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ABSTRACT Industrial robots play a crucial role in a wide range of industrial processes. Because of
the complexity of the work environment in which these systems are deployed, more robust and accurate
control methods are required. Deep reinforcement learning (DRL) is a comprehensive approach that does
not require an initial source of structured data for its learning process. Instead, DRL generates its own data
based on its experiences within a work environment. To generate its own data, DRL requires integration
with virtualized environments provided by simulators. These tools must include scenarios in industrial
contexts and allow integration with machine learning tools, among other capabilities. Currently, several
platforms support the simulation of various scenarios and generation of synthetic data, thus facilitating
the development of end-to-end systems based on artificial intelligence, such as DRL. This article presents
an extensive review of the software tools applied to DRL-based control systems for robotic manipulators.
The selection of these tools is based on their efficiency, scalability, and compatibility with contemporary
industrial standards and offers insights into their practical application in real-world scenarios. This study
established a complete framework for designing and developing control systems for robotic manipulators
using end-to-end DRL. This framework outlines the tools in detail, including simulators, APIs, libraries,
and methods, and their interactions with each other. Additionally, it discusses the practical implications of
this framework, highlighting its potential applications in industry and addressing some of the challenges and
limitations encountered in applying DRL to complex robotic systems.

INDEX TERMS Robotics manipulator, control, deep reinforcement learning, automatic control, framework,
simulation environments, simulation, industry 4.0.

I. INTRODUCTION
Robots are designed to assist or replace human operators in
repetitive/dangerous tasks in which human physical limita-
tions and/or extreme environments are present. Continuous
developments in mechanics, sensing technology, intelligent
control, improved sensors, latest generation processors, and
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other aspects have enabled improvements in the perfor-
mance and autonomous capabilities of robotic systems [1].
Robotic manipulators are extensively used in fields such as
industrial manufacturing, assembly, packaging, transporta-
tion, surgery, medical treatment, military, space exploration,
amongst others. In addition, these robotic systems guar-
antee speed, efficiency, and cost reduction in industrial
production lines. Although they are widely used in industry,
robots require adaptability to different dynamic changes
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in industrial processes; thus, a self-learning capability is
required [2].

Currently, robots can be grouped into several categories:
degrees of freedom (DOF), function, generation, structure
and mobility. The use of robotic manipulators is increasing
in various industrial applications, which introduces new
challenges that must be overcome to fulfill the tasks assigned
in each case study [3]. A robot manipulator is a nonlinear
coupled multiple-input multiple-output (MIMO) system. The
uncertainty of the system has two aspects: structural and
nonstructural. The first type of uncertainty is due to the
unmodeled dynamics of the system, dynamic and static
friction, perturbation of system parameters, etc. The second
type of uncertainty is caused by external environmental noise,
measurement errors, and signal sampling delays, among
others.

Control of a robotic manipulator can be performed in
two ways: an open loop, which depends on structured
environments that are calibrated (no external sensors); the
robot is programmed to follow a series of positions, and if
a component moves a little, the system must be recalibrated.
The closed loop with feedback uses sensors, such as force,
vision, and depth sensors, that monitor the robot axes,
end-effector, and components, such as velocity or position.
Feedback allows the comparison of the obtained information
with the desired information to achieve optimal behavior [4].
With advances in artificial intelligence (AI), software-based
end-to-end control solutions have been developed. The aim
of this control is to select the best hardware that allows the
integration of robust software and the optimal algorithms that
enable the best performance of the robotic system.

In [5], researchers designed and compared two types
of controllers for trajectory tracking of a rigid robotic
manipulator (PUMA560). The first controller is a Fractional
Order Proportional Integral Derivative (FOPID) tuned using
a genetic algorithm (GA), and the second controller is
a classical PID. The objective of this control was to
track a quintic polynomial trajectory. The results of the
comparisons highlight the better performance of FOPID
over PID when both control systems were simulated using
Simulink/MATLAB 2013.

In [6], the authors proposed an Actor-Critic-based Deep
Reinforcement Learning method to solve the classical
trajectory-planning problem of the UR5 robotic arm. The
proposed DRL method is not based on any model, which
guarantees that the joint angle is within the allowed range
each time it reaches the target point. A standard path-planning
method was implemented in the ROS, and the simulations
were validated using CoppeliaSim.

The applicability of DRL has also been extended to
construction tasks [7]. The researcher explored the possibility
of automating excavation tasks using the Qt-Opt algorithm,
which is a variant of Q-learning for continuous spaces. The
input to the network were depth images. The experiments
were implemented using a simulator developed by Komatsu
Ltd. The results of this study demonstrate that the policy

obtained by Qt-Opt outperforms SAC and TD3 in the
proposed task.

This study provides a guide for the selection of software
tools for the application of traditional control methods and
artificial intelligence in robotic manipulators implemented in
simulated environments. The tools presented are categorized
according to the stage of development of the project, and
tables of characteristics that summarize the information
on each tool are provided. The goal of this study is to
provide researchers and students with a practical reference
for the selection of methods, algorithms, and software for the
simulation and evaluation of robotic manipulators.

The contribution of this paper is as follows:
• Establish a framework for applying deep reinforcement
learning techniques in semi-photorealistic environment
simulators for software control of robotic manipulators.

• Present and describe the main software tools: Sim-
ulators, libraries, algorithms, control methods and
DRL-based frameworks for robotic manipulators.

• From this paper, researchers in the robotics field can
obtain an idea of how to approach their case study from
the perspective of using DRL, simulators and specific
applications.

• Recent research provides outstanding results and inno-
vative perspectives for the field, and includes a sufficient
technical mathematical level to allow readers to under-
stand the essence of the research. Robotics research
publications were selected from the years 2016-2023.

• Several examples of the integration of selected software
tools from the selected research papers are provided.

Several research projects have been carried out in the field
of robotics, which compile information about simulators,
DRL frameworks, and the evaluation of algorithms for the
performance of specific tasks in industry and academia.

In this paper, a practical guide for the development of
DRL control applications focused on robotic manipulators is
presented, and a compilation of software tools that allow the
evaluation of several RL algorithms in different simulations
on the platforms is provided. Detailed information on the
platforms and libraries is presented, as well as a description of
the integration of these tools into a single control architecture
with a modern DRL-based approach. In addition, related
research on DRL in robotics is presented in different sections.
Finally, an example of software implementation using the
tools and methods described in this paper is provided.

This paper is organized as follows. In Section II, the frame-
work developed for control systems in robotic manipulators
is presented, which is based on a series of sequential phases
that permit the establishment of a classification method
and selection of software tools. Section III discusses the
requirements and needs of robotic manipulator applications.
Evidently, the use of robotic software depends on the research
area, environment, and applicability for implementation in
physical systems. In Section IV, a systematic literature review
(SLR) is presented to identify the most relevant information
for robotic manipulators. In Section V, some traditional
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FIGURE 1. Sequential diagram of the framework.

control methods for robotic manipulators, such as SMC
control, PID, FOPID, among others, are detailed. Various
DRL frameworks with RL libraries, DRL taxonomy, cloud
platforms, and dedicated hardware for the training and evalu-
ation of DRL models are also presented. Section VI provides
details on the characteristics of simulators used for robotic
manipulators that integrate traditional control functionalities,
DRL algorithms, APIs, and connection functions with other
software tools. Section VII details the base architecture for
the integration of the tools (simulator, DRL library, and
robot) into a complete software-control system. Section VIII
presents an example application for robotic manipulators and
describes the integration of each software tool described in
previous sections.

II. WORK SCHEME FOR ROBOTIC MANIPULATORS
A scheme that defines the main development phases for
the research, development, and software implementation of
robotic manipulator control is proposed. Each phase provides
details of the tools, methods, and libraries available in
robotics literature. Figure 1 presents the framework of this
process.

The framework was specifically developed to integrate
DRL software tools into a control system for robotic manipu-
lators, with implementation in a simulation environment. This
framework comprises of several phases: Requirements and
Needs, Research, Control Methods, Simulators, Integration,
and Evaluation. Each development phase describes various
elements that must be considered for implementation in
the robotic system, provides a detailed description of the
tools used for robotic manipulators, and provides summary
tables presenting relevant information from related work
using the tools described in the corresponding section. The
objective of this framework is to present a sequential method
that provides recommendations and examples of how to
implement control architecture in software using a modern
DRL approach in robotic manipulators, whose applications
range from academia to industry.

This DRL framework for robotic manipulation provides
an organized structure and a set of software tools, such

as libraries, simulators, methods, and application examples,
for developing and applying DRL algorithms in robotic
manipulation environments. There are several advantages and
disadvantages to consider when developing and applying the
technologies mentioned in this framework. The advantages of
the proposed framework are as follows:

• Establishment of a clear structure for the phases of
DRL application development in robotics (research and
implementation). This offers detailed information on
the software tools according to each phase (methods,
simulators, integration, etc.).

• Offers features and technical details of software tools
with modern approaches for motion control in robotics.

• Present and describe elements of DRL control architec-
tures using these software tools; these details are not
mentioned in most similar studies.

• Provide details on basic concepts to the application
examples implemented in the simulation. This allows the
user to have a broad view of the path to follow to develop
a DRL project in robotics.

Some disadvantages exist, as follows:
• There is a generalization of its use for situations and
application environments, and it should be considered
that each task to be performed by a robot has different
requirements, and its design must be based on the prob-
lem posed, which is not addressed in this framework.

• Although a guide for the development of DRL control
for robotics is offered, researchers must consider that
DRL models can learn unexpected or undesirable
behaviors if the reward function is not well designed,
or if the training environment does not capture all
possible situations that the robot may encounter in the
real world.

• This framework incorporates current software
(2023-2024). Upgrading software is a common and
necessary practice for improving the performance and
adding new features to applications. However, these
upgrades can also have significant disadvantages for
robotics DRL research, such as incompatibility with
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FIGURE 2. Classification of robotic systems.

previous versions, risk of bugs and errors, cost of
training and learning new versions of the software,
system stability issues, and loss of customization
of work performed. Any software upgrade should
be considered when reviewing the content of this
framework.

In the following sections, each phase of the proposed
framework for robotic manipulator control is presented and
described, providing details of the techniques, libraries, and
related work.

III. REQUIREMENTS AND NEEDS
Several options exist for simulation, control methodologies,
and software tools that offer ease of integration, imple-
mentation, and deployment of robotic systems in simulated
environments. These can then be physically implemented
with the help of APIs andmultilanguage platforms. The selec-
tion of each system component depends on the constraints,
limitations, and scope of the research project. To understand
the field of application of a robotic system to be implemented,
several aspects must be considered, such as the type of
structure, functions to be performed andmobility of the robot.
Figure 2 summarizes the classification of robotic systems
considering some of the approaches described below.

There are several professional associations dedicated to
advances in industrial robotics, which establish classifica-
tions, definitions, and standards for robotic systems, some of
which are as follows:

• Robotics Industries Association (RIA): The North
American association is dedicated to promoting
industrial robotics and automation through education,
research and development of international standards [8].

• Japan Industrial Robot Association (JIRA): This asso-
ciation is dedicated to the development of industrial
robotics. JARA is one of the oldest associations

dedicated to research and development of robotics in
collaboration with governments and other organizations
to promote industrial robotics [9].

• European Robotics Association (euRobotics): Founded
in 2012, this association represents the robotics and
automation industry in Europe. It is dedicated to the
research, development and standardization of robotics in
industry [10].

Robotics has developed over several generations. Each
generation is driven by the technological advances that have
enabled new functionalities. These are described below.

• First generation: Developed in the 1950s, it was charac-
terized by the use of simple mechanical and electrical
systems, and the tasks were programmed sequentially in
open-loop control systems. These robots have been used
in material manipulation applications.

• Second generation: Starting in the 1960s, electronics
and computers were introduced. Robots were more spe-
cialized for welding, assembly, and object manipulation
tasks.

• Third generation: Developed in the 1980s, artificial
vision systems and programmable controllers have
been introduced. The tasks of these robots were more
complex.

• Fourth generation: Developed in the 2000s, artificial
intelligence systems and the application of ML tech-
niques were introduced in robotics. Robots learn from
their environment, interact with humans, and are capable
of autonomous navigation.

• Fifth Generation: These are collaborative robots that
work safely and efficiently with humans. Robots adjust
their behavior to avoid collisions and accidents in the
presence of humans in the environment.

In addition, there are several types of robot structures that
vary according to the tasks to be performed in various fields

103136 VOLUME 12, 2024



C. Calderón-Cordova et al.: DRL Framework for Control of Robotic Manipulators in Simulated Environments

FIGURE 3. SLR data sheet for robotic manipulators.

of application, and have different characteristics in terms
of flexibility, precision, speed, and load capacity. Some of
the most common robot structures are Cartesian or rect-
angular coordinate robots, SCARA (Selective Compliance
Assembly Robot Arm) robots, articulated robots, cylindrical
robots, parallel robots, hybrid robots, polyarticulated robots,
zoomorphic robots, and androids.

There are different robot designs; therefore, its mobility is
a function of the application to be performed. Two subgroups
were described: mobile and fixed. The first consists of robots
with structures such as limbs or wheels to move in different
environments. The second is located in fixed workstations,
and here are the robotic manipulators perform repetitive
tasks in industrial processes systems, which have also been
developed for application of robotic manipulators in mobile
systems in aerial environments [11], aquatic [12], terrestrial
[13], and tasks performed in space [14].
In robotics, the area of manipulation is extensive, and

different methodologies and algorithms have been explored
for the design of motion planning and control, as well as the
fabrication of robotic arms and components. There are some
relevant points for robotic manipulation, including picking
and placing objects [15], assembly, handling deformable
objects, trajectory tracking, path planning, human-robot
interaction, and collision prevention.

IV. SYSTEMATIC LITERATURE REVIEW
The systematic literature review process permitted the search
and filtering of information in the databases relevant to the
field of study. In the initial phase, a conceptual map is
created, which facilitates the development of the thesaurus

for the advanced search criteria of inclusion and exclusion
of parameters specific to the topic. This method produces
a list of documents of interest or great impact related to
the research questions and information relevant to the case
study [16].
Now, the semantic structure for the search of articles,

obtained from the conceptual map and the scientific the-
saurus [17] in the SCOPUS academic database, is pre-
sented: TITLE-ABS-KEY (‘‘robotics’’ AND ‘‘arm’’ AND
‘‘manipulator’’ AND ‘‘trajectory’’ AND ‘‘tracking’’) AND
(‘‘industrial’’) AND (‘‘model’’ OR ‘‘control’’) AND NOT
(‘‘mobile’’ OR ‘‘aerial’’). This search resulted in a list of
229 significant articles related to (robotic manipulators)
published between 2016-2023. Figure 3 shows the research
structure of the robotic manipulators.

Some of the prominent publishers in this field are:
IEEE, Elsevier, MDPI, Springer, and some articles were
also selected from ArXiv. Additionally, academic theses and
GitHub repositories containing studies related to robotic
manipulation using simulators and deep reinforcement learn-
ing were considered. This data sheet provides details on the
conceptual map setup for semantic searches in an academic
database. It also shows the keywords used to create the
conceptual map.

Figure 3 also shows the main selection criteria of the
articles, focusing on the categorization of key elements
for the implementation of robotic manipulators: control
methods (traditional and modern approaches), use of sim-
ulators for research, DRL in robotic applications and
industrial applications (trajectory tracking), and development
of API for connection between tools. Finally, the main
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sources of the information obtained in this study are
discussed.

V. CONTROL METHODS
Owing to the physical nature of robotic manipulators,
which are nonlinear multivariable mechanical systems with
time-varying constraints and uncertainties, modeling of
robust controllers is required. In the industrial field, sev-
eral studies have been conducted on the traditional and
modern control methods for robotic manipulators. This
section describes the main control methods used, along with
examples of the applications and software tools used to design
the proposed controllers.

A. TRADITIONAL APPROACH
Although modern control theory has made great progress,
classical algorithms such as PID are still used in robotic
manipulator controllers because of the simplicity of the
design process. Some tuning methods for these types of
controllers are based on trial and error based on assumptions
about the plant and desired output, obtaining some analytical
or graphical characteristics of the process, which are then
used to configure the controller [18]. Controllers such as PID
are suitable for most setpoint regulation problems, that is,
in robotics applications, such as path-following, welding, and
laser cutting.

Controllers must consider the dynamic model of the
manipulator [19]. To control a physical system using a
digital controller, it is necessary to receive the measured
signals from the system, process the signals, and then send
control signals to the actuator that performs the control
action, these control signals must be translated using a
digital-to-analog converter (DAC). Most physical systems
have process and analog sensors; therefore, it is necessary
to use an analog-to-digital converter (ADC) that allows the
translation of analog signals to the language of the digital
controller. In Figure 4, a classical closed-loop control system
with negative feedback is presented. Figure 5 illustrates the
physical implementation of a discrete controller in various
devices (PC, PLC, and microcontroller) that control the
process of the plant of a physical system. The sensor serves
as feedback for the control system to monitor the controlled
variables [20].

FIGURE 4. Closed loop control system.

Depending on the plant (continuous or discrete), converters
were used to couple the input (analog) and output (digital)
signals of the controller.

FIGURE 5. Closed loop control system.

1) INTEGER ORDER CONTROLLERS
Integer order controllers (P, PI, PD, and PID) are the most
commonly used control strategies in control engineering.
The most common controller is the three-term controller
(PID), in which the proportional term incorporates appro-
priate proportional changes for the error. The integral term
examines the process variable over time, which corrects
the output by reducing the process variable offset. The
derivative term monitors the rate of change of the process
variable and therefore changes the output when there are
unusual variations. The user must adjust each parameter of
the three control functions to obtain the desired performance
of the process to be controlled [18]. A comprehensive and
summarized set of tuning rules for PI and PID controllers
was presented in [21]. Some studies related to integer-order
controllers for robotic manipulators are presented in Table 1.

2) FRACTIONAL ORDER CONTROLLERS
The use of fractional-order derivatives/integrals presents an
alternative strategy for solving robust control problems,
applicable to robotic manipulators. Modeling and controlling
systems using fractional-order derivatives and integrals is
an alternative strategy for effectively solving many control
problems. In particular, it has been shown that the use
of fractional-order concepts in the modeling and control
of robotic manipulators can improve control accuracy and
efficiency [22].

In [22], a review of control strategies and fractional-order
modeling applied to robotic manipulators is presented, which
includes modeling, fractional-order definitions, objective
functions, type of fractional-order modeling, fractional-order
control, controller parameters, approximation techniques,
controller comparison, tuning techniques, simulation tools,
and types of validation.

In addition to the software that facilitates the design of
fractional-order controllers, there are sets of tuning rules for
FOPID controllers. These rules are quadratic and require the
same plant response time data as the Ziegler-Nichols tuning
rules for integer-order PID controllers [23].

Fractional control applied to robotic manipulators offers
advantages, such as increased robustness and adaptability
to changes in system parameters and improved trajectory
tracking capability, among others. However, it also presents
challenges in terms of the complexity of the controller
design and implementation, as well as the need for the
use of specialized tools and techniques for its development
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TABLE 1. Papers related to integer order control.

and validation. For the control of robotic manipulators,
there are several control strategies that are combined with
other methods to improve the robustness, performance, and
stability of the system. In the control literature, several
fractional control strategies are modified versions of these
methods, as shown in Tables 1 and 2.

Toolboxes permit the modeling and design of fractional-
order systems such as FOMCON [34]. This tool is integrated
into MATLAB and presents the following modules with
important functions for fractional-order systems [35]:

• Core module: FO system analysis (FOTF kernel and
utilities).

• Identification module (system identification based on
experimental input/output data in the time and frequency
domains).

• Control module (design, tuning and optimization tools
for the FOPID controller as additional features).

• Implementation module (continuous and discrete time
approximations and the implementation of the corre-
sponding analog and digital filters).

3) SLIDING MODE CONTROL
Sliding mode control is a type of variable structure control.
This system was designed to drive and constrain the
system state to be within the vicinity of the switching
function. This control approach has two advantages: first, the
dynamic behavior of the system is adapted by the switching
function; second, the closed control loop becomes insensitive
to uncertainty, and this feature converts it into a robust
control [36].
This control structure has been extensively studied in

the field of robotics owing to its characteristics such as
robustness, insensitivity to changes in the physical model
parameters, and external disturbances (see Table 3 ). The
sliding-mode design approach is divided into two stages: the
first reaching stage, in which the system state tends toward
the sliding surface in a finite time from any initial state. In the
second sliding stage the system state maintains the sliding
mode along the surface under control action [37].
Key features and components of Sliding Mode Control

are as follows: (1) Sliding Surface: The sliding surface is a
hyperplane or a subspace in the state space. (2) Switching
control law: Sliding mode control involves the use of a
discontinuous control law. The control input was switched
between the different modes to maintain the system on
the sliding surface. (3) Chattering: This term refers to the
high-frequency switching behavior of the control signal near

the sliding surface. Although chattering is inherent to sliding
mode control, efforts have been made to minimize its effects.
(4) Robustness: The control system is designed to operate
effectively even in the presence of modeling errors or external
disturbances [37].

An example implementation of this control structure is
detailed in [36], which provides several examples of this
control method and some variations using MATLAB.

B. MODERN APPROACH
In Industry 4.0 [40], several industrial processes include tasks
such as production scheduling, assembly, support systems,
production line operations, and path planning. Several of
these tasks have been realized using digital systems and
robots. The application of artificial intelligence has increased
the efficiency of industrial process automation. Machine
learning (ML) offers the possibility of automata learning and
executing tasks. However, these learning algorithms require
a significant amount of data.

Several learning methods can be applied to robotics, and
each field has its own characteristics that must be considered
to determine the best methodology. Deep reinforcement
learning (DRL) is a learning option for robots in which the
algorithm learns through interaction between the agent and
the surrounding environment [41]. One of the most used
libraries is the Gymnasium toolkit, which allows the training
and evaluation of RL algorithms and is used with several
simulators such as PyBullet, Webots, Nvidia Isaac, CARLA,
Gazebo, and AirSim, among others, which allows agents to
be trained with some reinforcement learning methods [42].

1) DEEP REINFORCEMENT LEARNING
This section provides the fundamental concepts of DRL con-
trol architecture and an overview of the different components
that are part of modern approach methods. DRL is a field of
machine learning whose goal is to create intelligent agents
that can interact with the environment. When executing
an action, a reward and/or penalty is given back to them
depending on the agent’s performance. In the process of trial
and error, where different actions are explored and exploited,
the agent improves learning to perform a task based on the
accumulated reward.

• Environment: The environment is defined as the place
where the agent interacts with elements in its area
and acquires knowledge from its experience. In this
environment, the agent receives information regarding
its current situation, represented as the current state St,
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TABLE 2. Papers related to fractional order control.

TABLE 3. Papers related to sliding mode control.

and receives a reward at each step of the interaction. This
information was obtained through what are known as
observations.

• Agent: Agent is an actor in the deep reinforcement
learning problem. The agent continuously interacted
with various environmental elements. Depending on the
observation and reward received, the agent executes an
action at each time step. According to the implemented
algorithm, the policy is updated as a function of the
accumulated reward.

• Policy: Policy is a function that determines an agent’s
behavior in a given environment. This function specifies
the action that the agent should perform in each state
of the environment to maximize its cumulative reward
over time. This policy can be deterministic or stochastic.
In deterministic policy, there is no uncertainty regarding
the choice of action. In a stochastic policy, the action
taken may be random with a probability distribution
associated with the possible actions in each state.

• Value function: This is a function that assigns a value to
each state or state-action pair, indicating the long-term
value the agent expects to obtain if it is in that state or
if it takes that action in that state. There are two types
of value functions: (a) State Value Function: Assigns a
value to a specific state, representing the expected utility
if the agent starts in that state and follows a given policy.
(b) Action Value Function: Assigns a value to a specific
action performed in a state. During training, the agent
adjusts these value functions to improve its ability to
make optimal decisions in the environment.

• Reward: The reward function assigns a numerical value
to each state-action transition; this represents a feedback
signal indicating the desired outcome of an action in
a given state. This function provides the agent with
information on how much ‘‘reward’’ or ‘‘penalty’’ it
expects to receive as a result of its action in a specific

state of the environment. The reward function can be
designed in different ways depending on the specific
task and the agent’s goals.

• Episode: An episode refers to a complete sequence
of interactions between an agent and the environment,
from the initiation to the completion of a specific task.
During an episode, the agentmakes sequential decisions,
performs actions, and receives feedback from the
environment through the rewards. During an episode, the
agent learns and improves its policy based on feedback
received from the environment through rewards and
observations. After completing multiple episodes, the
agent gradually adjusts its policy to maximize the
accumulated reward over time.

With the fusion of RL and DL, Deep Reinforcement
Learning (DRL) methods can handle perception and planning
problems. With the application of DRL, no predefined
training dataset is required, and there is no focus on encoding
directions for the coordination of robotic manipulator joints.
Experimental data are dynamically generated in an environ-
ment and used to train a deep neural network, establishing
a control policy by learning through iterative parameter
updates [1].

In this framework, the Deep Learning architecture (convo-
lutional networks, recurrent networks, etc.) acts as a function
approximator to handle high-dimensional data (images,
video, time-series data) and approximates large states and
action spaces. Some tasks involved in DRL processes
include [43]:

• Exploration/exploitation: Trying new actions or per-
forming new actions based on learned knowledge.

• Generalization: Capacity of the agent to adapt to a new
environment and execute a task in a simulation or real
environment.

• Policy search: Identification of states and actions for the
agent to learn an optimal policy in decision making.
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FIGURE 6. Schematic mapping of reinforcement learning for control systems.

• Finding catastrophic events: Finding and preventing
events that can cause damage to optimize the policy.

• Handling overestimation: Using a maximal operation in
learning Q produces overestimated values.

• Sample size reduction: In DRL, a large amount of data
is required to perform training; therefore, it is necessary
to reduce the sample size.

• Detection and prevention of overfitting: Overfitting
occurs when the agent is sensitive to perturbations in the
environment because of limited training data.

• Robust learning: Incorporating robustness into the DRL
system provides better results for tasks assigned to
agents.

The application areas of Deep Reinforcement Learning are
extensive, ranging from education to autonomous vehicle
navigations. The goal of RL is to train an agent that
performs an optimal sequence of commands to perform
the assigned task within an unknown environment. This
agent is composed of two elements: the policy, which
maps and selects the actions based on observations of the
environment (deep neural network), and the RL algorithm,
which updates the policy parameters based on the actions per-
formed in the environment, observations, and the calculated
reward [44].

In Figure 6, a comparison between traditional control
systems and the DRL scheme is illustrated, and Table 4
summarizes the main elements of each scheme. In this
case study, the agent receives observations that include
information from the sensors, joint angles, and end-effector
positions. The output of the control policy network and the
RL algorithm (agent) is a set of actions, such as speed
or torque, that control the actuators. When the robotic
manipulator executes an action, a reward is generated and the
algorithm is expected to find the best control strategy (policy)
for the realization of a manipulation task.

TABLE 4. Comparison between RL schemes and control systems.

Traditional control systems and deep learning approaches
serve to solve control engineering problems but differ in
their methodologies and approaches for applying them. DRL
methods involve training agents to learn from their own
experiences through trial and error without the need for
explicit supervision or knowledge of the environment.

On the other hand, the classical approach to solving
control problems uses methodologies consisting of designing
controllers that regulate or follow a desired output in a system
while minimizing performance criteria, such as steady-state
error, overshoot, settling time, and performance indices (IAE,
ISE, ITAE, and ITSE).

In summary, deep reinforcement learning (DRL) is appro-
priate for tackling situations where the system dynamics are
complicated and difficult to represent by models, or when
the environment is uncertain or variable. However, the use
of DRL can be costly in terms of computing resources and
requires a large volume of data to train the agent that can
be provided by simulators. System control is a more suitable
alternative for solving problems in which the system can be
accurately modeled, and the control objectives are properly
defined.

However, traditional control can be limited by the precision
of the model and requires manual tuning of controller

VOLUME 12, 2024 103141



C. Calderón-Cordova et al.: DRL Framework for Control of Robotic Manipulators in Simulated Environments

parameters. Currently, there are libraries and toolboxes that
allow software tuning of controller parameters.

The field of deep reinforcement learning includes many
areas ranging from decision-making in games to robotic
manipulation. DRL research focuses on complex interactions
between an agent and the environment. DRL agents are based
on complex architectures, in addition to the existence of
a large number of available algorithms, and the increasing
diversity in DRL research results in a difficult selection of
software for subsequent projects that require these tools [45].

The effectiveness of control in any system depends largely
on the method used to design the controller. Traditional
methods, such as PI control and PID control, have been
widely used in a variety of applications owing to their
simple designs and implementations. FOPID controllers
are extensions of the conventional PID controllers. These
controllers offer the ability to adjust the derivative and
integral gains through fractional terms, which provides a
greater degree of freedom in the controller design. However,
their implementation and tuning may be complex. It can be
difficult to adapt these methods to systems with nonlinear
or uncertain dynamics, leading to the development of more
advanced approaches. Among these modern approaches,
RL and DRL control have gained attention because of
their ability to learn optimal control policies directly from
interactions with the environment. These methods can handle
highly complex and nonlinear systems, although they often
require large amounts of data and present challenges in terms
of interpretation and generalization. Currently, DRL-focused
frameworks and simulation platforms allow the models to be
trained and evaluated quickly and efficiently.

Table 5 provides a comparison between various con-
trol methods, covering both the traditional and modern
approaches. Each control method is discussed in terms of
its advantages, disadvantages, and the most appropriate use
scenarios. The key features and situations in which they
are the most appropriate for implementation are highlighted.
This comparison provides an overview of the scope and
limitations of each method, which can assist in selecting
the most appropriate approach for various applications and
control environments.

Deep Reinforcement Learning combines the perception
capability of deep learning with the decision-making capa-
bility of reinforcement learning, resulting in agent learning
to perform actions using images [46]. The core of almost
all reinforcement learning is the Markov decision process
(MDP), in contrast to unsupervised supervised learning,
RL uses a feedback (reward) signal instead of a number of
labeled samples [47].
This mathematical framework is used to model decision-

making problems in which the outcomes are partially random
and under the control of an agent. This model contains
five main elements represented in the form of a tuple
(S,A,R,P, γ ), where S is the finite set of agent states and
the environment. A, is a finite set of actions. P, is the model
of the system, that is, the probability of transition from state s

to state s′ after performing an action. R, is the reward function
obtained after performing an action; and γ ϵ[0, 1], is the
discount rate for the cumulative reward, and the discount
factor determines the importance of future rewards, if γ =

0 only considers the immediate (current) reward, on the
contrary if γ = 1, the agent will try to obtain a higher reward
value in the long period [48].

As shown in Figure 6, the agent observes its current state,
performs an action, and receives its immediate reward along
with its new state. The observed information (immediate
reward and new state) is used to adjust the agent’s policy, and
this process is repeated until the agent’s policy approaches
optimality. Within the MDP process, some terms are defined
as follows: (a) environment, an encapsulation of a set of rules
as actions that an agent can realize, states of the environment,
rewards, and penalties. (b) States: Is a set of states, places,
and positions of the environment where the agent interacts
with objects in the world. (c) Actions: The set of actions that
the agent can perform in a given environment. (d) Reward is
the value obtained by the agent during a state after making
an action, indicating whether the current state is useful or
not. It acts as feedback for the agent, and can be positive or
negative [49].
During the deep reinforcement learning process, at each

time step t , the agent is in state St , then performs an action in
At according to the policy π mapping from states to actions.
Each action affects the environment, and as a result, changes
the state to St+1. The agent receives reward Rt+1 at time step
t + 1. The agent’s goal is to determine the optimal policy π∗

that maximizes the expected total reward Gt [50].

Gt = Rt+1 + γRt+2 + γ 2Rt+3 + . . . =

∞∑
k=0

γ kRt+k+1 (1)

The optimal policy π∗ can be expressed as:

π∗
= argmax

π
E

[∑
t

γ tr (st , at)

]
(2)

The policy can be deterministic or stochastic, depending
on the task to be performed. In the deterministic policy, the
agent performs an action determined by the policy of the
gripper as the end-effector of the robotic manipulator. If there
are two actions (open and close) in state, the policy chooses
the ‘close’ action. In a statistical policy, the agent assigns a
certain probability to each action and selects the action in
a given state based on that probability. The policy chooses a
probability of 0.75 for ‘open’ and 0.25 for ‘close’, so the agent
is more likely to perform the action of ‘open’ the gripper.

The reward accumulated after policy π has two state
forms: the state function Vπ (s) which defines the goodness of
the state and the state-action value function Qπ (s, a) which
indicates how good it is to choose a certain action in a
particular state.

Vπ (s) = E [Gt |st = s] (3)

Qπ (s) = E [Gt |st = s, at = a] (4)
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TABLE 5. Main characteristics of control methods.

The action value for state Q(s, a) is updated using the
Bellman equation. This equation considers the immediate
reward and the future estimate of the action value of the next
state.

Q∗(s, a) = Es′
[
r + γmaxQ∗

a′ (s′, a′)|s, a
]

(5)

This equation is used to calculate the value function as a
function of current policy. The Bellman equation represents
the recursive relationship between the value of one state and
the values of subsequent states, and is used to update and
refine the value function as new samples of experience are
received [51].

2) TAXONOMY OF DRL ALGORITHMS FOR ROBOTIC
MANIPULATION
In this section, a summary of the taxonomy of the main
Reinforcement Learning algorithms is presented. The classi-
fication is based on certain criteria: model-based, model-free,
value-based, policy-based (in-policy and out-of-policy), and
the combination of both (value-policy), Monte Carlo-based,
and temporal differences. Some of these algorithms can
be classified into different categories [52]. The graphs and
tables in [53] summarize the properties of most commonly
used reinforcement algorithms. In addition, details of the
algorithms used in the execution of tasks related to robotic
manipulation are provided.

1. Model-based Methods. In reinforcement learning, a
‘‘model’’ refers to a representation of the environment that
allows an agent to predict the consequences of its actions.
Model-based methods are characterized by predicting the
elements of the environment by performing certain actions
during a trial-and-error process to obtain samples of the state
space, action space, and reward function through supervised
learning. They can be divided into two categories: methods
that work with a given model, in which the agent accesses
the dynamics of the environment to perform the transition

process, and methods that calculate the reward function (see
Figure 7).

FIGURE 7. Model-based RL methods.

Model-based methods refer to approaches in which an
agent constructs a representation of the environment and
exploits this model to make decisions and learn the optimal
policies. The advantage of model-based methods is that
future states and rewards can be anticipated based on
environmental dynamics. The disadvantage is that the model
of the environment is usually not available, and the dynamics
can be complex; therefore, its representation could be
wrong [54]. Another approach to the learning process is
not to model the environment but to determine the optimal
policy based on the highest reward that can be obtained
in the environment. The agent interacts directly with the
environment and improves the performance based on the
explored samples [55]. One of the drawbacks of these
methods is the cost of exploring real environments, which
is usually high owing to time consumption, equipment
deterioration, and security risks.

2. Model-free Methods. From the ‘‘Model-free’’ category
for policy optimization in deep reinforcement learning arise
the value- and policy-based methods. Value-based methods
involve optimization of the action-value function Qπ (s, a).
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After optimization, the optimal value function isQπ∗(s, a) =

maxαQπ (s, a), and the optimal policy can be derived from
π ≈ argmaxπQπ . One disadvantage is that they cannot
handle continuous action- space problems. Themost common
value-based algorithms are Q-learning, DQN, and its variants
(see Figure 8) [56].

• Prioritized Experience Replay: Weights data based on
TD error to improve learning efficiency.

• Dueling DQN: Improves network structure. The
action-value function Q is decomposed into the
state-value function V and advantage function A to
improve the approximation capability.

• Double DQN: Chooses and evaluates actions using dif-
ferent parameters to solve the overestimation problem.

• Retrace: Revises the Q-value calculation method and
reduces the variance in value estimation.

• Noisy DQN: Adds noise to the network parameters to
increase the scanning increase exploration.

• Distributed DQN: Refines the Q-value estimate in the
distribution estimation.

FIGURE 8. Model-free-based RL methods.

Policy-based methods have the advantages of simpler pol-
icy parameterization and better convergence, and are suitable
for continuous or high-dimensional action spaces. Some
common policy-based algorithms include Policy Gradient
(PG), TRPO, and PPO. TRPO, and PPO restrict the update
step based on PG to avoid policy collapse and to make the
algorithm more stable [57].

3. Value-Policy-based Methods. This is a combination of
Value and Policy-based methods, and this new method gives
rise to an actor-critic framework. The actor-critical method
combines the advantages of both methods, using value-based
methods to learn a Q-function or a value function to improve
sample efficiency, and using policy-based methods to learn
the policy function. This method is appropriate for discrete
or continuous action space [58]. Some Actor-Critical (AC)
algorithms contribute to some improvements (see Figure 9),
such as the following.

• A3C: Extends AC to asynchronous and parallel learning,
perturbs the correlation between data, and improves the
speed of data collection and training.

• DDPG: The target network is inherited from the DQN,
and the actor is a deterministic policy.

• TD3: Introduces a trimmed double Q-learning mode and
delayed policy update strategy to solve the overestima-
tion problem.

• SAC: Entropy regularization is introduced in Q-value
estimation to improve exploration.

FIGURE 9. Policy-based RL methods.

4. On and Off RL Methods. In-policy methods evaluate
and improve the policy used for decision making, requiring
the agent to interact with the environment. The policy that
interacts with the environment and that to be improved must
be the same. Methods outside the policy evaluate or improve
a policy other than that used to generate data, and this method
is adjusted to the environment. The experiences of other
agents interacting in the environment can be used to improve
policies [46].

It is important to note that each reinforcement learning
algorithm has its own strengths and weaknesses and that the
choice of algorithm depends on the problem being addressed
and the resources available.

There are a great variety of approaches based on RL
for the control of robotic manipulators, and according to
research conducted in the field of robotics, it has been shown
that this approach is very effective in the control of robotic
manipulators because of the complex and nonlinear nature of
these systems. Table 6 lists the most relevant RL algorithms
used in robotics research. The vast majority of these RL
approaches are algorithms that determine the optimal policy
based on the highest reward that the agent can obtain in the
environment during its training; they do not require modeling
the dynamics of the environment.

In several robotics studies, some researchers have eval-
uated robotic systems in the real world, but owing to the
existing difficulties in the physical implementation of this
type of system, many implementations have opted to perform
tests in simulated environments. This prevents problems such
as real-world noise, uncertainty of parameters of the physical
systems, high costs, damage to the equipment, and the need
to integrate safety measures for physical evaluation [59].

Although simulation environments provide a large volume
of data for training RL agents, it is important to consider that
they also present challenges. One of these challenges is the
simulation gap between the simulated environment and the
real world, as most simulators offer only semi-photorealistic
scenes, making the input data from vision sensors not one
hundred percent unreliable. This limitation can affect the
performance of robotic systems in the real world. However,
there are simulators such as Isaac Sim, which provide a more
photorealistic environment and offer enhanced features in
terms of the physics and dynamics of simulation elements,
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TABLE 6. DRL algorithms.

TABLE 7. DRL algorithms.

which are crucial for training AI models that exhibit better
performance in executing real-world tasks. Therefore, it is
important to carefully consider the simulator used for AI
model training and to identify options that offer more realistic
environments for optimal results.

In Table 7, a comparison of research papers reviewed in
terms of reinforcement learning strategies used to perform
some of the tasks executed by robotic manipulators is
presented, and information about the hardware used to train
or implement the RL algorithm in simulation or physically is
also added.

In addition to the literature review performed in this study,
the RL algorithms with the highest usage in robotic manip-
ulator research are PPO (Proximal Policy Optimization),
DQN (Deep Q-Networks), DDQN (Dueling DQN), PPO
(Proximal Policy Optimization), TRPO (Trust Region Policy
Optimization), AC (Actor, Critic), SAC (Soft Actor-Critic),
TD3 (Twin Delayed DDPG), DDPG (Deep Deterministic
Policy Gradient), and QT-Opt for tasks such as pin insertion,
object picking and placing, trajectory tracking, motion
control, manipulation and grasping of rigid and deformable
objects, motion control, and mostly use RGB and LIDAR
camera sensors. In [53], the authors provided a broader view
of RL algorithms applied to robotic manipulations.

3) DRL FRAMEWORKS
Currently, a large variety of deep reinforcement learning
frameworks are available online, each with its own doc-
umentation and support for its use. However, one of the
main challenges in the application of these frameworks in
robotics is the lack of standards for problem solving. The
integration of all software elements in the customization of
viable solutions for each case study is challenging.

Although there are several libraries for implementing the
testing of DRL models, it is crucial to establish criteria
for the selection of the library that best suits the needs
and requirements of the project. Some important criteria to
consider are as follows.

• State of the art (SOTA) in terms of the quantity
and quality of RL algorithms implemented in similar
robotics projects.

• Availability of documentation, tutorials, and application
examples to facilitate the learning process and imple-
mentation of DRL models.

• Environments that can be used for training and evalua-
tion of RL algorithms, and whether these environments
are compatible with available hardware and software.

• Support for visualization and event logging tools during
model creation, such as the ability to integrate with
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TABLE 8. DRL frameworks.

TensorBoard for the efficient monitoring of training
metrics.

• Update and maintain software packages to ensure
compatibility with other tools and improve model
performance in the future.

Table 8 shows the libraries used for agent creation using
deep reinforcement learning. For each of these libraries, key
features are presented, such as the link to the repository
and documentation, the current version of the library, and
the availability of support for TensorBoard, an open-source
project that allows the visualization of graphs of machine
learning experiments. With the integration of TensorBoard,
it is possible to monitor the training metrics of our DRL
models and thus improve their performance.

1. KerasRL: This framework implements several deep
reinforcement learning algorithms in Python and integrates
them with the Keras DL library. It also works with
Gymnasium, which offers environments in which different
RL algorithms can be evaluated. Some callbacks and
metric monitoring can be implemented during the model
training.

2. TensorForce: This is a Python-based open-source DRL
framework that is based on TensorFlow. Its main feature
is a modular design based on components, thus allowing
the configuration of various elements of the system to be
implemented. The algorithms are independent of the type and
structure of the inputs and outputs of the system, and the
interaction of the environment used.

3. Stable Baselines 3 (SB3): An open-source framework
that integrates seven model-free, the single-agent DRL algo-
rithms are based on OpenAI Baselines and uses TensorFlow.
The API of this framework is inspired by the scikit-learn API.
Some features of this framework include: API simplicities
for agent training, extensive code documentation, and a user
guide with a tutorial in Colab. Algorithm implementations
contrast with the published results in the SB3 repository.
It also contains the following experimental baselines: A2C,
PPO, DDPG, SAC, TD3, HER, and DQN. CSV, and
TensorBoard file logs.

4. TensorLayer: This modular Python library for deep
learning and reinforcement learning built on top of Ten-
sorFlow was designed with the following modules: layered
model for neural network creation, a model lifecycle
management model, training data management module, and
workflow management module. It includes several pre-built
algorithms, including PPO, DDPG, and TRPO, as well as
complete documentation for implementation.

5. TF-Agents: This library facilitates the design, imple-
mentation, and testing of RL algorithms using modular
components that can be modified and extended for various
application-specific usage requirements [72].

6. TorchRL: This is an open-source RL library for PyTorch
and is based on Python. It has low- and high-level abstractions
that are intended to be modular and to simplify its use for
various applications using methods such as reset() and step()
[73].

Table 9 presents the algorithms that are implemented in
each of the reinforcement learning frameworks considered
here and highlights the algorithms that are available for
implementation in simulations or physics.

One point to consider when implementing deep rein-
forcement learning algorithms in robotics applications is
the integration of software that allows the abstraction of
features of the simulation environments so that the agent can
interact in these scenarios. Diverse studies have used different
frameworks to train and evaluate DRLmodels. Gymnasium is
one of the most widely used tools for such implementations.

7. OpenAI Gym/Gymnasium. As a Python-based toolkit
for research in the field of reinforcement learning, this
software package provides an abstraction of the environment,
but not of the agent. It was developed to provide users
with different styles of implementing agent interfaces in
various environments. This environment interface is one
of the most widely used for RL applications because of
the standardization of its API for different preset and cus-
tomized environments, which allows for the reproducibility
of research in different areas and the integration of different
software such as simulation platforms and RL libraries. Some
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TABLE 9. Algorithms of DRL frameworks.

of the environmental abstraction methods for this package are
as follows.

• Declaration and Initialization: metadata settings, render-
ing mode, frame rate, etc.

• Observations: Method that translates the states of the
environment into observations.

• Steps: Contains the main logic of the environment, pro-
cesses actions, calculates the states of the environment,
and calculates reward values.

• Reset: A function that initializes a new episode and
returns an observation of the initial state or auxiliary
information.

• Close: A function that closes any resource used in an
environment that is not required.

Another aspect of OpenAI Gym is that it offers an
exchange of codes and ideas to evaluate the different
algorithms developed by users. In addition to providing
users with the facility to implement their own integration
methods in various environments, OpenAI Gym offers a
collection of environments (POMDP) with which it can be
run and evaluated, including Atari, Board Games, and 2D/3D
robots [74].

OpenAI has no plans to continue the development of
Gym and has given control over the Gym repository to the
Farama Foundation in early 2021. Currently, this Foundation
is designed to host leading open-source reinforcement
learning libraries whose goal is to provide standardization
and long-term maintenance of RL projects [75]. Future
maintenance of OpenAI Gym will be carried out in the
new Gymnasium library, from any code simply replacing

the import gym with import gymnasium, the required
documentation for users is given in [76].

Figure 10 shows that the architecture consists of three main
blocks: the first block corresponds to the different control
algorithms, such as RL and DRL; the second block consists
of an API that allows interaction between the agent and
the environment; and the last block consists of a simulator
for robotic systems, which must provide an engine for
the physics of the system, graphic interfaces, photorealistic
graphics, and programming. This toolkit allows the integra-
tion of the Gym API with robotic systems and evaluates
reinforcement learning algorithms in different simulated
environments.

FIGURE 10. Simplified software architecture using the OpenAI Gym API.

There are numerous reviews in the literature on the
application of DRL in various contexts. In Table 10, studies
related to DL, RL, and DRL with robotic manipulator
applications are presented.
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TABLE 10. Papers related to DRL control.

4) HYPERPARAMETERS IN DRL
The success of the DRL model training process involves
developing an appropriate system design and correctly
tuning various hyperparameters to achieve an optimal agent
performance when performing specific tasks [77]. In several
DRL research papers, the authors did not report details of
the design, training, and implementation parameter settings.
This complicates the reproducibility of the work [78], and
the contribution of knowledge to improving the development
of DRL control systems is low or nonexistent. There is
no a priori method to determine the best values for the
hyperparameters in DRL; therefore, several training runs are
performed to improve the total rewards, which translates
into a high consumption of the agent learning time and
computational cost of the hardware during the training stage.
Some of the key hyperparameters for DRL training that we
consider important are as follows.

• Discount factor: This indicates the relative importance
of the future rewards. A discount factor closest to
1 will give more weight to future rewards, but the
agent may have difficulty learning behaviors that
require short-term optimization. On the other hand,
a value closest to zero will prioritize immediate rewards;
however, the agent may have difficulty learning long-
term behaviors. Therefore, the discount factor value
depends on environmental characteristics.

• Batch size: Specifies the number of time steps used in
each model training update. A larger batch size may
speed up the training but may also require morememory.
However, the number of time steps required for training
depends on the complexity of the task to be performed
by the agent. For tasks such as reaching the target using
the end-effector of a robotic manipulator, many training
steps are not required; however, it should be noted that
there is a minimum number of time steps for the agent
to learn a desired policy.

• Neural Network Architecture: The architecture of the
neural network used to represent the policy can vary
its configuration in terms of layers, units, and type of

layers, which can affect the speed and convergence of
the training. In the case of images, preprocessing of the
input data of the network should be performed to prevent
the agent from learning unnecessary data and decrease
the training time. The aggregation of dense layers in the
neural network output allows the agent to perform
actions corresponding to the characteristics learned from
the network during the interaction of the agent with the
environment. Each layer of the neural network must be
subjected to a correct activation function that allows it to
obtain at the output of the network a set of actions that
represent the values of the desired dimensions (angles,
distance, etc.).

• Exploration vs. Exploitation: DRL algorithms often
require a balance between exploration (trying new
actions to discover their impact on the environment) and
exploitation (selecting the best-known action). These
parameters must be adjusted to control the amount of
time the agent spends exploring a certain part of the envi-
ronment and exploiting previous knowledge to reinforce
the actions during task execution. Some DRL libraries
offer the configuration of these hyperparameters in their
training routines, depending on the RL algorithm to be
used.

The training parameters must be adjusted according to the
task to be performed, environment with which the agent
must interact, and characteristics of the agent. DRL libraries
provide default settings for DRL algorithms; however,
researchers must adjust these parameters to achieve a good
agent performance.

5) CLOUD SERVICES AND HARDWARE FOR TRAINING AND
EVALUATION
Robotics has expanded significantly in a variety of appli-
cations. With recent advances in machine learning, more
intelligent robots have emerged; however, these upgraded
robotic systems require high-performance computational
capabilities. Cloud services and resources are used to
overcome the limitations of computational resource access to
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robotic systems. Cloud resources are used under the premise
that a robotic system has insufficient local computational
resources and power [90].
Robotic implementations have some restricted computing

capabilities, such as data processing, memory capacity,
and limited power. Cloud computing allows these robotics
problems to be solved by making them less dependent on
the robot’s native resources. With the use of cloud services,
processing and storage can be outsourced because these
platforms have virtually unlimited facilities. However, there
are other issues to consider, such as the cost of rent for
hosting, processing of input data, or deployment of AI
models. Paying for the use of these platforms consists of
the use of services such as infrastructure as a service (IaaS),
platform as a service (PaaS), software as a service (SaaS),
and resources such as CPU, GPU, disk capacity, and network
bandwidth. DRL and cloud computing technologies do not
yet have a sufficient intersection because the combination of
these two components has emerged in recent years [91].

Some platforms enable the development of intelligent
systems based on Deep Reinforcement Learning, with
applications in autonomous vehicles [92], industrial systems.(
[93], and robotics [94]. In the following section, two of
the most significant cloud services that implement RL are
discussed.

Azure Machine Learning: This cloud service enables the
training, model deployment, and management of MLOps.
The models can be created on this platform or from
open-source frameworks such as Pytorch, TensorFlow,
or Scikit-learn. Reinforcement Learning techniques are also
applied in industrial applications, to train these models are
used tools such as: Azure Machine Learning Studio, Python
SDK (v2), CLI (v2), Azure Resource Manager REST API
that allow performing tasks such as sharing and searching
resources, monitoring metrics and managing the training
process [95].
Amazon SageMaker RL: This is a fully managed service

that allows the creation, training, and deployment of machine
learning models in different applications, including robotics
and industrial control. One of the features of this service
is the support for reinforcement learning. The following
components were used to train the RL models:

• Deep learning framework such as Pytorch, Tensorflow
and Apache MXNet.

• The RL toolset provides algorithms and agent-
environment interaction management, which is com-
patible with Intel Coach, Open AI Baselines, and Ray
RLLib, among others.

• Integration of AWS, custom open source, or commercial
environments such as AWS RoboMaker, RoboSchool,
PyBullet, MATLAB, and Simulink. In addition, it allows
the use of OpenAI Gym environments with API
elements.

Certain machine learning frameworks can be used with
Python and R, among these we have: Apache MXNet,
Apache Spark, Chainer, Hugging Face, PyTorch, Scikit-learn,

SparkML Serving, TensorFlow, and Triton Inference Server,
these platforms also provide tools for visualization and
analysis of RL model training data [96].

It is necessary to emphasize that many of the tasks to be
performed for model training and evaluation require a large
computational load owing to the complexity of the samples
by exploring high-dimensional action spaces and states [97].

There are several computational complexities of DRL
for robotics: training data is generated during learning,
limited simulation speed, and computational requirements
for running libraries and APIs. In addition, simulators play
an important role in robot training, as they provide an
efficient and scalable platform without safety issues for robot
training [98].

The hardware in modern PC’s has undergone considerable
technological evolution. GPUs are commonly used for
gaming or video editing; however, they play a relevant role
in AI applications using Deep Learning and Reinforcement
Learning. GPUs have a major advantage over CPUs because
of their ability to process data in parallel with a reduction
in power consumption, which allows more calculations
to be performed simultaneously. For machine learning
applications, the manufacturer NVIDIA is the leader in GPU
technologies. NVIDIA specializes in the development of
hardware and software for training and evaluating AI sys-
tems. Over time, NVIDIA has developed many generations
of GPU hardware, each of which has improved the use of
processing resources and new functionalities.

Two of the main hardware systems for AI implementation
are the GeForce and A100 Tensor Core. The former, although
used to run high-end PC games, is also used in AI. The
second is a relatively new line of NVIDIA hardware that
offers high data-processing and AI capabilities. In addition,
NVIDIA offers software support that provides frameworks
and libraries such as CUDA, cuDNN, and TensorRT, which
optimize AI modeling workloads on GPU hardware. The
following table presents the features of some of the available
models of the four NVIDIA GPU series. The information
presented in Table 11 is based on a previous study [99].

TABLE 11. NVIDIA GeForce GPU hardware.

High-performance NVIDIA GPU ranges can be divided
into two types: laptops and desktops. It should be noted
that the hardware for laptops is lite versions because of the
limited space for cooling systems, which would decrease the
performance of the entire system, unlike a desktop computer
that has space and more robust hardware for GPU, storage,
RAM, cooling, and power supply, among others.
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Some of the GPU elements mentioned in the table above
are (1) CUDA Core, which are cores that perform operations
simultaneously and in parallel. They are used for tasks such
as graphics processing, simulations, and machine-learning
model training. (2) The Tensor Core is a hardware component
that accelerates mathematical operations related to AI, specif-
ically to perform operations using low-precision matrices
(FP16 and FP32). (3) Video RAM (VRAM), which has a
higher capacity allows more data processing during training,
thereby improving the performance of AI applications.
Depending on the GPU model, power consumption (W)
varies according to the architecture, workload, and hardware
range.

VI. SIMULATORS
Currently, advances in the field of robotics are based
on the use of simulators, and because there is great
availability and variety of simulators, determining which
one is relevant depends on the field of research and the
scenario to be simulated. The use of simulation platforms
in robotics offers many advantages, such as the creation of
synthetic data for AImodels, testing new theoretical methods,
access to a variety of environments and robots without
the need to put at risk any physical platform, and faster
execution of control methods and robots in simulation [42].
In this study, we focus on the presentation and descrip-
tion of simulators to research applications using robotic
manipulators.

Simulators are very useful for the creation of DRL agents,
as they allow the emulation of real-world scenarios, help
generate a large volume of data for DRL applications, and
avoid any hardware damage during the training process.
Tools allow robots to be connected and trained using DRL
approaches. As in the case of Gymnasium, this tool can
customize the simulation environments [43].

Transfer learning is an important process in robotic
applications because most robotic systems are trained and
evaluated in simulators, and transferring this learning to
real robots is necessary. Simulation allows maximizing the
learning process of the robot by collecting large amounts
of data, adapting to various configurations of environmental
conditions, and so on [100].
There is a wide range of simulator options between

commercial and open sources, which are constantly changing
as new functionalities to keep up with the robotics research
trends. In the following paragraphs, we present a review of
simulators used for robotic manipulator applications.

1. CoppeliaSim: Formerly called V-Rep, released in 2010,
a closed source with a free educational license is used in
research for testing and debugging complex robotic systems,
such as the navigation of biped robots and visual trajectory
tracking of differential drive robots. Each object/model
in the simulation can be individually controlled using
secondary commands, ROS nodes, and external client API
integration. The elements of this simulator consist of scene
objects (sensors, paths, robots), calculation modules (inverse

kinematics, collision detection), and control mechanisms
(scripts and plugins) [101].
2. Isaac Sim: This is a virtual robotics laboratory and

high-fidelity 3D simulator whose functionality is based
on five extensions: main (core functionality and control),
sensors (interface creation), asset conversion (robot tool
import), robots (classes), and others (debugging and motion
program generation). It has a built-in URDF loader that
allows importing URDF models of robots into a simulator
(simulating joints and motions) [102]. For reinforcement
learning, there is an extension called Isaac Gym that allows
vectorization of a customized environment, and the training
processes are accelerated through an end-to-end GPU [98].
Documentation for the use of this physical robotics simulator
is available in [103].

3. Gazebo: One of the most popular simulators for research
on mobile ground robots, with limbs and wheels, developed
in 2004, is an open-source simulator that offers a library
of models for sensors such as cameras, GPS, and IMU.
It runs on Linux, although several versions of Windows exist.
This allows the import of various types of environments and
robot models using URDF files. This simulator does not
provide motion planning functionality; however, owing to
ROS integration, it allows path planning [104].
4. RoboDK: This simulation and programming software

was used for the industrial robots. Programming can be per-
formed, simulated, and generated offline (from a computer).
It contains an extensive library of CAD models based on
industrial robots and tools. The interface is intuitive and has
a module designed for calibrating simulated robots [105].
5. MATLAB/Robotics System Toolbox: Provides tools

and algorithms for designing, simulating, and testing manip-
ulators and mobile and humanoid robots. The toolbox
includes algorithms for collision checking, trajectory gen-
eration, direct and inverse kinematics, and dynamics using
a rigid-body tree representation. Mobile robots include
algorithms for mapping, localization, path planning, path
tracking, and motion control. It has its own library of
industrial robot models that can be imported, visualized,
and simulated. Simulation applications (Simulink) can add
sensor models and environments and can be connected to
Gazebo [106].
Table 12 compiles relevant information on these simulators

that are applicable to the field of robotics, specifically for
robotic manipulators, and compares the main features of
each to establish a clear picture of the use and applications
of robotic manipulators. Some of these elements allow the
selection of a simulator for the required case study. These
include the type of license, support for ROS, languages used
for control programming and functionalities of robots and
objects in simulation, availability of APIs for connection
with other software or hardware tools, types of components
such as sensors, end effectors, dynamic and static objects
available for the simulation scene, libraries of robotic models,
and the facility to create/import various types of robot
models.
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TABLE 12. Comparison of simulators for robotic manipulators.

TABLE 13. System requirements.

Table 13 presents information regarding the basic require-
ments for a desktop or laptop computer to install and use each
of the simulation platforms for the development of robotic
systems. The selection of the simulator depends on factors
such as the scenario, application area, tasks to be performed,
available components, robot models, APIs, and programming
language. This is only one example, and the specific functions
and features of these simulators can change over time. It is
recommended to consult the official documentation of each
simulator to ensure that the most updated information is
used.

More detailed information about commercial, open-
source, industrial, and educational simulators can be found
in the literature. For the best description of simulators used
in robotics, some relevant works are emphasized; in [42],
a detailed review of the fields of use and capabilities of
several simulators is presented, as well as a description of the
functionalities of each of the platforms. In .) [108], an SLR
on realistic simulators oriented to educational robotics, which
can simulate robots, sensors, and actuators, was presented,

and in [109], educational robotics simulators with graphical
user interfaces that allow students to interact with virtual
robots and robotic mechanisms were presented.

One of the main obstacles in selecting a simulation
platform is hardware system requirements. It must be clear
which scenarios will be used in the simulation and which
elements will be used (sensors, robotic systems, actuators,
tools, and software) for the project to be carried out. The
available hardware limits the use of simulators because
of their specifications. The following table summarizes
some hardware requirements that a PC must install on any
simulation platform.

VII. SYSTEM INTEGRATION
The use of simulators to train robots with the Deep Reinforce-
ment Learning paradigm can be time consuming because
of the difficulty of developing customized experiments and
the integration of the different libraries and APIs required
for the robotic system. This section presents the general
structure of the proposed architecture for the implementation
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of robotic manipulator control and simulations using two
different approaches. The first approach uses three modules:
the CoppeliaSim, Gymnasium, and DRL algorithms. The
second approach does not use the Gymnasium toolset to
demonstrate different ways of integrating various tools for
DRL in robotics. The main objective was to develop a
customized configuration of scenarios for the training and
testing of robotic manipulators.

Many simulators have tools that permit the addition of
features for training and testing DRL algorithms on different
types of robots in a fast and safemanner in semi/photorealistic
environments [110]. Owing to the difficulty of merging
different deep reinforcement learning frameworks with
customized robots and environments, a training and testing
environment for robotic manipulators was created in this
study.

CoppeliaSim was chosen because it is one of the most
widely used robotic simulators in research, education, and
industry. It can generate semi-photorealistic scenarios in
which different types of fixed or mobile station robots can
be developed, tested, and managed, and the control can be
based on artificial intelligence techniques. It offers an API
in Python that allows the integration of all the necessary
packages in a single programming language. On the other
hand, Gymnasium is a library that addresses the approaches
to the definition, structure, and interaction functions of the
environment with external elements necessary for our robot to
interact in the simulation environment under AI-based control
laws.

A. CREATING THE CUSTOM ENVIRONMENT WITH
GYMNASIUM
This section provides details of the creation of a cus-
toms environment using Gymnasium (v0.26.0) and the
semi-photorealistic simulator CoppeliaSim (v 4.6). The min-
imum organization required to build our custom environment
package in Python using Gymnasium and CoppeliaSim is
shown in Figure 11. Depending on the application and
functions to be implemented, the necessary files will be
created in the envs/ directory, allowing the development of
a complete software system.

FIGURE 11. Initializing environment with Gymnasium.

At the bottom level, there are two files: (1) GymCopp.py
contains the necessary code to manage the customized envi-
ronment, the declaration, and initialization of the environ-
ment that inherits from the abstract class gymnasiumEnv. The
metadata attributes are added to the class (GymCoppManR),
the rendering modes supported by the environment are
specified, and in the __init__method, some variables are con-
figured to define the environment: self.observation_space,
and self.action_space. (2) The _init_.py file must contain
the import of the ‘‘GymCoppManR’’ class. From the
GymCopp.py file, a connection to the simulator was created
using native Python API.

At the middle level, for each custom environment to
be detected by Gymnasium, it must be registered in
CoppeliaSim-Gym/CoppeliaSim_Gym/_init_.py. The envi-
ronment ID consists of three components: namespace,
mandatory name, and version CoppeliaSim
_Gym/GymCoppManR-v0.

The last task is the creation of a package that allows struc-
turing the codewritten in the Python package. At the top level,
a setup.py file must be configured with the minimum code for
the package name, version, and installation requirements.

Figure 12 shows the basic structure of the corresponding
.py files to create a customized environment for the training
and evaluation of DRL agents using CoppeliaSim simulator.
After configuring the different basic files for the creation of
our customized environment, we installed the package locally
on the PC. In the Anaconda environment, open a terminal,
go to the CoppeliaSimGym folder, and enter the following
instruction: pip install -e CoppeliaSim-Gym.

In the GymCopp.py file, four elements are created that
allow working with the simulator: 1) configuration for
the connection of the client with the CoppeliaSim server;
2) obtaining the robot joint handlers, sensors, and objects of
the simulation scene; 3) Gymnasium methods that allow the
calculation of observations, rewards, actions, restarting, and
closing the connection with the environment; and 4) functions
for the acquisition, data processing, and sending control
signals to the robot. Depending on the task to be performed,
functions were created to control the actions of the robot in
the scene.

Finally, to verify that the custom environment is working,
it is necessary to create an instance of the environment
through the constructor in the client script: gymnasium.make
(Figure 13). The observations were constructed from the
states and calculated in both reset and step. The information
returned by the reset and step methods also contained
data in terms of rewards. The reset method is used to
start a new episode and return a tuple of the initial
observations and auxiliary information. The step method
contains most of the environmental logic, receives the action,
calculates the state of the environment after applying the
action, and returns the tuple of the four data (observa-
tion, reward, done, and information). The closed method
must close all open resources after the environment is
completed.
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FIGURE 12. Structure of the environment package.

FIGURE 13. Integration of Gymnasium with CoppeliaSim.

In the client script, it is only required to import two
libraries: the first is the Gymnasium tool library and the
second corresponds to the customized environment created
by the user. Then, a call instance is created that allows the
user to interact with the created environment and to be able to
control the agent and acquire data from the simulation scene.

1) DRL LIBRARY
Various RL frameworks are simple to understand and contain
several algorithms used in robotics research. An example
application of the DRL model building block based on the
DQN algorithm is presented in Figure 14. A DQN (Deep Q-
Network) is a reinforcement learning algorithm used to train
agents to make decisions in a simulation environment such as
CoppeliaSim. These agents can be trained to perform various
tasks, such as obstacle avoidance and route planning.

FIGURE 14. General structure of KerasRL training.

To implement DQN in CoppeliaSim, first, the environment
is defined, which includes the task to be performed, the agent
and state space, and the action space. This can be achieved
using CoppeliaSim’s native API, which can define objects
and properties and control behavior via commands.

Once the environment is defined, a reinforcement learning
library, such as KerasRL or any of those available in RL
literature, can be used to implement the DQN algorithm. The
agent interacts with the environment by observing the state
and taking actions based on a policy, which is learned through
trial and error using a Q-learning algorithm. The Q-values are
estimated by a neural network trained using a combination
of experience reproduction and objective network techniques
to improve stability and convergence. The training process
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consists of iteratively updating the neural network weights as
a function of the TD error (temporal difference) between the
predicted Q-values and the actual rewards obtained from the
environment.

This framework can implement several deep reinforcement
learning algorithms developed in Python. Most libraries
that implement reinforcement algorithms work with the
Gymnasium toolset, so their integration and evaluation are
easy to perform.

2) SEMI-PHOTOREALISTIC SCENE AND ROBOTIC
MANIPULATOR
The general structure of the proposed framework comprises
of three modules: CoppeliaSim, Gymnasium, and DRL. The
.py files necessary for the integration of the three modules
were created inside the ‘‘envs’’ folder. In the first file,
the necessary methods are created to add, define, create,
and configure the features of the simulator scenes and
sensors. The second file contains all functions required to
import, control, and acquire data on the state of the robotic
manipulator and its joints. The third file inherits all functions
of the classes of the previous files, which follow the basic
structure of theGymnasiumAPI. Themanagement of the data
flow between the server components (CoppeliaSim) and the
client (Jupyter Notebook) is performed using the simulator’s
native Python-based remote Legacy API.

In addition to programming the main functions of using
sensors, executing actions, controlling data flow between
the server and client, etc., are also necessary. However, all
these functions can be performed in a single file. To simplify
their use in the GymCopp.py file, the methods and functions
required to manage the data flow of the different components
of the scene (sensors, objects, robotic manipulator, trajectory,
marks, etc.) are integrated using the API (see Figure 15).

FIGURE 15. Library simplification for the general structure.

3) GENERAL SCHEME OF THE SYSTEM
In our case study, we summarize and explain how the
components that integrate our software system work. The
general configuration is constituted by a robot with N-degrees
of freedom that fulfills the role of ‘‘Agent’’, and the
customized scene in CoppeliaSim is used as the environment
in which our agent will interact.

The environment comprises five elements, the first three
are Gymnasium Configuration, Robot Configuration, and
Environment Configuration. These elements contain the nec-
essary configurations for using the CoppeliaSim simulator as
a training and testing environment for theDRL agent. The two
remaining elements are the Robotic Manipulator and Scene,
these elements contain the initialization of sensors, scene
objects, and data concerning the robot and motion control,
all of which are updated when a new step is established.
When the environment is reset, both the robotic manipulator
and the scene objects return to their initial positions. These
components are shown in Figure 16.
Several DRL frameworks can be integrated with Gymna-

sium, and the inputs of the DRLmodel are reward calculation,
observations of the robot, scene, and Gymnasium’s initial
setup data. The output of the model corresponds to the
action commands that allow motion control of the robotic
manipulator. In this case, the action state was set as the angle
data, which is a vector of N elements corresponding to the
robotic manipulator joints.

Table 14 presents some robotic application projects that
use the elements of the framework described in this study.
OpenAI Gym is a tool that is mostly used to create
environments using the CoppeliaSim simulator.

B. TYPES OF GRAPHICS-DRL SYSTEM WITHOUT
GYMNASIUM
In the field of DRLwith robotics applications, it was observed
that most studies used the Gymnasium toolset to create
customized environments with any simulation platform to
train and evaluate a DRL agent. This is because of the
standardization of methods for agent interaction with the
simulation environment and the ease of integration with
various simulation platforms and DRL libraries. However,
as demonstrated in the literature, software tools designed for
DRL can also be used. Figure 17 shows the proposed software
architecture for implementing DRL techniques for robotic
manipulation without using Gymnasium.

This scheme consists of three major components:
• The simulator provides the functionality required for
interaction with the robot and the simulation scene.
A work area is created on a platform that allows
different elements to interact with each other to mimic
the behavior of a real-world scene. A native API
controls and sends the data flow to the other compo-
nents of the system inside and outside the simulation
platform using programming languages, such as LUA
and Python. It also provides various sensors, robotic
components, and static and dynamic elements for a
scene.

• The selected framework provides tools and methods
for building and training a DRL agent in a customized
environment based on a semi-photorealistic simulator.
Various predefined robots can be added to the platform
and user-customized models can be imported. The DRL
library and API enable handling of the decision and
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FIGURE 16. Schematic diagram of the software system integration.

TABLE 14. Properties RL projects with robotic applications.

control tasks of the agent and the data generated by the
environment. The integration of different components
of the simulator with external software tools allows for
the creation of robust systems with features that increase
their functionality.

• In the set of .py files, scripts integrated in the
simulator or from external tools, and the necessary
classes and methods are created to obtain the data

from the environment, process the information from
the sensors, determine control actions for the robotic
manipulator, export data related to the training and
evaluation of the systems, and create and save the DRL
model. The architecture is based on a client-server, and
several scripts were created to perform environment
configurations for DRL processes, customize functions
for robotic tasks, and export data for visualization
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FIGURE 17. General DRL architecture.

in graphs to perform a quantitative analysis of the
performance of the system.

Similarly, in the training and evaluation logic for a DRL
agent, the reset methods reset the behavior of the robot
and objects in the scene to a preset state, and a step that
implements the data acquisition functions of the sensors and
actions to control the position of the joints of the robotic
manipulator is established. Remarkably, the control functions
depend on the task to be performed by the robot. The API
of the simulator allows the control of some elements of the
simulation, because the researcher must solve each task of
the system.

VIII. CASE STUDY IMPLEMENTATION
For the development of the modern control approach for
roboticmanipulators, some of the software toolsmentioned in
this framework have been used. The experimental setup con-
sisted of a robotic manipulator (KUKA LBR iiwa 14 R820)
with seven degrees of freedom (DoF) and a stereo camera.
To evaluate the robotic system with DRL, the CoppeliaSim
simulator was used to perform the task of reach a target
(cube) within the simulation scene. The software architecture

is based on a client-server. The simulator was connected to the
client via CoppeliaSim’s remote API in Python programming
language. TensorFlow was used as a baseline for DRL
implementation (DDPG algorithm).

Task: Reach target. The agent must approach the blue
object located in the working area. The observations obtained
from the environment were captured using a stereo camera
located in the robotic manipulator, and two images were
obtained: RGB and a deep map. From this input, the
parameters of the rectangle that frame the target object of the
image are extracted using OpenCV.

The parameters of the neural network were adjusted using
the DDPG algorithm, which plans the trajectory toward the
object located in the visible area captured by the stereo
camera. The input of this network consisted of the parameters
of the position of the joints of the manipulator and the
rectangular area of the object in the image, and the output was
the calculated coordinates of the manipulator. The Reward
Function consists of calculating the current and next state
potentials and the penalty for the duration of the motion,
thus establishing a smooth multipoint trajectory. The state
potential is the computation of the weighted sum of the
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weighted sum of the area of the rectangle of the localized
object, its displacement from the center of the image, and the
average distance of the depth map. In Figure 18, the robotic
manipulator is presented within the CoppeliaSim scene.

FIGURE 18. General structure of KerasRL training.

The training and evaluation processes of the software
system were developed on a machine with an i7 CPU,
with 12 GB of RAM, and 1TB of storage. A scene in which
the robot was configured in kinematic mode was used to
perform the training, whereas a scene in which the robot was
configured in dynamic mode was used to evaluate the DRL
agent.

A. TRAINING
During the training phase, the agent learned the task of
reaching the target (in this case, the blue cube). The agent was
trained for 10,000 episodes, which required approximately
2h and 30 minutes to complete. During the training, cubes
of different colors were placed at random positions within
the working area during each episode. Here, the robot scans
this area and detects the blue cube using the neural network,
and the RL algorithm calculates the values for each joint
of the manipulator so that the end effector can reach the
target. ATensorBoard was used to visualize some metrics of
the training results. These are actor Q network values, total
reward, and penalties during the 10k episodes, as shown in
Figures 19, 20, and 21, respectively.

B. EVALUATION
To evaluate the performance of the trainedmodel, a script was
created, in which N test episodes were set. Figure 22 shows
the steps to evaluate the trained model for the performance of
the task of reaching an object.

Table 15 summarizes the control characteristics of the
robotic system implemented in the software with DRL to

FIGURE 19. Evaluation of the Q-actor network.

FIGURE 20. Total reward.

FIGURE 21. Penalties.

TABLE 15. Features of the robotic system.

perform the task of reaching a particular object within the
simulation scene.
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FIGURE 22. Evaluation of the Q-actor network.

The training and evaluation of this system were performed
on a computer with a CPU; however, this process could be
replicated on a PC equipped with a GPU. To achieve this
task, it is necessary to have a GPU that has the drivers and
libraries necessary for the configuration of the CUDA [115]
and cuDNN [116] systems for TensorFlow installed. Other
frameworks, such as PyTorch, can be used. Depending on the
operating system of the computer, a set of steps are performed
to enable the use of the GPU for tensor operations.

IX. CONCLUSION
This paper presents a framework for performing experiments
with robotic manipulators in physical and semi-photorealistic
simulation environments using traditional and modern con-
trol approaches. A literature review was conducted to present
the main software tools available in the robotics field, as well
as several related works that allow the extension of the use
and functionalities of the mentioned tools.

The main features of existing technology in the field of
robotics for DRL research applications in robotic manip-
ulators are presented in detail. Because of the variety of
software tools, some of the most used tools in the literature
were selected, and the information is summarized in tables to
provide a better perspective for the reader.

The use of software tools for robotics research provides
multiple benefits, such as cost reduction in the acqui-
sition of equipment, safety, speed in the deployment of
robotic systems in complex environments, and verification
of the operation and performance of the control system
for robotic manipulators using simulators and visualization
tools.

For demonstration purposes, the integration of our software
system was composed of several selected standard libraries
such as TensorFlow, OpenCV, Numpy, and remote API
Legacy from CoppeliaSim, which allowed the creation of a

DRL agent. Python programming language was used as a
base to facilitate the configuration and customization of the
robot, vision sensors, environment configuration, and meth-
ods for experimentation with Artificial Intelligence-based
robotic manipulators.

This article presents a framework for developing robotic
applications in different areas with software tools using simu-
lators, deep reinforcement learning libraries, APIs, toolboxes,
etc. Thus, a methodology that allows the integration of each
software element and facilitates the deployment of a robotic
system without the existing restrictions of the real world
can be developed. This work can be a starting point for
new researchers in the field of robotics, and can serve as a
reference guide for creating new lines of research.

APPENDIX
Source code and training and evaluation scenes in
CoppeliaSim of the DRL agent available at: https://github.
com/RogerSgo/DRLForManipulator
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