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ABSTRACT The multicollinearity problem is a common phenomenon in data-driven studies, significantly
affecting the performance of machine learning algorithms during the process of extracting information from
data. Despite its widespread use across various fields, the extreme learning machine (ELM) also suffers
from multicollinearity issues. To address this challenge, the ridge and Liu estimators, drawn from statistics
literature, have been integrated into ELM theory, resulting in a notable advancement. This study aims to
further enhance the capabilities of ridge and Liu estimators within the ELM framework by introducing
two innovative two-parameter algorithms (TP1-ELM and TP2-ELM) that simultaneously incorporate both
estimators. The proposed algorithms undergo comprehensive benchmarking against ELM, ELM-based
algorithms, and other commonly used machine learning techniques across seven diverse datasets. Benchmark
results demonstrate that the proposed algorithms consistently outperform both ELM-focused approaches and
traditional machine learning algorithms on most datasets, yielding more generalizable and stable results.
These findings suggest that the proposed algorithms offer a promising alternative to traditional machine
learning techniques for regression and classification tasks, particularly in scenarios where multicollinearity
is a concern.

INDEX TERMS Extreme learning machine, Liu estimator, machine learning, multicollinearity, ridge
estimator, Tikhonov regularization.

I. INTRODUCTION [2]. Feed-forward networks, studied first in the literature,

In parallel with the facilitation of the acquisition of data,
the need to make sense of it and transform it into valuable
insights has emerged. For this purpose, numerous algorithms
have been developed in the field of artificial intelligence,
especially in the branch of machine learning. Artificial
neural network-oriented algorithms stand out among these
algorithms and continue to be intensively developed in the
academic field.

Artificial neural networks have been used in practically
every field due to its capabilities such as i) capturing
complex patterns, ii) creating non-linear models, iii) flex-
ibility. In general, artificial neural networks are classified
into feed-forward and feed-back neural networks, with
feed-forward networks leading the way with its simplicity [1],
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have a number of parameters to be determined, such as
learning rate, momentum, period, stopping criteria, input
weights and biases. Huang et al. [3], [4], proposed the
extreme learning machine (ELM) algorithm as a single-layer
feed-forward neural network capable of being used in both
regression and classification tasks, essentially eliminating the
process of determining such parameters and avoiding risks
related to slowness, local optimum and over-fitting.

The ELM algorithm assigns input layer weights and hidden
layer parameters (e.g. biases) randomly and provides a
closed-form solution, thereby achieving i) faster trainability,
ii) reasonable generalization performance, iii) universal
approximation capability, iv) applicability in machine learn-
ing domains such as regression, classification and clustering,
and v) relatively low human intervention [5]. Due to the
consequence of such capabilities, it has been used in a
wide range of fields serving varied objectives. The main
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prominent studies can be presented as telecommunication [6],
[71, [8], [9], [10], environmental sciences [11], [12], [13],
robotics [14], [15], [16], computer sciences [17], [18],
[19], [20], [21], agriculture [22], [23], management [24],
[25], medical sciences [26], [27], [28], economics [29],
[30], psychology [31], chemistry [32], [33], [34], [35] in
Table 1. Therefore, the ELM algorithm, as a part of the
feed-forward neural networks under artificial neural networks
(also machine learning field), still appears to be an important
algorithm in the process of transition from data to knowledge
in this information age.

A. LITERATURE REVIEW OF RELATED WORKS

The ELM algorithm has attracted considerable attention and
been actively studied in the statistics literature due to the
following reasons: i) linear model form, ii) closed-form
model structure, iii) relying on classical least squares for
model parameter estimation, iv) possession of the previously
mentioned capabilities and v) a wide range of applications.
However, the basic ELM algorithm remains highly appealing,
it has a number of shortcomings arising from structural risk
minimization [36]. The shortcomings can be summarized
as follows: i) The risk of over-fitting models, ii) over-
dependence on hidden layer structure, iii) lack of sparsity
capability, iv) non-stable performance on new data. The main
reason for the over-fitting and lack of stability is that the
columns of the hidden layer matrix in the ELM algorithm are
linearly dependent (i.e. correlated). In the statistics literature,
this problem, known as multicollinearity, leads to extreme
variability in the model predictions and weakening of the
predictions obtained with new data (overfitting model).

Deng et al. [37] proposed a regularized ELM algorithm
based on weighted least squares to overcome the difficulties
related to structural risk minimization. Feng et al. [38]
introduced the error minimized extreme learning machine
(EM-ELM) algorithm based on incremental adjustment
of hidden layer weights. Yuan et al. [39] improved the
convergence performance of the basic ELM model by
deriving an optimal model by examining the rank of the
hidden layer matrix under different rank conditions. Lu et al.
[40] presented a comparative study of different solutions of
the Moore-Penrose matrix calculus used in the basic ELM
solution, which is directly related to the structure of the
hidden layer matrix. These studies mostly emphasize either
derivation of the hidden layer matrix or optimization of the
computations based on it. However, there are alternative
efficient solutions to the multicollinearity problem for linear
models based on a slight adjustment to the structure of the
hidden layer matrix that have been proposed in the statistical
literature. The most important of these approaches are the
ridge estimator proposed by Hoerl and Kennard [41] and the
Liu estimator proposed by Liu [42].

The two estimators were initially proposed by Deng
et al. [37] and later presented in a unified framework
by Huang et al. [43], [44] in order to strengthen the
generalization performance and obtain a more robust result
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in the ELM context. Huang et al. [44] comprehensively
described the theoretical and practical properties of ELM
models based on the ridge estimator, along with its use
in both classification and regression models with real-life
data. Miche et al. [45] introduced a novel algorithm called
OP-ELM to eliminate correlated or redundant components by
considering the ridge estimator (a.k.a Tikhonov or /; norm
regularization). Later, Miche et al. [46] developed the TROP-
ELM algorithm, which is a modification of OP-ELM and
incorporates LARS and Tikhonov regularization approaches
into the model simultaneously. Martinez et al. [47] applied the
ridge, lasso and elastic net approaches to the ELM domain
and benchmarked the performances comparatively. Li and
Niu [48] introduced novel models by extending ridge and
alternative ridge-based estimators (such as almost unbiased
ridge) to the ELM domain. Fakhr et al. [49] provided a
comparative study of the basic ELM algorithm and its variants
based on /; and /; norms. Luo et al. [50] also provide a
detailed overview of the theoretical and practical properties
of /1 and I, form-based ELM algorithms for classification
and regression problems. He et al. [51] proposed a novel Elm
algorithm based on the /;> norm to determine the number
of hidden layer nodes and prune redundant components.
Shan et al. [52] introduced a novel algorithm integrating the
interval Lasso (i.e. / norm) approach in the ELM algorithm,
in order to achieve a more compact model selection. Yildirim
and Ozkale [5] proposed ELM algorithms based on ridge,
almost unbiased ridge and generalized ridge estimators, and
also presented parameter selection methods (including cross
validation (CV), Akaike information (AIC) and Bayesian
information (BIC) criteria) with real life data.

The first implementation of the Liu estimator in the ELM
domain is the Liu-ELM algorithm proposed by Yildirim
and Ozkale [53], which is based on an improved form of
ridge-based ELM algorithms. In order to address the lack
of sparsity in the Liu estimator, a novel ELM algorithm
called as LL-ELM based on simultaneous implementation
with the Lasso approach has been presented by Yildirim
and Ozkale [54]. Li and Zhao [55] present performance
benchmarks by incorporating the Liu estimator into the
Tensor-Based Type-2 Elm algorithm. The Ridge and Liu
estimators based models represent a highly competitive ELM
algorithm for real-world problems due to their different
levels of model improvements. Therefore, the two-parameter
estimator proposed by Ozkale and Kaciranlar [56] in the
statistics literature has been applied to the ELM domain
and the OK-ELM algorithm has been proposed by Yildirim
and Ozkale [57]. The proposed GO-ELM with this approach
yields a better performance compared to the basic ELM,
standalone ridge-based ELM and Liu-based ELM algorithms.

B. RESEARCH MOTIVATION AND ENTHUSIASM

While the ridge estimator has seen extensive use in data-
driven studies, particularly in machine learning, the Liu
estimator is gaining recognition. The proposed GO-ELM
integrates the capabilities of both estimators, offering a
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robust alternative for classification and regression tasks.
Two-parameter estimators are a prominent and thoroughly
researched topic in statistical theory, with various alternative
models available. These include the k-d estimator by
Sakallioglu and Kagranlar [58] and the y-c estimator by Yang
and Chang [59]. In this paper, we introduce the first novel
implementations of these two new two-parameter estima-
tors within the ELM framework, providing the following
properties:

e The proposed algorithms combine classical least
squares, ridge, and Liu approaches to address the
limitations of the ELM algorithm effectively.

o We present a comparative analysis of the performance of
the two new proposed algorithms with the highly com-
petitive GO-ELM algorithm using real-life applications.

o Detailed comparisons with the most popular machine
learning algorithms demonstrate the relative superiority
of the proposed algorithms.

The structure of the study is organized as follows:
Section II summarizes the basic ELM algorithm and its
properties. Section III briefly presents the algorithm and
related models. Mathematical details and properties of the
proposed algorithms are described in Section IV. Section V
discusses application details and results with real-life data
within a comprehensive framework. The last section presents
the main conclusions of the study.

Il. THE PRELIMINARY ELM AND RELATED ALGORITHMS
ELM algorithm has been proposed for SLFNs and is effec-
tively used in regression ans classification tasks. Supposed
that (xlT tl.T), i=1,...,N are randomly taken samples from
input space and H = (hy, hy, ..., hy,) is the function set of
explanatory variables (i.e basis functions), then a regression
function can be defined as follows:

Fxi) =D By (xi) ¢))

=1

Wheref is the estimated function obtained from the calcula-
tion of the observed data points and 8 = (ﬂl, By ..., ﬂm)
is the estimated coefficients vector. From the view of neural
networks, the main difference between the classic regression
and the neural networks is the structure of the 4 (.) vector.
In neural networks, % (.) consists of the input values, weights
and biases in neural networks. Actually 4 (.) is the output of
the activation function, which is the sum of the input weights
and input values referring to explanatory variables and biases.
Therefore, Eq. (1) can be rewritten in neural networks context
as:

Fxi) =" Bih(wixi + by) ©)

=1

where w; corresponds the input weight vector linking
the /th hidden node and the ip\put nodes, b; is the bias value
of the /th hidden node and f; is the output weight vector
linking the /th hidden node and the output nodes. Here m is
the number of nodes in hidden layer and £ is the activation
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function. w;.x; corresponds the inner product between w;
and x; [3], [4]. By considering new parameters in estimation
function given by Eq. (2), the problem can be defined in
matrix form for SLENs as follows [3], [4], [43]:

h(wi.xy1+by) ... h(wy.X1 + by) B1

h(wi.xy +b1) ... h(Wwy,.Xy + by,) N Bm mxl

t
- : 3)
W
Eq. (3) can be written in matrix notation as
HB =T e

where H is called as the output matrix of hidden layer in
the neural network by Huang et al. [3], [4]. For appropriate
w;, b; and 8 parameters, the solution of Eq. (4) is obtained by
minimizing the following system in SLFNs:

[H (Wi, oo, W b1, oo b)) B =T = min [H —T|.
&)

The solution of Eq. (5) is calculated by the least squares

method as By = (HTH)f1 H'T unless m # N and H'H

is singular. Otherwise, the Moore—Penrose inverse of matrix

H, say HT, should be used to get the optimal solution as
oy = HTT.

Orthogonal projection method, iterative methods and
singular value decomposition (SVD) are well-known and
effective ways to calculate the Moore-Penrose inverse [60],
[61]. According to the orthogonal projection method [61], the
Moore—Penrose inverse of H is found as follows:

-1
H'H) H7, rank(H) =
— ( ) rank(H) = m ©

H’ (HHT)_l , rank(H) = N

The steps of ELM algorithm proposed by Huang et al.
[4] can be summarised in Algorithm 1. Besides, the visual
representation of the algorithm is given in Figure 1:

Algorithm 1 ELM Algorithm
1: Randomly assign input weights and bias parameters.
2: Calculate the hidden layer output matrix H.
3: Calculate the output weights via EELM = H™T by using
Eq. (6).

When there is a multicollinearity problem, inverting the
matrix (HTH)71 can sometimes be impossible and some-
times unstable. Therefore, alternative methods to ordinary
ELM are recommended. On the other hand, ordinary ELM
does not have sparsity property; that is, does not do variable
selection. The methods proposed on the basis of ELM as a
solution to these two problems are as follows:
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FIGURE 1. The general representation of the basic ELM model.

Reference [48] Li and Niu considered ridge regression in
the context of ELM which was originally proposed by Hoerl
and Kennard [41] and defined the Ridge-ELM as

Ak —1
Bridge—ELm= (HTH+kIm) H'Y, k>0

where k is the ridge tuning parameter and I, is the identity
matrix with dimension ¢. Although the value of k affects
the performance of Ridge-ELM, there is no single best and
suitable method for selecting the ridge tuning parameter.
Regression studies literatures [48] and [62] indicates that
Ridge-ELM can provide smaller error than ELM if k is
correctly determined.

Yildirim and Ozkale [53] considered the Liu regression in
the context of ELM which was originally defined by Liu [42]
and defined the Liu-ELM as

Bliwrin = MTH+1,) " (WY +dBuyy ) (7)

where 0 < d < 1 is the Liu tuning parameter which
shrinks each element of Bz, by the same d value. Since

~

. . ~d .
Briu—gLy 1 in linear form of d, computing B;;,_ gy 15

. ~k . .
much easier and faster than Bpgige,_pry Which provides
computationally effective and cost minimized solutions for

. . ~d . .
machine learning. B;;,_gy, is also a convex combination of
A ~k . . ~d
Berm and Brigee—pry for k =1 which claims that B, gy,

. . A Ak=1)
provides solution paths between Bgyy and Brigee—pry as d
goes from 1 to O:

~d n A (k=1)
Briv—erm = dBerm + (1 — d)Brigge—E1m-

Yildirim and Ozkale [57] proposed OK-ELM which takes
the advantages of ridge and Liu regressions as

Box—_em = (HTH + klm) - (HTY + kd[}ELM)
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where 0 < d < 1 and k > O are the tuning parameters.
OK-ELM is a convex combination of Ridge-ELLM and ELM:
a P, 2
Bok—erm = dBery + (1 — d) Brigge—r1m -
where d serves as a balance parameter between ELM and
Ridge-ELM and refers the relative contributions of them.
Basically, while the higher d towards to 1 yields more
contribution in favor of ELM, the lower d increases the effect
of Ridge-ELM to the solution.

Iil. METHODOLOGY

A. THE PROPOSED ALGORITHMS

The ridge and Liu estimator stand-alone is directly relying
on classical least squares and therefore has the tendency
to yield inadequate or misleading information in dealing
with multicollinearity. Therefore, two-parameter estimators
have come to the prominence in order to retain the existing
capabilities and make more accurate estimates through
holding the estimators in a simultaneous model. Although
these estimators possess the skills of the two estimators to
an extent in terms of the mathematical structure, yet there is
no single superior model in real-life applications. Motivated
by this point, we propose the following two-parameters ELM
(named as TP1-ELM) algorithm by incorporating the k-d
estimator [58] from the two-parameter estimators into the
ELM algorithm:

N -1 .
Brri—etm (k. d) = (HTH + klm) (HTY + dﬂRidge—ELM)
®)

where —0c0 < d < oo and k > O are the tuning
parameters. The proposed TP1-ELM algorithm aims to
eliminate the stability problem in the classical least squares
by incorporating Liu and Ridge approaches simultaneously.
As a result of this property, the ridge or Liu estimator is
considered to outperform the standalone ridge or standalone
Liu estimator by adjusting the parameters in a tradeoff by
making the parameter selection more flexible. The TP2-ELM
algorithm is a general implementation of the classical least
squares, ridge and Liu estimators, which can be derived in
special cases:

B0, 1) = Berm
B (k,1—k) = Bridge—ELM
B0,d) = Briuv—rim,0<d <1

An alternative two-parameters estimator originally intro-
duced by Yang and Chang [59] can be proposed for first
utilization in the field of ELM named as TP2-ELM and
defined as follows:

Brrr—pim k. d)
_ (HTH + Im) - (HTH 1 dIm) (HTH 4 kIm)q (HTY)
9

where 0 < d < 1 and k > O are the tuning parameters.
Analogously to the TP1-ELM algorithm, the OLS, ridge and
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Liu estimators can be extracted based on specific selections
of the parameters:

B0, 1) = Brm
B (k, 1) = BRridge—ELM
B0,d) = Briv—etm,0<d <1

In the parameter selection of the proposed algorithms,
a grid search via cross-validation approach within a defined
value range or the analytical selection methods proposed by
Sakallioglu and Kagranlar [58] and Yang and Chang [59]
can be implemented. A pseudo code implementation of the
proposed TP1-ELM and TP2-ELM algorithms is presented
in Algorithm 2.

Algorithm 2 Pseudo Code for the Proposed Algorithms

1: Input: Generate the input layer weights Wy, ..., W, and
biases 31, . ,73,,, based on a certain number of the
hidden layer neurons (m), k range and d range for the
tuning parameters space, ¢ as the trial number.

2: Output: The g coefficient vector.

Calculate the hidden layer output matrix H based on

inputs.

4. Set the seed value for reproducibility

5: for trial = 1 : ¢ do

6: for k in k range do

7

8

9

(98]

for d in d range do
Obtain TP1-ELM coefficient vector via Eq. 8
: Obtain TP2-ELM coefficient vector via Eq. 9
10: Calculate performance metrics for CV split

11: end for
12: end for
13: end for

14: Determine the parameters with the lowest mean error
values across the trials.

15: Compute the error scores on the test data with the optimal
parameters

B. DATA SOURCE

In this study, we utilized seven datasets with structural
and qualitative diversity across various domains to compare
the performance of the statistical and machine learning
models under consideration. These datasets were sourced
from the UCI Machine Learning Repository [63], Kaggle
platform [64], several universites databases [65], [66]. The
specifications of the data sets and target variables covered in
the study can be briefly summarized as follows: Auto Price
data to predict vehicle prices, Boston Housing data to predict
the median value of a real estate price, Fish data to predict
quantitative acute aquatic toxicity, Forests data to predict the
burned area of forest fires, Machine CPU data to predict
relative cpu performance, Servo data to predict the rise time
of a servomechanism, Slump data to predict concrete slump
and Strikes data to predict the level of strike volume (days
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lost due to industrial disputes per 1000 wage salary earners).
The details of dimensions are listed in Table 1.

C. EXPERIMENTAL SETTINGS

In the process of benchmarking model performances, experi-

mental settings are crucial for ensuring reproducibility. In this

context, the following steps were followed in training and

testing statistical models and machine learning algorithms:

« Prior to training, the data is pre-processed by standard-

izing it to have a mean of zero and unit variance, using
the following formula:

X = .
sd (X)

o The dataset is partitioned into three-fourths for training
and the remaining one-fourth for testing.

o Models are developed using five-times repeated five-
fold cross-validation on the training data, and their
generalization performances are evaluated on the test
data.

« To mitigate the effects of randomness, thirty trials are
conducted, and the root mean square error (RMSE) is
calculated for each trial. Mean values are reported using
the following equation:

1
N “
J

2
(0 —t)
1

N
RMSE =

where (0; — t;) corresponds to the error between the
actual and output values of the target variable. RMSE
is defined in the interval [0, oo] and the lower the value
of this criterion, the better the model performance.

o The number of hidden layer nodes for ELM-based
models is kept constant at 100.

e A grid search approach is employed to assess the
tuning parameters of the ELM-based statistical models.
The delta for Ridge-ELM, d for Liu-ELM, and both
delta and d parameters for OK-ELM, TP1-ELM, and
TP2-ELM models are calculated via cross-validation,
considering the following ranges:

ke[1075,107%,.,1072,0.02,...,0.1,0.2,..., 1, 1.5,2,...,5]
d e[107°,107%,..,1072,0.02,0.03...,0.1,0.15,0.2, ..., 1].

o Optimal parameter determination for machine learning
algorithms is similarly conducted by analyzing a space
of thirty possible parameters for each model based
on cross-validation data. The parameters yielding the
lowest error value are then assigned.

o The reduction rate (RR), representing the relative
improvement of the proposed algorithms over other
algorithms, is evaluated in percentage terms using the
following equation for clearer interpretation:

(any algorithm) — (TP1,2 - ELM)
(any algorithm)

RR = x 100

o The details of this process are given as a visual
representation in Figure 2.
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Data Set

Splitting data } Standardize inputs

Calculate performance on test data via beta values
based on optimal parameters producing the lowest RMSE

Generate input weights and bias values arbitrarily

]

Determine the appropriate ranges for the number of hidden
layer neurons, number of trials and (k,d) parameters

For a fixed seed and k parameter, at each parameterd

]

Calculate Ridge-ELM via hidden layer output matrix

Calculate TP1-ELM using Eq. (8)

Find the average of the RMSE values calculated
by repeating this process for thirty trials

Calculate TP2-ELM using Eq. (9)

Calculate performance metrics for each idendical CV split

FIGURE 2. The flow chart of the calculation for the TP-ELMs.

TABLE 1. The properties of data sets used in this study.

Data sets Sample Size  Attributes
Auto Price 159 13
Boston Housing 506 14
Fish 908 7
Forest 517 11
Machine CPU 209 7
Servo 167 5
Strikes 625 5

D. THE ASSESSMENT OF MULTICOLLINEARITY

The datasets were examined for multicollinearity using the
Variance Inflation Factor (VIF) and eigenvalue analysis
criteria, derived from the following equations:

VIF; = Cj=(1—R?)™!

where C = (X’X)~! is the coefficient of determination
calculated via the regression fit of x; over the rest p-1
variables. In the dataset, the presence of a VIF value greater
than 5 belonging to the one of the variables indicates a strong
multicollinearity problem [67].

As an effective and widely used method in addition
to the VIF approach, the eigenvalue analysis is based on
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the decomposition of the X’X matrix into eigenvalues and
eigenvectors and calculated as follows:

X'X = TAT’

where A,y is the diagonal matrix, whose diagonal elements
correspond to the eigenvalues (A;,i =1,2,...,p) and Tpx,
is the orthogonal matrix whose columns correspond to the
eigenvectors of X’X matrix.Small-valued eigenvalues can
be indicative of the presence of multicollinearity across
columns of data. Rather than focusing on each eigenvalue, the
condition number (CN), which is basically a representation of
the spread of eigenvalues, is commonly used and is calculated
as follows:

)“ max

CN =

Amin

Typically, a Condition Number (CN) exceeding 1000 is
considered evidence of severe multicollinearity, while a
CN between 100 and 1000 implies strong multicollinearity
between the columns (i.e., variables) of the data matrix [67].

The VIF, eigenvalue, and condition number criteria were
calculated for the seven datasets in the study, and the
results are reported in Table 2. According to the findings,
the Auto Price and Slump datasets exhibit multicollinearity
issues. Additionally, the Boston Housing dataset shows
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TABLE 2. The results of multicollinearity diagnostics for each data set.

e . Variables ID
Data set Criterion 2 3 4 5 6 7 8 9 10 1 12 13
VIF 6,108 77759 5,600 22876 160658 09,0702 22690 14417 25073 7,1937  1,8893 6,194
Auto Price Eigenvalue 62844 18772 12003 08847 05191 03635 02743 01444  0,1240 01043 00871 0,046
CN 134,7581
VIF 1,7922 72988 3,916 10740 43937 19337 31008 303559 74845 00086  1,7991 13485 20415
Boston Housing ~ Eigenvalue  6,1268 14333 12426 08576 08348  0,6574 05354 03961 02769 02202  0,1860 0,1693  0,0635
CN 96,4717
VIF 21315 13977 16058 1,086 12319 23337
Fish Eigenvalue  1,6422 14729 11253 09636 05916  0.2043
CN 8,0382
VIF 14334 14456 16981 23616 21250 15794 26667 10138 1,148 1,048
Forests Eigenvalue  2,8597 15504 12061 12125 09315 06926 04756 04631 02947 02148
CN 13,3122
VIF 12016 20020 32740 18583 10662 1,8014
Machine CPU  Eigenvalue  3,3567 08204 07392 04963 04044 01739
CN 19,3004
VIF 25147 88,6201 1002531 1100583 54.2953 23860 1564193 84,3636 74860 10,0768
Slump Eigenvalue 30246 20019  1,1848 11284 08833 06927 06329 03021 00576 0,017
CN 1784,4887
VIF 1,0557 10572 1,0556  1,0021
Strikes Eigenvalue 13522 10073 08239 08166
CN 1,6559

a borderline condition number value, indicating potential
multicollinearity concerns.

E. THE LIST OF MACHINE LEARNING ALGORITHMS
The machine learning models evaluated in this study can be
categorized into five subgroups:

o Splines-based models: MARS (Multivariate Adaptive
Regression Splines), Linear Regresssion (LR), Rulefit
and Partial Least Sqaures (PLS) belong to this category.

« Kernel-based models: Support Vector Machines (SVM)
fall into this category.

o Tree-based models: These include Classification and
Regression Trees (CART), Bagging with different base
learners including CART, MARS, MLP etc., Ran-
dom Forests (RF), LightGBM and Extreme Gradient
Boosting.

« Instance-based models: K-Nearest Neighbors (KNN)
is an example of this subgroup. There are ensemble
models incorporating different regression (e.g. stepwise
regression) [68] or classification approaches [69], [70]
within the KNN algorithm, but the classical KNN
algorithm is employed in this study.

o Neural Networks-Based models: Multilayer Perceptron
(MLP) and Bayesian Additive Trees (BAT) are represen-
tative of this subgroup.

IV. RESULTS AND DISCUSSION

In this section, we present detailed performance comparison
results of both statistical models and machine learning
algorithms. A comprehensive analysis of the ELM-based
statistical models, including the two newly proposed algo-
rithms, is provided separately, both among themselves and
in comparison to machine learning algorithms.

A. THE PERFORMANCE COMPARISON OF ELM-BASED
ALGORITHMS AND THE PROPOSED ALGORITHMS

Initially, comprehensive comparison results of the perfor-
mance of the proposed TP1-ELM and TP2-ELM algorithms
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TABLE 3. Performance comparisons of each statistical algorithms based
on RMSE criterion.

Dataset Model d delta RMSE (Train) __SD RMSE (Test) _SD
ELM i * 0,0671 0,0004  1,6947 0,5818
Ridge-ELM ~ * 1,96 0,2967 00112 04576 0,0302
Auto Price Liv-ELM 001208 * 0,2943 00116 04710 0,0338
OK-ELM 000624 196 0,2951 00111 04573 0,0311
TPI-ELM 040804 224 0,2912 00115 04465 0,0318
TP2-ELM 0384 1,82 02917 00110 04274 0,0280
ELM * * 0,2869 00131 04481 0,048
Ridge-ELM  * 026 03141 00111 04128 0,0297
Boston Housing  LUELM 039 * 03140 00112 04119 0,0300
OK-ELM 0258 1,54 03153 00112 0,4088 0,0295
TPI-ELM 0224 04 03152 00111 04027 0,0283
TP2-ELM 065 0,0762 03123 00112 04101 0,0273
ELM * * 0,5167 0,0072  0,6987 0,045%
Ridge-ELM  * 2,18 0,5761 0,0047  0,6148 0,0088
Fish Liv-ELM 0,08002  * 0,5625 0,0044  0,6170 0,0101
OK-ELM 0114 288 0,5684 00045 0,6137 0,0092
TPI-ELM 021604 238 0,5761 0,0047  0,6148 0,0089
TP2-ELM 049 1,904002  0,5761 00048 0,6145 0,0087
ELM i * 0.8613 001710 1,1832 0,0736
Ridge-ELM ~ * 48 0,9543 00046  1,0214 0,003
Forests Liu-ELM 00001  * 09101 00071 1,0294 0,0184
OK-ELM 00001 48 0,943 00046  1,0714 0,0073
TPI-ELM  0,17008 49 0,9421 00036 1,0414 0,0065
TP2-ELM 00001 43 09334 0,0031 1,009 0,0063
ELM i * 0,1019 0,0029  0,7533 0,249
Ridge-ELM ~ * 0,0642 0,1508 0,0039  0,3189 0,0501
Machine cpy Liu-ELM 0,15002  * 0,2261 0,0073 03501 0,0558
OK-ELM 008602 0,166 0,1644 00044 03114 0,0486
TPI-ELM 022202 0,1642 0,1591 0,0043 03149 0,0499
TP2-ELM 0,72 002222 0,1640 0,004 0,3068 0,0490
ELM * * 0,0611 0,0098  0,3321 0,1460
Ridge-ELM ~ * 0,632 0,1672 00155 0,3019 0,0450
Stump Liv-ELM 0,138 * 0,1878 00138 0,3089 0,0406
OK-ELM 008204 0714 0,1616 00143 0,2982 0,0471
TPI-ELM 00302 0,658 01669 00156 02619 0,0353
TP2-ELM 0,64 04222 0,1613 00131 02981 0,0466
ELM * * 0,8272 0,0039 11,0840 0,2298
Ridge-ELM ~ * 0,108 0,8626 0,0038  0,8068 0,0096
Suikes Liu-ELM 03 * 0,8735 0,0030  0,9064 0,0124
OK-ELM 017402 0,13 0,8573 0,0034  0,8923 0,0094
TPI-ELM  0,19044 0,208 0,8617 0,003 0,8666 0,0066
TP2-ELM 0,68 00046 08568 00033 08714 0,0105

with Ridge-ELM, Liu-ELM, and OK-ELM on both training
and test data are presented in Table 3. A visual comparison
of performance using calculated reduction rate values, based
on the results in Table 3, is shown in Figure 3. Due to large
variations in scale, percentages based on ELM performance
are not included in Figure 3 but are discussed in the text
to enhance the interpretability and readability of visual
comparisons. The following conclusions can be drawn from
Table 3 and Figure 3:

e The training performances of TPI-ELM and
TP2-ELM are competitive with other algorithms.
At least one of the proposed algorithms shows
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FIGURE 3. The overall comparison of ELM-based statistical models for both train and testing performance based on reduction rates.

TABLE 4. Coefficient norm comparison for each statistical algorithm.

SD
10,4343

Model
ELM

SD
7.0261

Dataset Model

ELM

Norm
57,1196

Norm Dataset

57,7752

Ridge-ELM 2,5481 0,0905 Ridge-ELM 9,5113 0,4728
) LiwELM 25706  0.1341 ! Lw-ELM 98764 10567
Auto Price OK-ELM 26324 00897 MachineCPU G prvt 90178 06254
TP1-ELM 2,7082 0,1029 TP1-ELM 9,3592 0,4686
TPLELM 26240 0.0820 TP2ELM 100332 05347
ELM 12,3740 1,2719 ELM 12,8130 2,3867
Ridge ELM 60031  0.3340 Ridge ELM 27237 01397
Boston Housing | LUELM 63575 04605 LivELM 28096 02668
OK-ELM 65181 04611 OK-ELM 30404 02132
TPILELM 60056 03305 TPILELM 27196  0.1394
TP2-ELM 6,3418 0,3818 TP2-ELM 3,0155 0,1946
ELM 406888 6.1286 ELM 718608 232723
Ridge-ELM 3,4479 0,1491 Ridge-ELM 26,3884 1,0555
Fish LwELM 57294 04603 o LwELM 526346 69376
; OK-ELM 60678 05996  Strikes OK-ELM 423485 39297
TP1-ELM 34178 0,1470 TP1-ELM 27,0780 1,0861
TPLELM 40299 02216 TP2ELM 38,5599 2.1897
ELM 18,8127 2,0581
Ridge ELM 16162 00923
Forests Liu-ELM 3,9754 0,1841
OK-ELM 15970  0.0829
TPILELM 15907 00823

TP2-ELM 1,2163 0,0786

considerable superiority (improvement rates of up to
29.64%) over Liu-ELM in most of the data (including
auto-price, boston housing, machine cpu, slump and
strikes) and the difference is especially obvious in the
Slump and Machine CPU datasets. However, the basic
ELM algorithm outperforms all models in terms of
training performance, consistent with expectations.

o Regarding deviation scores on the training data, at least
one of the proposed algorithms displays greater stability
on most datasets to some extent (up to 56.22%).

o In terms of generalization performance, a primary
focus of this study, the proposed algorithms clearly
outperform other models on almost all datasets (up to
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15.22%). Although they show slight weakness on
Forest and Machine CPU datasets, the scores remain
highly competitive. Notably, TP1-ELM and TP2-ELM
significantly outperform the ELM algorithm, with
TP1-ELM surpassing it by up to 73.65% and TP2-ELM
by up to 74.78%.

o Similarly, standard deviations of test performance sug-
gest that the proposed algorithms exhibit much lower
variability (up to 65.61%), indicating more stable and
generalizable results across almost all datasets.

o While the proposed algorithms generally perform
comparably, TP2-ELM demonstrates slightly superior
testing performance compared to TP1-ELM.

The norm means and deviations of coefficient estimates for
the ELM-based statistical models and proposed algorithms
are calculated and presented in Table 4, providing insights
into coefficient volatility. Results indicate that the TP1-ELM
algorithm yields smaller and more stable norm values than
all other algorithms on Boston, Fish, and Slump datasets.
However, TP2-ELM outperforms on the Forest dataset.
Conversely, Ridge-ELM performs slightly better on Auto
Price and Strikes datasets, while OK-ELM shows superiority
on Machine CPU data.

B. THE PERFORMANCE COMPARISON OF MACHINE
LEARNING ALGORITHMS AND THE PROPOSED
ALGORITHMS

The performance of the proposed algorithms, along with
seventeen widely used machine learning algorithms, was
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TABLE 5. Performance results of machine learning algorithms for both training and testing data sets.

0

Data Set Split Model Bag-Cart Bag-Mars Bag-MLP BAT LightGBM  XGBoost  Cart KNN LR MARS MLP PLS RF RuleFit SMV-Linear SVM-Poly SVM-Radial
Train RMSE  0.3666 0,3698 0.3926 0,3410  0,3639 0,3001 03152 02790 03748 0,3545 03315 03082 02819 0,2720 0,3078 0,3679 03671
Auto Price SD 0,0698 0,0553 0,0414 0,0847  0,1670 0,2510 0,0876  0,0399  0,0442 0,1090 02270 0,0212 0,0523 0,1540 0,0673 0,2050 0,2048
Test RMSE 03777 0,5082 04514 03974 0,3989 0,5609 03930 03526 04912 04533 04468 04555 03592  0,4523 0,4489 0,4540 0,4260
i Train RMSE 04223 0.4207 0.3942 03722 0.3963 0,3295 03285 02944 04644 03250 03293 04226 03270 0,2992 0.3242 0,4649 0,3950
Boston Housing SD 0,0669 0.0726 0.0260 0.0536  0.2330 0.1180 0,0533  0,0487  0.0529 0.0931 00559 00418 0,0294 0,0957 0.0447 0,1350 0,1255
Test RMSE  0,4678 0,4556 04311 04159 04161 0,3782 05419 04388 05722 04618 03964 0,5655 0,3932  0,3833 0,5595 0,5612 0,4571
. Train RMSE  0,6194 0,5644 0,6170 06272 0,6253 0,5722 0,5809 05662 06189 0,6181  0,5964 0,6361  0,5600 0,5692 0,5725 0,6191 0,6192
Fish SD 0,0486 0,0455 0,0103 0,0337  0,1477 0,0652 0,0430 00474  0,0849 00363  0,3037 0,0290 0,0095 0,1118 0,0185 0,1064 0,1062
Test RMSE  0.6447 0,6609 0.7072 0.6154  0.6142 0,6145 07177 06129  0.6686  0,6801  0,6383  0,6685  0,6200  0,6303 0.6699 0,6704 0,6534
Train RMSE  0.9886 0,9884 1,0002 0,9876  0,9853 0,9853 09853 10193 10365 0.9921 1,0262 09855 1,0026  0,9853 1,0306 1,0307 1,0307
Forest SD 0,0200 0,0184 0,1489 0,0790  0,0326 0,0740 0,0850  0,0997 04852 00148 14575 0,0415 0,0090 02615 0,0050 0,0531 0,0534
Test RMSE 11,0310 1,0848 1,0307 1,1207 11,1417 1,0978 1,0282 11,0265  1,0966  1,0307  1,0350  1,0403 11,0437 11,0307 1,1092 1,0994 1,0675
i Train RMSE  0,3503 0,3649 0.4242 03194 0,3669 0,2619 04343 03934 03549 03099 03759 02516 03971 03171 0.4166 0,3528 0,3615
Machine CPU SD 0,0573 0.0401 0.0327 0.0325  0.1120 0.1095 0,0686 00250 00690 00292 02140 0,0349  0,0392  0,0907 0.0623 0,1083 0,1109
Test RMSE  0,4256 0,5501 0,5893 0,4153  0,5099 0,4901 05434 03988 04963 04090  0,3944 04765 04072  0,5997 0,6277 0,4226 0,4228
Train RMSE  0,3266 0,3032 0,2370 03207 0,3647 0,2919 0,1503 04248 03478 0,3264  0,1400 03061 0,774  0,2583 0,3531 0,3335 0,2831
Slump SD 0,0763 0,2263 0,0434 02181  0,1748 0,2039 0,0493 00546  0,0299 02085 0,1161 0,1263  0,0850  0,0595 0,2248 0,0902 0,0885
Test RMSE  0.4606 0.5912 0.5120 03426 04753 0.4554 0,5665  0.6048 03853  0,3609 04461 03717 04699  0,3936 0.3614 0,5186 0,3295
Train RMSE  0.7580 0.8031 0.7787 0.8250  0.7621 0,7107 08421 07763  0.9601 0.8456  0.8537 09126 07578  0,6955 0.9304 0,9542 0,9508
Strikes SD 0,0463 0,0501 0,4255 0,0458  0,0827 0,0661 0,0309  0,0599 0,1101  0,0497  1,0372 0,0043  0,0202 0,1081 0,0089 0,0095 0,0063
Test RMSE 09579 0,8809 1,0061 09485 0,9566 0,9345 1,0224 08894  0,9935 09563  0,8834 09917  0,8086  0,8002 1,0073 1,0173 0,9774
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FIGURE 4. The training performance comparison between TP1-ELM and machine learning algorithms based on reduction rates.

benchmarked in the second step of the modeling process.
Training and testing performances of TP1-ELM and TP2-
ELM algorithms are summarized in Table 5, with training
results of TP1-ELM visualized in Figure 4 and TP2-ELM in
Figure 5. Additionally, reduction rates of test performances
are displayed in Figure 6 for both proposed algorithms.
Conclusions drawn from Table 5 and Figures 4-6 can be
simplified as follows:

In terms of training performance, both TP1-ELM and
TP2-ELM algorithms achieved lower RMSE scores (up
to 63.38% for TP1-ELM and 62.25% for TP2-ELM)
compared to machine learning algorithms across most
datasets. However, Rulefit, XGBoost, and Bagging (with
Cart learner) performed better on the Strikes dataset.
It appears that Rulefit and KNN algorithms are more
competitive with the proposed algorithms compared to
others.

VOLUME 12, 2024

MARS MLP RuIeFlt SVM L SVM P SVM R XGBoosl
Algorithm
8 Machinecpu Il Strikes
Bl Forests I Slump
o Regarding variability (standard deviation) of train-

ing performances, TP1-ELM and TP2-ELM algo-
rithms exhibit lower deviation values (up to 99.75%
for TP1-ELM and 99.78% for TP2-ELM) than
all models across all datasets, indicating greater
stability.

Test performances (generalization performance) were
found to be superior to machine learning models in
most datasets, except for the Auto Price dataset (for
some algorithms such as Random Forests, Bag-CART,
etc.). Both proposed algorithms perform similarly, with
TP1-ELM showing improvement of up to 56.79% and
TP2-ELM achieving reduction of up to 51.11% in
RMSE scores.

In summary, the proposed algorithms offer more stable
and generalizable results, with lower RMSE values,
compared to both ELM-based and machine learning
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FIGURE 6. The testing performance comparison between the proposed models and machine learning algorithms based on reduction rates.

algorithms, especially for datasets with multicollinearity

problems.
To facilitate more effective comparison of test perfor-

mances for Slump and Boston datasets, the distribution
of residual values calculated on the validation data is
depicted in Figure 7 and Figure 8, respectively. The graphs
clearly illustrate that the proposed algorithms exhibit more
stable distributions of residual values around zero within
narrower ranges compared to other algorithms. Therefore,
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it should be noted that the proposed algorithms can be
considered as a robust alternative to ELM-based algorithms
for all regression-oriented areas and problems, particu-
larly in real-life applications dealing with multicollinearity.
More specifically, it has important application areas in
economic [71], [72], [73] and health sciences [72], [74] in
which statistical estimators developed for linear models are
successful.
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FIGURE 7. The testing error of the proposed algorithms based on slump testing data.
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FIGURE 8. The testing error of the proposed algorithms based on boston testing data.

V. CONCLUSION

In this paper, we introduce two novel statistical esti-
mators (TP1-ELM and TP2-ELM) aimed at addressing
the multicollinearity problem within the Extreme Learn-
ing Machine (ELM) algorithm. They stand out as an
effective alternative to ridge regression (aka Tikhonov
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regularization), which is widely used in the field of
machine learning, and are the foremost to be imple-
mented in the context of feed-forward neural networks.
Our proposed algorithms demonstrate superior performance
over existing ELM-based and commonly used machine
learning algorithms when applied to real-life datasets across
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various domains, providing more generalizable and stable
results.

It should also be noted that the proposed algorithms can
be competitive with well-known machine learning algorithms
on regular data apart from the data with multicollinearity
problem, which is the focus of this study. Given their
applicability to both classification and regression tasks
in data-driven studies, these algorithms show promise as
effective solutions to the multicollinearity problem.

Although our proposed algorithms exhibit satisfactory
performance, a notable limitation of this study is the absence
of various analytical methods from the literature for tuning
parameter selection. Therefore, the development of analyt-
ical or heuristic methodologies for parameter estimation
in algorithms involving statistical estimators is an open
problem in the field of artificial neural networks (especially
ELM). Additionally, future studies will focus on enhancing
the proposed algorithms by incorporating feature selection
capabilities to achieve more compact solutions, particularly
in high-dimensional data settings where multicollinearity is
prevalent. In conclusion, we plan to conduct a comprehensive
comparison of the proposed algorithms on classification tasks
as part of our future research goals by incorporating the
limitations and identified gaps.
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