso for
the DL-based feature selection. This forces the model to
discard entire features in each group, thereby only selecting
the relevant feature groups, leading to group sparsity. The
biggest distinction from the previous DL-based feature
selection methods lies in our emphasis on the importance of
features at a group level. We incorporate group information
during feature selection, prioritizing the group-level feature
importance rather than solely relying on penalizing individual
features separately. We achieve such inter-group sparsity by
proposing a novel penalty term that minimizes the cumulative
distribution function (CDF) of a Poisson binomial random
variable [22], which is approximately computed by utilizing
a Gaussian-based approach.

Throughout experiments, we validate our approach on
multiple synthetic and real-world datasets with predefined
group structures. Our model discovers relevant features that
provide superior prediction performance compared to the
sparse-group Lasso [19], [20], [21] and the state-of-the-
art benchmarks that only focus on individual-level sparsity.
Furthermore, we confirm the selected features by aligning
them with relevant scientific literature.

II. RELATED WORK
A. DEEP LEARNING-BASED EMBEDDED FEATURE
SELECTION METHOD
Lasso [14] and its variants [23], [24] have been widely
applied in various domains as representative embedded
feature selection methods, which identify important features
by shrinking the coefficients of less important ones through
L1 regularization. While effective, these methods are limited
by their reliance on linear models to capture feature
interactions with the target outcome. Recent advancements
in neural networks have emerged as a powerful alternative,
capable of capturing the complex, non-linear relationships
often present between features and target variables [10], [25],
[26]. However, directly applying the L1 penalty in the input
layer generally makes it challenging to induce sparsity and,
thus, hinders the interpretability of which features are truly
important.

DL methods for embedded feature selection have
addressed the challenges of discrete selection (and thus
properly achieve sparsity) by introducing stochastic binary
gate vectors and an L0 penalty [12], [13]. Specifically, this is
approximately achieved by utilizing continuous relaxation,
which models the selection of each feature as a Bernoulli
random variable. The main focus here is to overcome the
non-differentiability involved in the sampling process via
reparameterization tricks such as Concrete distribution [17],
[27], Hard Concrete (HC) distribution [18], and Gaussian
approximations with a hard sigmoid function (STG) [12].

Recent advancements in DL have explored implicit group
structures for feature selection, such as interactions and cor-
relations among input features. For instance, Lee et al. [13]
have enhanced the gating process using Gaussian copula
to generate correlated gates, while Imrie et al. [28] have
introduced composite features capturing predictive feature
subsets with interactions. In multi-label feature selection,
authors in [29] and [30] have analyzed label correlations
using group structures while controlling feature redundancy.
Despite leveraging implicit group structures and considering
label-feature correlations to identify important features, none
of these methods explicitly achieve group sparsity.

B. FEATURE SELECTION WITH GROUP SPARSITY
In many real-world domains (e.g., biology), features often
exhibit natural groupings or relationships, which makes
the importance of features within the same group possibly
correlated. Ignoring these group structures during feature
selection canmislead the understanding of the discovered fea-
tures (e.g., biomarkers) and potentially lead to performance
degradation. To address this issue, researchers have proposed
methods that leverage pre-defined group information to
promote sparsity at the group level, known as group sparsity
[31]. These methods, explored in various studies [32], [33],
[34], incorporate an L2 penalty at the group level. This penalty
encourages all coefficients corresponding to features within a
group to approach zero, effectively achieving group sparsity
and improved prediction performance. One notable develop-
ment of group sparsity is sparse group Lasso [19], [20], [21],
which simultaneously achieves both group-wise and with-
in group sparsity by leveraging both L1 and L2 penalties.
This can effectively select the most informative features
from the most important groups, potentially improvingmodel
performance and interpretability.

While successful with linear models, feature selection
methods with group sparsity often struggle to capture the
complexities of real-world data. In this work, we address
this limitation by leveraging the universal approximation
ability of deep neural networks to select crucial features
with possibly non-linear interactions, while achieving both
intra-group and inter-group sparsity. Table 1 compares
objectives and regularization terms used by Lasso-based and
DL-based feature selection methods to achieve intra-group
and inter-group sparsity. We will provide more details in the
following sections.
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III. PROBLEM FORMULATION
Let X = (X1, · · · ,Xp) ∈ Rp and Y ∈ Y be random
variables for the p-dimensional input feature and the target
outcome, whose realizations are denoted as x = (x1, · · · , xp)
and y, respectively. Here, Y is the outcome space, and we
will focus our description on C-class classification tasks, i.e.,
Y = {1, . . . ,C} for ease of notation. We assume that the
feature can be divided into pre-specified G non-overlapping
groups, i.e., x = (x1, x2, · · · xG), where each group is a
collection of features that share a certain association (e.g.,
genes with similar molecular functions or biological roles).
We denote the g-th group as xg = (xg1 , x

g
2 , · · · , xgpg ) ∈ Rpg ,

comprising pg features.
Embedded feature selection is a method of selecting a

subset of features, i.e., S ⊂ [p], that are relevant for
predicting the target outcome during model training. Denote
m = (m1, . . . ,mp) ∈ {0, 1}p be a binary gate vector where
md indicates whether the d-th feature is selected in S or
not, i.e., md = 1 if d ∈ S and md = 0 otherwise. Then,
we can define the selected feature subset, x̃ ∈ (R ∪ {∗})p,
as x̃ = m ⊙ x + (1 − m) ⊙ ∗, where ∗ denotes any point
not in R. Let fθ : (R ∪ ∗)p → 1C−1 be a function (a neural
network parameterized by θ ) that takes the feature subset x̃ as
input and outputs a point in the (C − 1)-simplex for C-class
classification.

We aim for the selected feature subset to exhibit both
inter-group sparsity – i.e., the selection of only a few groups
of features – and intra-group sparsity – i.e., the selection
of only a few features within each group. To achieve this
goal, we rewrite the gate vector as m = (m1,m2, · · · ,mG),
utilizing the group information, and define the embedded
feature selection problem as solving the following objective:

minimize
θ,m

Ex,y[ℓY (y, fθ (x̃)]

subject to ∥m∥0 ≤ δ and
G∑
g=1

√
pg 1

(
∥mg∥0 > 0

)
≤ δg (1)

where ℓY (y, ŷ)= ∥y − ŷ∥2 is the mean squared error (MSE)
loss for regression tasks and ℓY (y, ŷ) = −

∑C
c=1 yc log ŷc is

the cross-entropy loss for classification tasks.1 Here, δ and δg
control the size of the selected feature subset and the (scaled)
number of groups with nonzero gates, respectively.

IV. METHOD
Unfortunately, the combinatorial problem in (1) becomes
intractable for high-dimensional data as the search space
increases exponentially with p. Hence, we employ a continu-
ous relaxation by assuming the gate vector is generated from
a Bernoulli distribution governed by π = (π1, π2, . . . , πp) ∈

[0, 1]p, i.e., m ∼ Bern(π ), which transforms the com-
binatorial search into a search over a unit hypercube [12],
[13]. Throughout, we will use M = (M1,M2, . . . ,MG) to
representm in the form of a random variable.

1Here, we slightly abuse the notation and write yc to present the c-th
element of the one-hot encoding of y.

Then, based on the Bernoulli relaxation, we can reformu-
late our objective in (1) using Lagrangian approximation as:

minimize
θ,π

Ex,yEm
[
ℓY (y, fθ (x̃))+ λ1R1+ λ2R2

]
(2)

where λ1 and λ2 are Lagrangian multipliers that control the
trade-offs between the prediction loss and the regularizers.
Here, R1 =

∑p
d=1 1(md = 1) corresponds to the L1

penalty in Lasso, which encourages to close the gate at an
individual level achieving intra-group sparsity, and R2 =∑G

g=1
√pg 1

(∑pg
d=1m

g
d > 0)

)
represents the L2 penalty in

group-Lasso, which achieves inter-group sparsity by forcing
none of the gates in each group to be open. Hence, optimizing
the expected regularization terms, i.e., Em[R1] and Em[R2],
is crucial to control the intra- and inter-group sparsity of the
selected feature subset.

To this goal, we propose a novel Doubly Sparse Feature
Selection, which we refer to as DSFS, which aims to select
feature subsets that maintain both intra- and inter-group
sparsity. In this section, we begin by simplifying the expected
regularization terms for intra- and inter-group sparsity in (2)
as functions of the Bernoulli parameters governing with the
gate vectors, and then introduce the reparameterization trick
employed to overcome the non-differentiability involved in
the selection process.

A. INTRA-GROUP SPARSITY: L1 PENALTY
For the first regularization term, Em[R1], we can rewrite the
expected number of open gates as follows:

Em[R1] = Em

[ p∑
d=1

1(md = 1)

]
=

p∑
d=1

Em[1(md = 1)]

=

p∑
d=1

P(Md = 1) =

p∑
d=1

πd . (3)

This shows that achieving the intra-group sparsity simply
boils down to penalizing the sum of probabilities that each
gate to be open, i.e.,

∑p
d=1 πd .

B. INTER-GROUP SPARSITY: L2 PENALTY
For the second regularization term, Em[R2], we can derive
the expected number of groups with at least one nonzero gate
as the following:

Em[R2] = Em

 G∑
g=1

√
pg 1

( pg∑
d=1

mgd > 0
)

=

G∑
g=1

√
pg Em

[
1

( pg∑
d=1

mgd > 0
)]

=

G∑
g=1

√
pg P

(
Bg > 0

)
. (4)

Here, Bg =
∑pg

d=1M
g
d is a Poisson binomial random variable

constructed as the sum of Bernoulli variables that are not
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necessarily identically distributed, i.e., π
g
1 = · · · = π

g
pg is

not necessarily true [35]. Thus, the inter-group sparsity can be
achieved by reducing the sum of probabilities that the Poisson
binomial random variable for each group is larger than zero.

Denote QBg (k) = P(Bg ≤ k) for k ∈ {0, 1, . . . , pg} be
the cumulative distribution function (CDF) for the Poisson
binomial random variable, Bg, parameterized by πg. Then,
we can rewrite Em[R2] in (4) as

Em[R2] =

G∑
g=1

√
pg P

(
Bg > 0

)
=

G∑
g=1

√
pg (1 − QBg (0))

(5)

where QBg (k) for k ∈ {0, 1, . . . , pg} can be formally derived
as follows [22]:

QBg (k) =

k∑
d=0

∑
A∈Fd

∏
j∈A

πj
∏
j∈Ac

(1 − πj). (6)

Here, Fd is a set containing all subsets of [d] where d ∈

1, 2, 3, · · · , pg, and Ac is the complement of set A.
Computing the original CDF in (6) requires calculating

combinations for all possible subsets, leading to an expo-
nential increase in complexity as the number of features per
group grows. This has motivated numerous studies to explore
closed-form expressions that efficiently approximate (6),
such as employing discrete Fourier transform [36] based on
the characteristic function defined in [37] and applying a
Gaussian approximation based on the central limit theorem
or its refined variant [38]. Please refer to Appendix B for
detailed information on these approximations.

In this work, we take the Gaussian approximation in [38],
as it offers comparable effectiveness in feature selection
while requiring the least computational time compared to
other approximation techniques. Applying the central limit
theorem with a continuous correction, we can approximate
the CDF of the Poisson binomial variable, Bg, as the
following:

QBg (k) ≈ 8

(
k + 0.5 − µg

σ g

)
(7)

where µg is the mean and σ g is the standard deviation of the
Poisson binomial Bg given as

µg
= E[Bg] =

Pg∑
d=1

πd , σ g = V[Bg]
1
2 =

( Pg∑
d=1

πd (1 − πd )
)1
2

.

However, directly employing (7) as the L2 penalty is not
favorable for inter-group sparsity. More specifically, when a
group is large (i.e., pg is large), the corresponding µg and σ g

also increase. This causes the gradient of the penalty term to
vanish, unintentionally favoring smaller groups based more
on their size rather than their actual importance.

FIGURE 1. An illustration of the feature selection process of DSFS.

Hence, we define the L2 penalty by placing the normaliza-
tion term, √pg, inside the Gaussian CDF in (8), as follows:

Em[R2] ≈

G∑
g=1

8

(
µg

− 0.5
σ g

√pg

)
. (8)

This ensures equitable penalization for different group sizes
and allows us to focus on group importance.

C. REPARAMETERIZATION TRICK
The optimization problem in (2) includes a sampling process,
i.e., m ∼ Bern(π ), whose non-deterministic aspect renders
classical gradient-based optimization method inapplicable.
To circumvent this challenge, we apply continuous relaxation
on the gate vector, m, via a HC [18], a widely employed
reparameterization trick for Bernoulli variables. Formally,
given the uniform random variables u = (u1, . . . , up) where
ud ∼ Uniform(0, 1), we define the relaxed gate vector,
m̃ = (m̃1, m̃2, . . . , m̃p) ∈ [0, 1]p, as the following:

sd = σ

(
1
β

(
log

πd

1 − πd
+ log

ud
1 − ud

))
(ς − γ ) + γ

m̃d = min(0,max(1, sd )) (9)

where σ (z) =
1

1+e−z is a sigmoid function and β is the
temperature that controls the degree of approximation. Here,
we stretch the concrete distribution onto an interval (γ, ς)
with γ < 0 and ς > 1, followed by a hard sigmoid.
Please find the schematic illustration of the relaxed sampling
procedure employed for our feature selectionmethod in Fig 1.
Overall, under the reparameterization trick, we can rewrite

our objective as follows:

minimize
θ,π

Ex,y

[
Eu[ℓY (y, fθ (m̃ ⊙ x + (1 − m̃) ⊙ ∗))]

+ λ1

p∑
d=1

πd+λ2

G∑
g=1

8

(
µg

− 0.5
σ g

√pg

)]
. (10)

V. EXPERIMENT
In this section, we evaluate our proposed method for
embedded feature selection with intra- and inter-group sparse
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using various synthetic and real-world datasets specifically
chosen to reflect group information.
Benchmarks: We compare DSFS with various feature

selection methods ranging from machine learning to state-of-
the-art DL methods: linear models with L1 penalty (Lasso)
[31] and with both intra- and inter-group sparsity (Group
Lasso) [20], tree-based ensemble models that can provide
feature importance (RForest) [39] and (XGBoost) [40],
DL-based feature selection method using stochastic gates
with individual-level sparsity2 (STG) [12], using correlated
gates with Gaussian copula3 (SEFS) [13] and selecting
predictive subsets with interactions in composite features4

(CompFS) [28] and extension of sparse-group Lasso [20]
into a DL framework that applies sparsity regularization at
both the feature level and the group level (DeepGL).
PerformanceMetrics: For synthetic experiments where the

ground-truth important features are available, we propose a
metric to measure the group sparsity given as the following:

GS(m̃) =

∑G
g=1 ∥m̃g

∥2

∥m̃∥2
. (11)

This implies the L2 norm of the relaxed mask vector of each
group to that of the entire features, allowing us to compare
the group sparsity of different methods. For instance, when
the same number of features are selected, the one selecting
features from fewer groups will have a lower value compared
to those selecting features from a larger number of groups.
(Hence, when all the features are selected from a single group,
the group sparsity will have 1, which is its lowest value.)

However, in real-world experiments, the ground-truth
important features are typically unknown. We therefore
indirectly assess the performance of the selected features by
training a separate model (here, we use RForest to capture
non-linearity) based on the feature subsets selected by the
feature selection methods. Here, we derive m from the
relaxed Bernoulli distribution as md = 1(πd ≥ δ) where δ

is a threshold that determines the number of features to be
selected. (Note that a similar process is also applied for the
benchmarks.) We then evaluate the prediction performance
given different feature subsets using metrics appropriate
for the task type. For classification, we use accuracy
(ACC), the area under the receiver operating characteristic
curve (AUROC), the area under the precision-recall curve
(AUPRC), and F1 score. For regression, we utilize root mean
squared error (RMSE), mean absolute error (MAE), and
R2 score.
Implementation Details: We implement DSFS using a

multi-layer perceptron (MLP) network with the rectified
linear unit (ReLU) as the non-linear activation function.
To isolate the effect of network architecture and ensure a
fair comparison of the regularization terms, we implement

2https://github.com/runopti/stg
3https://github.com/chl8856/SEFS
4https://github.com/a-norcliffe/Composite-

Feature-Selection

both STG and DSFS using a 3-layer multi-layer perceptron
(MLP) with 100 hidden nodes and the rectified linear unit
(ReLU) as non-linear activation functions. This provides
sufficient expressivity to distinguish them from their linear
counterparts (i.e., Lasso andGroup Lasso, respectively) while
maintaining focus on the regularization terms. Please refer
to Appendix C-D for more details. SEFS is modified to
incorporate group information into the correlation structure
for generating correlated gate vectors. To ensure a fair
comparison with our model, we excluded the self-supervision
phase and utilized only the supervision phase. As CompFS
does not directly support the integration of group infor-
mation, we have adhered to the original settings from the
referenced paper. DeepGL extends the sparse-group Lasso
by incorporating sparsity regularization at both the feature
and group levels. Feature-level sparsity is achieved through
L2 regularization, which applies penalties to the squared
weights associated with individual features. This reduces the
contribution of less important features by shrinking their
weights towards zero, indicating their reduced importance in
predicting the target. Group-level sparsity involves applying
L2 regularization to the combined weights of feature groups.
This encourages sparsity at the group level, potentially
shrinking the entire set of weights associated with less
important groups of features towards zero. Unlike advanced
feature selection methods, DeepGL does not directly perform
feature selection as it focus on shrinking the weights not
removing, it selects features based on their importance scores,
similar to pruning [41], [42]. We choose λ1 and λ2 for
DeepGL andDSFS (λ1 only for STG, SEFS andCompFS) via
a grid search from possible candidates {0, 0.5, 1.0 · · · 10.0}
and {0, 5, 10, · · · 100}, based on the validation performance
that balances both intra- and inter-group sparsity with the
predictive power of the model.

A. SYNTHETIC EXPERIMENTS
1) DATASET DESCRIPTION
We consider synthetic experiments in which the ground truth
for both feature and group importance is available. This
involves constructing 5 different synthetic scenarios, which
serve as variations of the data generation process initially
introduced for evaluating group Lasso [43]. More specifi-
cally, we first generate p-dimensional input features each of
which is generated from a standard normal distribution, i.e.,
x ∼ N (0, I). Then, we split the input features into G pre-
specified groups with possibly different sizes. To consider
cases where the target outcome is influenced by only a subset
of feature groups, we set features from this subset, denoted
as xS = (xi)i∈S where S ⊂ [G], as relevant features. Then,
the target outcome is generated as a linear combination of
these relevant features, as y =

∑
g∈S ag1

⊤xg + ϵ where
ϵ ∼ N (0, 0.52) is a random noise and ag ∈ A is a
coefficient randomly chosen from a set of possible values
A. For different synthetic scenarios, we generate 10,000
samples with varying input dimensions, pre-specified group
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TABLE 1. Comparison of intra- and inter-group sparsity between Lasso-based linear models and DL-based models.

TABLE 2. Data generation process for synthetic experiments.

TABLE 3. Performance comparison for Synthetic A & B.

information, and the subset of important feature groups,
as specified in Table 2.

• Synthetic A: The relevant feature groups, S , are ran-
domly chosen through coin flipping, and the coefficients
for these relevant features are set to 1.

• Synthetic B: This further complicates Synthetic A by
introducing multiple levels of importance represented by
A = {1, 2, 3}, with additive noise from N (0, 0.52).

• Synthetic C: This scenario has two levels of group
importance, denoted as A = {0.2, 1}, to verify whether a
model can select important feature groups even for groups
with small coefficients.

• Synthetic D: This further complicates Synthetic D by
adding another level of group importance, denoted as
A = {0.2, 0.5, 1}, with additive noise N (0, 0.52).

• Synthetic E: This scenario satisfies both intra- and inter-
group sparsity, by randomly setting the coefficient of 5 to
9 features in each group to zero.

2) QUANTITATIVE AND QUALITATIVE RESULTS
Tables 3, 4, and 5 compare DSFS with STG based on
the number of groups, to which features selected by each
method belong, and GS score, which measures the group
sparsity, both given that the same number of features are
selected for both methods. To emphasize the importance
of inter-group sparsity, we focused on comparing our

TABLE 4. Performance comparison for Synthetic C & D.

TABLE 5. Performance comparison for Synthetic E.

method with STG, which only considers intra-group sparsity.
For DSFS, the number of selected groups decreases with
the decreasing number of selected features (achieved by
increasing the regularization coefficients), indicating its focus
on capturing group-level signals. In contrast, STG selects
features scattered across different groups, resulting in a larger
number of selected groups and higher GS scores, as it
promotes sparsity only at the feature level. For example, for
Synthetic A and B (in Table 3), where STG and DSFS select
30 important features, the number of groups selected is
significantly different, and DSFS achieves much lower GS
score than STG. For Synthetic C and D (in Table 4),
when the coefficients of the relevant features are different,
DSFS selects features in groups with small signals, whereas
STG fails to select any feature with small coefficients with
large penalties. For Synthetic E (in Table 5), which contains
both intra- and inter-group sparsity, STG selects features
across multiple groups, while DSFS focuses on specific
groups with strong signals, achieving the inter-group sparsity.
The detailed results of the selected features are provided in
Appendix C-B.

B. REAL-WORLD EXPERIMENTS: GAS SENSOR DATASET
1) DATASET DESCRIPTION
We use a specific subset (denoted as ‘batch10’) from the
Gas Sensor array dataset [44] to focus on the scenario
with the same group size. The selected ‘batch10’ contains

102304 VOLUME 12, 2024
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TABLE 6. Performance comparison of the selected features by different methods.

FIGURE 2. Comparison of the number of selected groups and RMSE
between DSFS and other benchmarks for the Gas Sensor dataset.

TABLE 7. Comparison between STG and DSFS with varying the number of
selected features for the PBMC dataset.

3,600 instances with 128 features extracted from 16 chemical
sensors exposed to 6 different gases at various concentration
levels (600 instances for each class). We treat a set of features
from the same sensor as a group, resulting in a total of
G = 16 groups, each with a group size of 8, i.e., pg = 8.
Here, we focus on a regression task of predicting the gas
concentration level as in [45].

2) QUANTITATIVE RESULTS
In Fig 2, we compare the tendency of the number of groups
and features selected by DSFS and other DL models as
we increase the trade-off coefficients, i.e., both L1 and
L2 penalties for DeepGL and DSFS and the L1 penalty for
others. Since the proposed method consists of two trade-off

coefficients that affect both intra- and inter-group sparsity,
we explore various combinations to identify the configuration
that best balances intra- and inter-group sparsity. More
specifically, we first perform a grid search over possible
candidate values to identify the best λ1 and λ2, individually,
by setting the other coefficient to 0. Then, we conduct a grid
search on an array of 10 linearly interpolated values from
(λ1, 0) and (0,λ2).

To ensure a fair comparison, we evaluate all the methods
when they select the same number of features. Our proposed
method tends to select the fewest groups given the same
number of selected features, achieving inter-group sparsity.
Additionally, the RMSE performance improvement over
other comparison targets becomes more significant when
selecting a smaller number of features with a strong penalty.
This suggests that employing inter-group sparsity, which in
turn leads to selecting fewer sensor types, appears to be
beneficial for predicting overall gas concentrations.

Furthermore, we compare the performance of feature sub-
sets selected by different benchmarks in Table 6. We observe
that the RMSE, MAE, and R2 score of the RForest trained
on the features selected by DL models outperform those
trained on features selected by the statistical and ensemble-
based methods. This highlights the potential advantage of DL
models in capturing complex relationships within the data.
Interestingly, both Lasso and STG underperform compared
to their group-sparsity counterparts, Group Lasso and DSFS,
respectively. This suggests that incorporating group-level
sparsity as an inductive bias can be beneficial for feature
selection. Specifically, direct integration of a group sparsity
penalty proves advantageous when datasets exhibit clear
group structures, as it contrasts with indirect methods of
managing feature correlations. Additionally, while DeepGL
significantly contributes to group-level sparsity, its distinct
L2-based regularization mechanism, which differs from the
DL-based feature selection methods, appears to have led to
performance degradation.

C. REAL-WORLD EXPERIMENTS: PBMC DATASET
1) DATASET DESCRIPTION
Peripheral Blood Mononuclear Cells (PBMCs) [46], [47]
are a type of blood cell with a round nucleus, and they
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TABLE 8. The top 10 genes with high relevance scores among the
selected 30 features by DSFS and STG, respectively.

include lymphocytes (T cells, B cells, and natural killer cells)
and monocytes. PBMCs can be used in various research
applications to study immune responses, investigate diseases,
and develop therapeutic strategies. We focus on classifying
two types of T lymphocytes (i.e., Y = {0, 1}), namely the
CD4 and CD8 T-cells which are white blood cells that play
crucial roles in the immune systemwhose relative proportions
are pivotal for medical disease classification and immune
status assessment [48]. For instance, in viral infections like
HIV/AIDS, a decline in CD4 T-cell count indicates disease
progression [49], while the balance of CD4 and CD8 T-cells
in allergic and immune-related diseases serves as indicators
of health status and treatment efficacy. The dataset consists
of 11, 990 samples described by p = 3346 genes. We map
ensemble gene IDs to chromosomal locations to group genes
from the same chromosome together,5 resulting in a total of
G = 24 groups (22 autosomes and 2 sex chromosomes), each
with a group size pg that varies widely, ranging from 3 to 360.

2) QUANTITATIVE RESULTS
In Table 7, we compare STG and DSFS based on the
classification performance – i.e., accuracy, AUROC, and
AUPRC – averaged over the 5-fold cross-validation, while
varying the number of selected features. Similar to the
previous results, we observe that the proposed method
achieves higher group-level sparsity compared to STG and
provides better classification performance, especially in
AUPRC, in most cases. This highlights the importance
of inducing the group-level structure for feature selection.
Furthermore, Table 6 shows a similar tendency when we
compare the classification performance of RForest trained
on the feature subsets selected by DSFS with those selected
by the benchmarks. Particularly, the proposed method
outperforms the benchmarks inmost cases or achieves similar
performance, highlighting the effectiveness of utilizing both
DL models and inducing inter-group sparsity.

3) QUALITATIVE RESULTS
We further provide supporting evidence for the importance
of the selected features based on the GeneCards database,6

5https://biodbnet-abcc.ncifcrf.gov/db/db2db.php
6https://www.genecards.org

FIGURE 3. Comparison of the number of selected groups and RMSE
based on the regularizer coefficients for the Gas Sensor dataset.

which provides comprehensive, user-friendly information
on the annotated and predicted human genes. In Table 8,
we present the top 10 genes based on relevance scores
among the 30 features selected by STG and DSFS. Notably,
our method identifies 9 out of the top 10 genes with the
highest relevance scores as important features, while STG
selects only 6. This quantitative superiority underscores
our method’s ability to prioritize biologically meaningful
features, crucial for interpreting population-level complex
relationships in a given dataset.

For example, our method identifies genes like Lck and
ENSG00000000938 (FGR) with high relevance scores,
highlighting their significant roles in cellular processes
such as CD8 T cell activation and chromosome group
interactions [49], [50]. The association of Lck with CD8 T
cells, in particular, emphasizes its relevance in distinguishing
cell types, a critical aspect often overlooked by conventional
methods. Furthermore, our analysis consistently demon-
strates that genes selected by our proposed method exhibit
higher relevance scores than those selected by STG. This not
only validates our approach but also highlights its capacity
to uncover key biological insights that might be obscured
by traditional feature selection methods. In conclusion, our
method not only improves model performance but also
provides a deeper understanding of the underlying bio-
logical mechanisms through interpretable feature selection.
By prioritizing groups of features with high relevance scores,
we ensure that our model effectively captures essential
biological signals, contributing to more meaningful and
actionable insights. Please refer to Appendix C for more
details.

D. SENSITIVITY ANALYSIS
In this section, we show how the prediction performance
changes by varying λ1 and λ2 that trade-off the impact of the
two regularization terms, Em[R1] and Em[R2], respectively.
Fig 3 compares the RMSE performance and the number of
selected groups with the same number of selected features,
achieved by increasing λ2 while fixing λ1, and vice versa.
Notably, we can observe that the number of selected groups
significantly decreases by increasing λ2 achieving the inter-
group sparsity, while increasing λ1 has less impact on the
number of selected feature groups.
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VI. LIMITATIONS AND FUTURE WORK
While we propose a novel DL-based feature selection method
that can achieve intra- and inter-group sparsity, simulta-
neously, DSFS requires pre-specified group information,
limiting its applicability to datasets where such information is
readily available. (Please see Appendix C-C for experiments
with incorrect group information.) Additionally, like all meth-
ods for selecting features or assessing feature importance
from observational data, DSFS relies on the assumption that
the identified feature subsets are sufficient for achieving
good predictive power. Hence, all identified features should
undergo additional evaluation or verification by domain
experts before deployment in practical applications.

There are multiple promising directions to explore in
group-sparse regularization as future work: Firstly, incor-
porating group sparsity into DL models shows promise
for enhancing prediction performance, particularly in fields
like biology. For instance, gene selection analysis of cancer
data using priors of overlapping groups, e.g., biologically
meaningful gene sets, can be a promising field of research as
promoting group sparsity can help uncover important genes
and gene sets. Secondly, expanding pruning techniques based
on our group-sparsity regularization can offer opportunities
to enhance network pruning performance. By acknowledging
the group-level impact of weights within a network, group-
sparse pruning techniques can be developed to improve
efficiency.

VII. CONCLUSION
In this paper, we propose a DL-based feature selection
method that leverages group-sparse stochastic gates. This
method achieves both intra-group and inter-group sparsity
by reformulating the corresponding constraints as learn-
able penalty terms. We demonstrate the effectiveness of
our approach by evaluating its performance on synthetic
data, particularly when datasets exhibit significant group
patterns. Our experiments on two real-world datasets with
group structures validate that DSFS identifies features with
superior discriminative/predictive power, which are further
corroborated by supporting scientific literature.

APPENDIX A
DEFINITIONS OF THE ABBREVIATIONS
The abbreviations used in this work are listed in Table 9.

APPENDIX B
COMPUTING THE CDF FOR THE POISSON BINOMIAL
DISTRIBUTION
A. METHODS FOR COMPUTING THE CDF
In this section, we introduce other approaches to computing
the exact or approximate CDF of the Poisson binomial
distribution. The first approach detailed in [36] and [37]
derives a closed-form expression of the CDF by applying the

TABLE 9. Definitions of the abbreviations.

discrete Fourier transform (DFT) as the following:

QBg (k) =
1

pg + 1

pg∑
d=0

k∑
m=0

exp(−iwdm)xd

=
1

pg + 1

pg∑
d=0

(
1 − exp(−iwd(k + 1))

)
xd

1 − exp(−iwd)
(12)

where i =
√

−1, w = 2π/(pg + 1), and exp(−iwdm) with
m = 0, 1, · · · , k is a geometric sequence.
Next, we introduce twowell-known approaches to approxi-

mate the CDF of the Poisson binomial distribution leveraging
the first (µg), second (σ g), and third (γ g) moments defined
as the following:

µg
= E[Bg] =

Pg∑
d=1

πd

σ g = V[Bg]
1
2 =

( Pg∑
d=1

πd (1 − πd )
)1
2

γ g = E

[(
Bg − µg

σ g

)3]
=

1
(σ g)3

pg∑
d=1

πd (1 − πd )(1 − 2πd ).

(13)

The Poisson approximation (PA) [38] employs the Poisson
binomial distribution to approximate the CDF ofBg, as shown
in the following equation:

QBg (k) ≈

k∑
m=0

(µg)k exp(−µg)
k!

. (14)

However, this approximation can become increasingly inac-
curate as µg becomes large.

The last approximation is refined normal approximation
(RNA), which addresses the skewness in the distribution ofBg

by incorporating a correction on the Gaussian approximation
used in (7), as the following equation:

QBg (k) ≈ Gg
(
k + 0.5 − µg

σ g

)
. (15)
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TABLE 10. Performance comparison between Poisson binomial
distribution methods.

FIGURE 4. The number of selected genes in each chromosome for ours
and STG, respectively.

FIGURE 5. Comparison of the features selected with and without
group-level information, for Synthetic C.

Here, Gg(x) = 8(x) + γ g(1 − x2) φ(x)/6, where φ(x)
is the probability density function of the standard normal
distribution, and γ g is defined in (13).

B. PERFORMANCE COMPARISON
Now, we compare the above methods for computing the exact
or approximate CDF of the Poisson binomial distributions
to evaluate the best computing method for achieving inter-
group sparsity.We have carefully designed this regularization
term with computational efficiency in mind. Crucially, its
complexity scales linearly with the number of gates (or
features) in the dataset. This linear scaling effectively avoids
the exponential increase in computation that would have
resulted from directly calculating the gradient of the CDF for
the Poisson binomial distribution, which we employ to model
the group-wise behavior of the gates.

In Table 10, we show the computation time (seconds
per epoch), the number of selected features, the number of
groups that the selected features belong to, and the RMSE
performance on the Gas Sensor dataset, obtained by setting
λ1 = 2 and λ2 = 30 for a fair comparison. To emphasize
the computational efficiency of our approach, we directly
compares the actual and approximate computation times

FIGURE 6. Comparison of the features selected with and without
group-level information, for Synthetic E.

TABLE 11. The top 30 genes selected by DSFS and STG, respectively.

associated with the Poisson binomial distribution. For
instance, Poisson-based or Gaussian-based approximations
(denoted as PA and GA, respectively) significantly reduce
computation time compared to the exact computations using
the original definition in (6) and the DFT (12). Interestingly,
the exact computation in (6) is faster than the DFT-based
and RNA-based methods as the number of features in
each group is relatively small. The number of selected
features and groups, and the RMSE performance are similar
across all the evaluated computation methods, all achieving
desired inter-group sparsity. Consequently, we adopt the
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FIGURE 7. Visualization of Synthetic datasets’ coefficient.

FIGURE 8. Comparison of the features selected by DSFS and STG, respectively, for Synthetic A.

FIGURE 9. Comparison of the features selected by DSFS and STG, respectively, for Synthetic B.

Gaussian-based approximation for modeling the group-wise
sum of corresponding gate vectors, enabling our method to
effectively handle datasets with larger numbers of features.

APPENDIX C
ADDITIONAL EXPERIMENTS
A. REAL-WORLD EXPERIMENTS: PBMC DATASET
In this subsection, we further compare the selected features
(i.e., genes) from DSFS and those from STG based on
the supporting bioinformatic references. Here, we use

GeneCards database7 that provides comprehensive, user-
friendly information on all annotated and predicted human
genes.

In Table 11, we list the top 30 genes selected by each
method along with their corresponding relevance score from
GeneCards, which quantifies the functional relevance of
each gene. Among these genes, 19 are selected in common
(indicated by ✓) and the remaining genes differ between
the two methods, which potentially explains the observed

7https://www.genecards.org
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FIGURE 10. Comparison of the features selected by DSFS and STG, respectively, for Synthetic C.

FIGURE 11. Comparison of the features selected by DSFS and STG, respectively, for Synthetic D.

FIGURE 12. Comparison of the features selected by DSFS and STG, respectively, for Synthetic E.

performance gain of DSFS. Particularly, Fig 4 shows that
DSFS achieves higher group sparsity by selecting genes from
only 7 groups (here, chromosomes), whereas STG selects
genes from 15 groups. Overall, genes selected by our method
exhibit higher average relevance scores compared to STG,
highlighting our model’s ability to focus on both intra- and
inter-group sparsity.

B. SYNTHETIC EXPERIMENTS
In this subsection, we visually compare the same number
of features selected by DSFS and STG on the five different

synthetic scenarios in Figures 8 – 12. The heatmap shows π

for DSFS (left) and truncated µ for STG (right), respectively.
Fig 7 shows the coefficient values (higher the darker) of
different synthetic scenarios, where red boxes indicate the
groups of features.

In Synthetic A and B, our proposed method exhibits
group-based feature selection:With a relatively small penalty,
it prioritizes inter-group sparsity, effectively selecting most
of the relevant groups. With a relatively stronger penalty,
our method promotes intra-group sparsity, allowing DSFS to
identify the most important features within those groups.
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TABLE 12. Performance comparison of the selected features by different layer and hidden nodes.

Synthetic C and D showcase a focus on a specific group
of highly important features. Notably, in Synthetic D with
individual noise randomization, STG selects features outside
the main group. This highlights the importance of group
sparsity in achieving robustness in feature selection. Our
method, by considering group structure, is less susceptible
to noise outside the relevant groups and tends to identify
features closer to the true coefficients.

C. IMPACT OF INCORRECT GROUP INFORMATION
To see the impact of incorrectly provided group informa-
tion on the selected features, we compare the results of
DSFS when trained with correct group information versus
that trained with randomly assigned group information on the
synthetic dataset (i.e., Synthetic C and E). In Fig 5 and Fig 6,
random grouping introduces unexpected sparsity between
groups, leading to the selection of incorrect features unrelated
to genuinely important ones. This opens the future scope of
our work on integrating intra- and inter-group sparsity while
jointly learning the group structure from the data, particularly
when group information is absent.

D. HYPERPARAMETER TUNING FOR THE MLP
ARCHITECTURE
We designed our experiments to assess the impact of our
proposed group sparsity regularization on feature selection.
Hence, to isolate the effect of network architecture and
ensure a fair comparison, we implemented deep learning
models using 3-layer MLPs with 100 hidden nodes and
ReLU activation layers. This provides sufficient expressivity
to distinguish them from their linear counterparts (i.e., Lasso
and Group Lasso, respectively) while maintaining focus on
the regularization terms. We have conducted hyperparameter
tuning for the MLP architecture through a grid search where
the potential set of candidates for the number of layers is
{2, 3, 4} and for the number of hidden nodes is {50, 100,
200, 500} based on the validation performance. In Table 12,
we show the performance comparison of the selected features
by different layer and hidden nodes of MLP architecture.
We have fixed λ1, λ2 and other parameters except for the
number of layers and the number of hidden nodes. As seen
Table 12, MLPs show mostly similar performance across
varying numbers of hidden layers and nodes, particularly
when sufficient expressivity is ensured. Hence, we have
decided to use a 3-layer MLP with 100 nodes as our baseline
network architecture.
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