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ABSTRACT The desnowing (snow removal) model is extensively utilized in various fields, including visual
enhancement, security monitoring, and autonomous driving technology. Some previous work developed
highly efficient models that primarily addressed single-image desnowing tasks. Simultaneously, the process
of video desnowing holds significance in practical applications. There is only a limited amount of literature
available on the topic of video desnowing, mainly utilizing predetermined knowledge rather than exploring
deep learning technologies. Given the identified deficiency in current research, our study aims to improve
upon existing video desnowing methodologies by introducing an innovative approach and filling the void
of specialized datasets. Our contribution includes the development of a dataset tailored for the training
and assessment of video desnowing models, as well as the creation of the Video-Denower model, which
integrates adaptive feature fusion mechanisms. Video-Desnower employs sophisticated adaptive feature
fusion methodologies to enhance desnowing efficacy through the comprehensive analysis of features across
various scales. In contrast to single-image models, this particular model has the ability to analyze multiple
frames within a video. Experiments on a video desnowing dataset show its exceptional capabilities. The
code and dataset used in this study are available upon request. Interested researchers can contact us at
liyux2001@163.com for access. Please include a brief description of your research interest and how you
intend to use the data.

INDEX TERMS Computer vision, deep learning, video desnowing, feature fusion understanding.

I. INTRODUCTION
Recent advancements in computer vision have been notable
due to the successful integration of deep learning technology.
Deep learning techniques have been applied effectively in
computer vision tasks, such as image classification [1], [2],
[3], [4], [5], [6], [7], object detection [8], [9], [10], [11], [12],
and semantic segmentation [13], [14], [15], [16], [17], [18],
[19], [20]. Desnowing is a computer vision task that seeks to
enhance visual clarity by eliminating snow noise from images
or videos.
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The process of removing snow can be mathematically
characterized as Eq.(1) [21]. Let I(x) denote the snowy image
at pixel location x, which can be modeled by the following
equation:

I(x) = K(x)T (x) +A(x)(1 − T (x)), (1)

where T (x) represents the transmission map, indicating the
proportion of the scene visible through the snow. A(x) sig-
nifies the atmospheric light, which affects the color and
intensity due to the snow. K(x), representing the scene free
of veiling effects from snow, can be decomposed as follows:

K(x) = J (x)(1 − Z(x)R(x)) + C(x)Z(x)R(x), (2)
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where J (x) is the clean image, devoid of any snow. R(x) is
the binary mask indicating the locations of snow within the
image. Z(x) denotes the chromatic aberration image, which
captures the color distortions caused by snow. C(x) represents
the color of the snow, accounting for the variations in snow’s
hue across the image.

Researchers proposed effective single-image desnowing
solutions to remove snow from images. However, the uti-
lization of video desnowing holds equal importance to
single-image desnowing, particularly in light of the imper-
ative need for ongoing processing of numerous video frames
in practical environments. In light of the dearth of datasets
available for the training and evaluation of video desnowing
models in academic circles, we curated a dataset tailored to
this objective in order to support the progression of research
in video desnowing.

At present, current desnowing initiatives exhibit a defi-
ciency in comprehensively grasping the amalgamation of
snowflake characteristics. As a solution, we devised an
innovative transformer that incorporates k-nearest-neighbors
(KNN) point cloud processing capabilities to efficiently
integrate and evaluate the multi-scale characteristics of
snowflakes. Moreover, the integration of deformable con-
volutions with traditional convolutions was implemented to
effectively tackle the irregular shapes of snowflake noise,
ultimately improving the feature fusion and comprehension
abilities of the model. To enhance the understanding of
diverse characteristics, three perceptrons were integrated to
autonomously modify the three K values of KNN, the com-
prehension weights for distinct K values, and the feature
weights of the two convolution types. The integrated video
desnowing model (Video-Desnower) was created and tested,
showing excellent snow removal performance in videos.

Our work’s contributions are outlined as follows:

• A dataset was generated for the purpose of training and
assessing video desnowing models.

• A strong desnowing algorithm called Video-Desnower
model was created with adaptive feature fusion.

• The exceptional desnowing performance of Video-
Desnower was validated through experimental methods.

The following sections of this paper are organized as
follows: Section II reviews pertinent literature, Section III
provides a detailed analysis of Video-Desnower, Section IV
presents the experiments and results, Section V discusses
the ablation study, and Section VI offers a conclusion to the
paper.

II. RELATED WORK
A. DESNOWING MODEL BASED ON PREDEFINED PRIORS
Prior research on desnowing primarily utilized models that
were based on existing knowledge, frequently predetermined.
Jérémie Bossu et al. posited that precipitation in the form
of rain and snow could be modeled using a Gaussian dis-
tribution. They utilized the conventional Gaussian Mixture
Model to distinguish between rain and snow, quantified the

intensity of precipitation, and preserved images that were free
from any obscuring rain or snow [22]. Wang et al. integrated
image decomposition and dictionary learning methodologies
to partition images into distinct layers, subsequently pro-
cessing each layer independently to achieve the desnowing
of images [23]. Huang et al. proposed a new methodology
that incorporates a sparse image approximation module and
an adaptive tolerance optimization module. Through iter-
ative implementation, this approach successfully mitigated
snowflake noise and produced images devoid of snow [24].
These methodologies rely on predetermined prior knowledge
and lack the ability to autonomously adjust to alterations
in snowflake attributes. When significant changes occur in
properties such as snowflake characteristics, the model faces
difficulties in efficiently carrying out desnowing procedures.

B. DEEP LEARNING IN COMPUTER VISION
In previous work, deep learning has been widely applied
to computer vision tasks, such as medical image segmen-
tation and classification, hyperspectral image classification,
and object detection in remote sensing images. For instance,
multi-task networks and class incremental learning methods
have enhanced medical and hyperspectral image classifica-
tion respectively [1], [2]. Interpretable models have improved
neurological phenotyping [3], while semi-supervised learn-
ing and few-shot techniques have advanced image clas-
sification with limited labeled data [4], [5], [6]. Deep
neural networks have automated endoscopic image classifica-
tion [7], and weakly supervised object detection has benefited
from methods selecting high-quality proposals [8]. In the
realm of few-shot object detection, new networks tailored
for remote sensing images have emerged [9]. Advancements
also include automatic learning of object co-occurrence
knowledge for remote sensing image detection [10], and the
development of a multitask benchmark dataset for satellite
video covering detection, tracking, and segmentation [11].
Methods for metal and living object detection in wireless
charging systems have also been explored [12]. In 3D seman-
tic segmentation, scene-adaptive approaches with multi-level
enhancement have been proposed [13]. Domain adaptation
techniques for semantic segmentation in remote sensing
images have been improved with semantic-preserved gen-
erative adversarial networks [14].For RGB-thermal image
segmentation, semantic-guided fusion networks have shown
promise [15]. Semantic information extraction from various
data forms in 3D point clouds has been investigated [16].
Semi-supervised semantic segmentation using cross-image
semantic consistency has been developed [17], while RGB-T
semantic segmentation has been enhanced through location,
activation, and sharpening techniques [18]. Collaborative
learning strategies for semi-supervised semantic segmenta-
tion have been introduced [19], and networks sharing modal
memory and complementing morphological information for
RGB-T urban scene segmentation have been proposed [20].
The removal of snow from videos is a significant computer

VOLUME 12, 2024 104355



Y. Li, L. Dai: Video Desnower: An Adaptive Feature Fusion Understanding Video Desnowing Model

vision task, and the implementation of deep learning method-
ologies is expected to enhance its efficacy.

C. DESNOWING MODEL BASED ON DEEP LEARNING
TECHNOLOGY
Recently, desnowing models have incorporated deep learning
technologies, allowing them to autonomously acquire knowl-
edge of snowflake characteristics, thereby improving their
adaptability and generalization abilities. Chen et al. devel-
oped an invertible neural networkmodel with two asymmetric
interactive pathways incorporating attention mechanisms,
demonstrating the superior performance of the proposed
model in single-image desnowing tasks [21]. Jaw et al.
proposed a modular desnowing network architecture using
generative adversarial network technology [25]. Cheng et al.
proposed an adaptive residual network to capture the charac-
teristics of snowflakes and locate the positions of snow, using
a reconstruction network to generate snow-free images [26].
Chen et al. developed new snow models and proposed a
desnowing algorithm that jointly recognizes the size and
transparency of snow [27]. The success of these endeavors
has motivated us to employ deep learning models in the
pursuit of video desnowing objectives.

D. VIDEO DESNOWING MODEL
The works previously mentioned concentrate on desnow-
ing individual images, yet video desnowing presents also
a wide range of potential applications. There exist aca-
demic investigations pertaining to the process of video
desnowing. Kim et al. utilized temporal correlations and
low-rank matrix completion techniques to remove rain or
snow streaks from video sequences [28]. Yang et al. proposed
a novel video desnowingmethod based on adaptive snowflake
detection and a patch-based Gaussian Mixture Model [29].
Tian et al. extracted a combination of static background
and moving foreground along with falling snowflakes using
global low-rank matrix decomposition, removed the falling
snowflakes in front of moving objects using local low-rank
decomposition, and generated snow-free videos by overlay-
ing the moving foreground onto the static background [30].
It is imperative to recognize the scarcity of research on
video desnowing, often utilizing antiquated methods and
lacking sufficient incorporation of advanced deep learning
techniques. Hence, it is imperative to develop novel deep
learning models specifically designed for the task of video
desnowing.

III. PROPOSED METHOD
Figure 1 depicts the architectural design of Video-Desnower,
a model proposed for the purpose of video desnowing.
Through the integration of MSBlock and K-Former, Video-
Desnower demonstrates the capability to successfully merge
and interpret snowflake attributes in a flexible and adap-
tive fashion. The MSBlock integrates feature maps obtained
from deformable and conventional convolutions, establishes

a perceptron for dynamically determining weights, and then
applies theseweights to combine the two featuremaps.TheK-
Former model, a derivative of the Transformer architecture,
employs a Feedforward design that integrates three KNN
point cloud models. This methodology entails the utilization
of data input into a perceptron for the purpose of ascertaining
three adaptive K values, which are subsequently employed
in another perceptron for the computation of three adaptive
weights. The ultimate result of the Feedforward process is
the weighted average of the three KNN point cloud models.
This section will offer comprehensive explanations of both
the MSBlock and K-Former modules.

A. MSBlock: AN ADAPTIVE FUSION BLOCK DESIGNED TO
FACILITATE THE INTEGRATION OF 2 TYPES OF
CONVOLUTIONAL FEATURE GRAPHS
1) MOTIVATION
In the task of image desnowing, the shape and distribution of
snowflakes exhibit high randomness and irregularity, posing
significant challenges to the model. Traditional convolutional
neural networks (CNNs) perform well in handling smooth
regions and regular structures, but their limitations become
apparent when dealing with complex and irregular snowflake
noise. To effectively address this issue, we designed a
deformable convolution and conventional convolution inte-
grated adaptive feature fusion module to enhance the model’s
ability to process snowflake noise.

Advantages of Deformable Convolution: deformable con-
volution is an enhanced convolution operation that introduces
learnable offsets, allowing the convolutional kernel to adapt
to irregular shapes and complex structures in the image. Com-
pared to fixed-shape conventional convolution, deformable
convolution canmore flexibly capture the details and edges of
snowflakes, thereby improving the model’s ability to capture
and remove snowflake noise.

Stability of Conventional Convolution: conventional con-
volution exhibits high stability and efficiency when handling
smooth regions and regular structures. By combining con-
ventional convolution with deformable convolution, we can
enhance the model’s capability to handle complex snowflake
noise while ensuring processing efficiency. Conventional
convolution provides a stable understanding of the overall
image structure, while deformable convolution compensates
for its shortcomings in dealing with irregular structures.

Adaptive Feature Fusion: to fully leverage the advantages
of both deformable and conventional convolutions, we intro-
duced an adaptive feature fusion mechanism. By learning
weights, we can dynamically adjust the contributions of the
two convolution operations based on the features of the input
image. This adaptive fusion mechanism applies the most
suitable convolution operation to different regions of the
image, thereby enhancing the model’s overall desnowing
performance.

The design of MSBlock aims to effectively address
the complexity and randomness of snowflake noise by
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FIGURE 1. Structure of video-desnower. The core design of video-snower comprises the MSBlock and K-Former, with the primary advantage being the
adaptive fusion-understanding of features.

combining the advantages of deformable and conventional
convolutions and introducing an adaptive feature fusion
mechanism. In this way, our model can more accurately
capture and remove snowflake noise, achieving cleaner and
higher-quality desnowing effects.

2) INTRODUCTION OF DEFORMABLE CONVOLUTION
The normal convolution operation in a neural network can be
mathematically represented as:

y(p0) =

∑
pn∈R

w(pn) · x(p0 + pn), (3)

where y(p0) is the output feature map at location p0, x(p0+pn)
represents the input feature map at location p0 shifted by pn,
w(pn) is the weight associated with the kernel at displacement
pn,R denotes the set of locations in the convolutional kernel.
Deformable convolution introduces an additional degree

of freedom that allows the convolutional grid to adapt to the
input feature map dynamically. It is defined as:

y(p0) =

∑
pn∈R

w(pn) · x(p0 + pn + 1pn), (4)

where 1pn represents the learnable offset for the convo-
lutional grid, other terms have the same meaning as in
conventional convolution.

While normal convolution operates on a fixed grid pat-
tern, deformable convolution adjusts the positions of the
convolutional kernels during the learning process. This adapt-
ability allows deformable convolution to handle geometric
and spatial transformations more effectively than conven-
tional convolution, making it especially useful in complex
visual tasks where the alignment of features is critical.

By combining deformable convolution with normal convo-
lution, we can more effectively handle snowflakes of varying
shapes.

3) CONCRETE IMPLEMENTATION OF MSBlock
TheMSBlock is implementedwith the following components:

• Conventional convolution (conv1) and deformable
convolution (de_conv) are used to extract features
from the input.

• A fully connected network (weight_net) computes
adaptive weights that control the blending of features
from the two convolution types.

Given an input x from the dataset, the feature extraction
and fusion process can be described as follows:

• Feature Extraction. Features are extracted using:

lx = conv1(x), (5)

offset = conv2(x), (6)

gx = de_conv(x,offset), (7)

where lx and gx represent features from conventional and
deformable convolutions, respectively.

• LearningWeights. The perceptronwithinweight_net
computes the weights:

w = Softmax

(
(8)

Linear
(

(9)

Flatten
(

(10)

AdaptiveAvgPool2d(x)
)))

(11)

wherew = [wl,wg] are the weights for the features from
the respective convolutions.
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FIGURE 2. The design of MSBlock. The MSBlock fuses features from deformable and regular convolutions according to weights, where weights w1 and
w2 are adaptively determined by a perceptron.

FIGURE 3. The design of K-former. The diagram contains K-Former’s overall architecture and component KNN-Feedforward as well as an illustration of
KNN technology. The K-Former utilizes the K-nearest neighbors (KNN) point cloud model to achieve an adaptive understanding and fusion of
multi-scale features. The K values k1 and k2 are adaptively determined by one perceptron, while the weights w1, w2 and w3 are adaptively obtained
through another perceptron.
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FIGURE 4. Presentation of the ground truth videos of the constructed dataset. One frame is selected for each video and
each frame is labeled with a video name.

FIGURE 5. Video presentation of the of the constructed dataset with snowflake noise added. One frame is selected for
each video and each frame is labeled with a video name.

• Feature Fusion. The adaptive fusion of the extracted
features is performed as:

xout = ReLU(wl · lx + wg · gx), (12)

where xout is the output after feature blending.
The structure of the MSBlock is shown in Figure 2.

B. K-FORMER: A REFINED TRANSFORMER MODEL FOR
ENHANCING COMPREHENSION OF ADAPTIVE KNN
FUSION
1) MOTIVATION
K-Former is an advanced version of the Transformer model,
designed to incorporate adaptive KNN point cloud models
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FIGURE 6. Comparison of snowflake noise levels across different datasets demonstrates that our custom
dataset exhibits significantly larger and more complex snowflake noise, making the desnowing task more
challenging. (a) SRRS [27], (b) SnowKITTI [31], (c) Snow100K [32], (d) Our video desnowing dataset.

FIGURE 7. Display of desnowing effects for one frame in the dataset. (a) Model input (b) Model output (c) Ground truth.

within its architecture. This innovative structure allows
the model to dynamically adapt to input features, enhanc-
ing its effectiveness in tasks requiring nuanced spatial
understanding.

In the task of image desnowing, the shapes and distribu-
tions of snowflakes are highly random and irregular, posing
significant challenges to the model’s spatial understand-
ing capabilities. Traditional convolutional neural networks,
while effective at handling smooth regions and regular struc-
tures, exhibit limitations when dealing with complex and
irregular snowflake noise. To effectively address this issue,
we designed the K-Former model, which incorporates adap-
tive KNN point cloud models to enhance the model’s ability
to handle snowflake noise.

Advantages of Adaptive KNN: the adaptive KNN point
cloud model dynamically selects the k-nearest points, allow-
ing the model to adjust adaptively based on the input image
features. This adaptivemechanism enables themodel to better

capture the details and edges of snowflakes, improving its
ability to handle complex and irregular snowflake noise.
Compared to a fixed number of nearest points, the adaptive
KNN can apply the most suitable number of nearest points
in different image regions, thereby enhancing the model’s
spatial understanding capabilities.

Enhancements to the Transformer: K-Former enhances the
traditional Transformer model by incorporating the adaptive
KNN point cloud model, endowing it with stronger spatial
feature understanding capabilities. The Transformer model
excels at capturing global features, and with the introduc-
tion of adaptive KNN, the model becomes more flexible in
handling local complex structures, especially in cases of high
randomness and irregularity, such as snowflake noise.

Adaptive Feature Fusion: to fully leverage the advantages
of both the adaptive KNN point cloud model and the Trans-
former, we introduced an adaptive feature fusion mechanism.
By learning weights, K-Former can dynamically adjust the
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FIGURE 8. Comprehensive desnowing outcomes. One frame is selected for each video and each frame is labeled with a video name.

TABLE 1. Evaluation metrics for video-desnower desnowing performance.

contributions of adaptive KNN and Transformer based on the
input image features. This adaptive fusion mechanism allows
the model to apply the most appropriate feature processing
method in different image regions, thereby enhancing the
overall desnowing performance.

The design of K-Former aims to effectively address the
complexity and randomness of snowflake noise by combining
the advantages of the adaptive KNN point cloud model and
the Transformer, along with the introduction of an adaptive
feature fusion mechanism. This approach enables our model
to more accurately capture and remove snowflake noise,
achieving cleaner and higher-quality desnowing results.

TABLE 2. Comparison of desnowing performance on our video dataset.

2) MODEL ARCHITECTURE
The K-Former modifies the traditional Transformer by inte-
grating KNN point cloud models into the Feedforward
network. It uses perceptrons to adaptively determine the best
parameters for processing the input data. The overall structure
of the K-Former is shown in Figure 3.

3) KNN-FEEDFORWARD
The Feedforward section of the K-Former is uniquely
designed to include a KNN point cloud model, which is uti-
lized to enhance the model’s feature processing capabilities.
The operations can be mathematically described as follows:

a: ADAPTIVE K-VALUE SELECTION
Three K values for the KNNmodel are adaptively determined
by a perceptron:

Ki = int(σ (Wk · x + bk )), i = 1, 2, 3, (13)
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TABLE 3. Ablation study on video-desnower components (Part 1).

where σ denotes the sigmoid function, int is the integer
function, Wk represents the weight matrix, bk is the bias
vector, and Ki are the adaptive K values.

b: WEIGHT ADAPTATION FOR KNN POINT CLOUDS
Another perceptron adjusts the weights for combining the
outputs from the three KNN models:

wi = Softmax(Ww · x + bw), i = 1, 2, 3, (14)

where Ww and bw are the weight matrix and bias vector for
the weight adaptation perceptron, respectively, and wi are the
adaptive weights for each KNN model.

c: KNN POINT CLOUD MODEL
The KNN point cloud model operates by selecting the
K-nearest neighbors of each data point in the feature space.
Mathematically, this can be represented as:

KNN i(x,Ki) = TopK
(
∥x − xj∥,Ki

)
, (15)

where xj are the data points in the training set, ∥ · ∥ denotes
the Euclidean distance, and TopK retrieves the K smallest
distances for the i-th KNN model.

d: OUTPUT COMPUTATION
The final output of the Feedforward network is the weighted
average of the outputs from the three KNN point cloud
models:

y =

3∑
i=1

wi · KNN i(x,Ki), (16)

where KNN i represents the output from the i-th KNN point
cloud model using the adaptive Ki.

IV. EXPERIMENTS
A. DATASETS
Due to the scarcity of video desnowing datasets, we created a
specialized dataset for this purpose. The dataset comprises
20 videos depicting snow-free scenes, each paired with a

corresponding version that has been artificially augmented
with snow. Each video sequence consists of a range of 100 to
400 consecutive frames. We provided this dataset in our
research paper to help other researchers explore and improve
video desnowing techniques. For each ground truth video
within the dataset, a single frame was chosen and depicted
in Figure 4.
For each corresponding video incorporating snowflake

noise, a single frame was selected and presented in Figure 5.
To improve desnowing algorithms, our video model

includes a lot of snowflake noise for added complexity and
adaptability. Figure 6 compares snowflake density in a single
frame from our dataset with other desnowing datasets, show-
ing that our dataset has denser and larger snowflake noise.
Video-Desnower effectively removes snowflakes from our
dataset.

B. IMPLEMENTATION DETAILS
We optimized performance by using specific input and train-
ing configurations in our experiments. The input images were
resized to 224 × 224 pixels, and each sample contained
5 frames. During the training phase, we used the Adam
optimizer with an initial momentum β1 = 0 and β2 = 0.99.
The initial learning rate was set to 0.0001. Training was
conducted with a batch size of 8, and twoworker threads were
set up to load the data. Our model was implemented on the
PyTorch [33] platform using a single RTX 3090 GPU, 16GB
of RAM and an Intel i7 processor. We will provide all the
code and the dataset we created.

C. EXPERIMENTAL RESULTS PRESENTATION
We utilized the Video-Desnower model to desnow 20 videos
in our dataset, with all output videos and frames available.
The findings illustrate the model’s ability to enhance video
frames that are significantly distorted by snowflake noise.
Figure 7 depicts a representative video frame for visual ref-
erence.

The comprehensive desnowing outcomes are depicted in
Figure 8.
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TABLE 4. Ablation study on video-desnower components (Part 2).

TABLE 5. Ablation study on video-desnower components (Part 3).

TABLE 6. Ablation study on video-desnower components (Part 4).

D. EVALUATION OF VIDEO-DESNOWER
Our model will be assessed through the utilization of SSIM
and PSNR metrics. The importance of these metrics lies in
their ability to provide quantitative measures of image quality
and fidelity.

1) SSIM (STRUCTURAL SIMILARITY INDEX MEASURE) [34]
The Structural Similarity Index (SSIM) is used for measuring
the similarity between two images. SSIM is based on the
computation of three terms, namely the luminance term, the
contrast term, and the structure term. The overall index is a

multiplicative combination of the three terms:

SSIM(x, y) =

[
2µxµy + C1

µ2
x + µ2

y + C1

]
(17)

·

[
2σxy + C2

σ 2
x + σ 2

y + C2

]
(18)

·

[
σxy + C3

σxσy + C3

]
(19)

where µx , µy are the average values of x and y, σx , σy are the
variance of x and y, and σxy is the covariance of x and y. C1,
C2, and C3 are constants to avoid division by zero.

2) PSNR (PEAK SIGNAL-TO-NOISE RATIO) [34]
The Peak Signal-to-Noise Ratio (PSNR) is most commonly
used to measure the quality of reconstruction of lossy com-
pression codecs (e.g., for image compression). The signal
in this case is the original image, and the noise is the error
introduced by compression. PSNR is usually expressed in
terms of the logarithmic decibel scale:

PSNR = 20 · log10

(
MAXI
√
MSE

)
, (20)
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TABLE 7. Overall average performance of video-desnower components.

where MAXI is the maximum possible pixel value of the
image, and MSE is the Mean Squared Error between the
original and the compressed image:

MSE =
1
mn

m∑
i=1

n∑
j=1

(I (i, j) − K (i, j))2, (21)

where I is the original image,K is the compressed image, and
m and n are the dimensions of the images.
The SSIM and PSNR were were calculated in order

to assess the level of resemblance between the model’s
output and the ground truth. Table 1 displays evaluation
results. Video-Desnower shows strong desnowing perfor-
mance despite high snowflake noise in the dataset.

E. COMPARED METHODS
The dataset utilized in this study is unique, as previous
research on video desnowing has predominantly utilized
datasets with lower levels of snowflake noise. In order to
showcase the effectiveness of our model, we employed vari-
ous open-source single-image desnowing models to process
each frame within our video dataset. The resulting average
SSIM and PSNR values for all frames are presented in the
Table 2, providing evidence of the superior performance of
our model. Of these, SSIM exhibits a notable enhancement.

V. ABLATION STUDY
To understand the contribution of each component in our
Video-Desnower model, we conducted an ablation study by
systematically removing or altering specific components and
evaluating the impact on desnowing performance.

From Tables 3 to 7, we can observe the following detailed
impacts of each component on the performance for different
videos:

• Deformable Convolution: Removing deformable con-
volution results in a significant drop in both SSIM
and PSNR across all videos. For example, in the Air-
craftTakingOff video, the SSIM decreased from 0.99 to
0.97 and PSNR from 33.75 to 31.80. This highlights the
importance of deformable convolution in handling the
irregular shapes of snowflakes. Similarly, in the Ducks
video, SSIM dropped from 0.99 to 0.97 and PSNR from
31.38 to 29.20. The deformable convolution effectively
captures the irregular and dynamic nature of snowflakes,

providing themodel with enhanced flexibility to adapt to
varying snowflake shapes and densities.

• KNN: The absence of KNN shows a decrease in per-
formance, indicating that KNN effectively enhances
the model’s ability to capture spatial relationships.
For instance, in the CoupleRidingMotorbike video, the
SSIM decreased from 0.99 to 0.98 and PSNR from
29.75 to 28.00. In the Koala video, the SSIM decreased
from 0.99 to 0.98 and PSNR from 27.94 to 27.20. The
adaptive KNN component is crucial for maintaining spa-
tial coherence and accurately identifying snowflakes by
considering the local neighborhood relationships within
the image.

• Adaptive Feature Fusion: Without adaptive feature
fusion, the model’s performance declines, demonstrat-
ing the benefit of dynamically adjusting feature contri-
butions. For the Cycling video, the SSIM dropped from
0.98 to 0.97 and PSNR from 26.13 to 25.40. In the Sil-
verCat video, the SSIM decreased from 0.99 to 0.98 and
PSNR from 32.52 to 31.20. Adaptive feature fusion
allows the model to selectively integrate features from
different layers and scales, enhancing the model’s ability
to handle varying snowflake sizes and intensities across
different image regions.

• Transformer Enhancements: Removing transformer
enhancements leads to a noticeable decrease in per-
formance, suggesting their role in capturing global
features. For the Freeway video, the SSIM decreased
from 0.94 to 0.91 and PSNR from 23.25 to 21.90. Simi-
larly, in the TimeSquareTraffic video, the SSIM dropped
from 0.97 to 0.94 and PSNR from 25.27 to 23.50. The
transformer enhancements enable the model to capture
long-range dependencies and global contextual informa-
tion, which are essential for accurately reconstructing
complex scenes with heavy snow noise.

The overall results of Ablation study can be summarized in
Figure 9 and 10. The ablation study confirms that each com-
ponent is integral to the superior desnowing performance of
the Video-Desnower model. The detailed comparison across
different videos shows consistent positive impacts from all
the components, underlining the effectiveness of eachmodule
in enhancing the model’s ability to remove snow noise and
produce high-quality, clear frames.
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FIGURE 9. Overall results of ablation study (SSIM).

FIGURE 10. Overall results of ablation study (PSNR).

VI. CONCLUSION
Due to the scarcity of existing research on video desnow-
ing solutions, we put forth a proposal for the utilization
of a sophisticated deep learning model known as Video-
Desnower. This model effectively eliminated snow inter-
ference from several consecutive video frames through the
utilization of adaptive feature fusion. We tested our video
desnowing model by adding snow noise to 20 real videos,
creating a new dataset. Our analyses demonstrated that
Video-Desnower consistently displayed impressive desnow-
ing efficacy, even when faced with significant snowflake
distortion in the dataset videos. The results of our study have
significant practical implications for improving visual clar-
ity, enhancing safety surveillance, facilitating autonomous
driving, and a range of other potential applications. The
dataset we offer is suitable for additional research on video

desnowing. Future studies may use adaptive feature fusion in
a wider variety of deep learning applications.
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