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ABSTRACT The healthcare industry is exponentially growing its dependence on smart wearables and remote
devices for efficient treatment and diagnosis. These smart devices benefit the healthcare industry, but they
raise serious security and integrity concerns while exchanging healthcare data. These devices are primarily
meant for data dissemination; hence, they are equipped with weak security protocols that are susceptible
to attacks like distributed denial-of-service (DDoS), data injection, and man-in-the-middle (MiTM) attacks.
To circumvent the aforementioned security challenges, this article proposed a secure and intelligent data
exchange framework for smart healthcare systems. For that, we amalgamate artificial intelligence (AI) and
blockchain technology to strengthen the security of data dissemination between smart medical devices.
Further, we adopted fuzzy logic that extracts the essential features from the healthcare security dataset
to enhance the detection rate of AI models. We used different AI algorithms such as logistic regression
(LR), random forest (RF), decision trees (DT), stochastic gradient descent (SGD), and Gaussian naive
Bayes (GNB) to classify healthcare data into malicious and non-malicious. The predicted data can still be
maneuvered by adversaries that introduce subtle changes that skew the results to their advantage. Therefore,
we employed blockchain technology that stores non-malicious healthcare data (predicted data) from data
tampering attacks. The developed smart contract validates the non-malicious healthcare data and only allows
them to be securely stored inside the interplanetary file system (IPFS)-based public blockchain. The proposed
framework is evaluated by considering various evaluation metrics like recall, precision, accuracy, F1 score,
area under the curve (AUC) score, and blockchain scalability.

INDEX TERMS Healthcare data security, blockchain, fuzzy logic, artificial intelligence, machine learning,
wearable devices, smart contract.

I. INTRODUCTION
The healthcare sector is essential for a nation’s over-
all well-being and plays a central role in strengthening
the economy. Today’s healthcare landscape is undergoing
rapid transformation with the integration of cutting-edge
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technologies, such as the Internet of Things (IoT), that
facilitate seamless communication through sensors. Smart
healthcare devices are equipped with different sensors to
sense patients’ vital conditions and forward the patient’s
medical data to other sensors for comprehensive health
monitoring and diagnosis [1]. However, these sensors often
rely on legacy systems with potentially vulnerable protocols
and weak security measures that jeopardize the performance
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of the smart healthcare system. Due to their size and energy
constraints, these sensors cannot employ robust protocols,
making them susceptible to threats like distributed denial-of-
service (DDoS) and man-in-the-middle attacks. Further, due
to the inherent openness of the public Internet, the potential
for data breaches and system compromises increases expo-
nentially. This vulnerability underscores the pressing need
for a proactive security mechanism to safeguard our evolving
healthcare ecosystem.

There are wide-ranging applications in the healthcare
industry, like electronic health records, real-time monitoring
of health data, securing patient data, research purposes,
and medicine supply chains that assist in managing various
operations of smart healthcare systems. However, there is a
need to authorize and safely store health records that help
in efficient prognosis and diagnosis of the patients. Real-
time monitoring of patients can help to detect potential health
issues early, give patients personalized treatment for specific
problems, and improve patient health through continuous
tracking. There are many applications in clinical research
for new drug innovations and research about new diseases
where data health management is required. As there are
wide-ranging applications in the healthcare industry, we need
a secure framework that effectively confronts different
security threats in the healthcare sector.

Numerous researchers have proposed various solutions
that address security issues in healthcare IoT devices. For
example, Madavi et al. [2] have designed an advanced
light-weight cryptography (LWC) technique tailored for
healthcare wearables, which amalgamates various data met-
rics into a singular 64-bit plaintext, delivering improved
encryption efficiency over existing LWC methods. Similarly,
Fareed and Yassin [3] have developed a potent authentication
method for wireless body area networks (WBANs) that
adeptly mitigate impersonation and spoofing threats and
employs both rigorous and heuristic analysis tools to
traditional encryption protocols. Despite their merits, these
solutions possess a notable drawback: their cryptographic
techniques are susceptible to decryption by modern super-
computing capabilities, underscoring the need for alternative
security strategies.

The transition to artificial intelligence (AI) signifies a
significant shift, holding promise as a prevailing technology
to address security challenges [4]. Ghazal [5] have proposed a
pioneering solution, IoT-AIS, by fusing AI and IoT to bolster
healthcare security through patient data encryption, remote
access, and unmatched data transmission rates. Similarly,
Almalawi et al. [6] leverages AI’s prowess, presented lion-
ized remora optimization and serpent encryption (LRO-S),
elevating patient data understanding and cloud security
with heightened efficiency. Nonetheless, AI’s potential has
limitations; it necessitates synergy with other technologies.
The susceptibility to manipulated datasets poses a major
drawback–misleading model training results in erroneous
predictions. This underscores AI’s vulnerability, prompting
a cautious approach and emphasizing the significance of
untainted data for its success.

Leveraging the integration of artificial intelligence and
blockchain, Bhashini et al. [7] presents a pioneering approach
to ensuring secure data exchange and privacy preservation in
smart healthcare systems [8], [9]. This innovative integration
employs data sanitization and restoration techniques for con-
fidentiality across tiers. Complementing this, Mancer et al.
[10] implements a blockchain-driven medical record system,
securely collecting and sharing electronic health records
while leveraging big data models, multi-agent systems, and
cloud computing for optimal storage. However, recognizing
computational constraints, a comprehensive solution neces-
sitates amalgamating diverse technologies, including fuzzy
logic, to address the challenges effectively [11].

In the evolving realm of healthcare technology, the fusion
of AI, blockchain, IoT security solutions, and advanced
cryptographic techniques holds great promise for bolstering
healthcare system security [12]. The integration of fuzzy
logic further enhances our proposed model by address-
ing uncertainties and complementing traditional encryption
methods. This comprehensive approach aims to harness
the strengths of each technology, potentially improving
encryption efficiency, countering decryption threats, ensuring
secure data transmission, and upholding patient privacy
throughout the supply chain. This confluence of technologies
underscores our commitment to creating an adaptable secu-
rity solution aligned with the dynamic healthcare landscape’s
needs. Thus, in this research work, we have taken a
high-dimensional dataset that passes through a fuzzy layer
to efficiently select essential features, which will reduce the
computational overhead. The processed data is then utilized
by various AI algorithms like random forest, decision trees,
logistic regression, Gaussian naive Bayes, and SGD classifier
to classify the data as malicious or non-malicious. Our
research work is achieving an accuracy of 98.98% from
the random forest classifier. Afterward, the secure data is
stored in the blockchain layer, where it is stored in the
inter-planetary file system (IPFS) with the help of smart
contracts. This approach not only enhances the efficiency and
accuracy of the AI models but also ensures the security of
healthcare data from malicious users or attackers.

A. MOTIVATION
The healthcare sector provides health services to millions
of people, directly or indirectly, which benefit their health
for the rest of their lives. All the healthcare facilities collect
patients’ information, such as name, age, address, health
issues, reports, samples, and additional personal data. Thus,
storing data securely and authorizing it becomes the most
crucial task. There can be various attacks on the data where
malicious users can modify the information, which can
cause irregular treatment or wrong diagnosis of patients by
healthcare professionals. After analyzing different literature,
[13], [14] [15], we realized that the aforementioned works
have used AI models but are prone to malicious attackers,
which can hamper the integrity of predicted healthcare
data. Thus, the overall efficiency of the smart healthcare
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system is deteriorating. Further, most of the existing works
have not employed efficient feature extraction for the high
dimensional dataset used in securing healthcare applications.
Similarly, [7], [10], [16] have not integrated AI techniques
in the blockchain network; due to this, the mining cost
becomes expensive. Also, they have not adopted IPFS
advantage in their proposed solution, resulting in higher
response time and lower scalability. Therefore, we present
a fuzzy-enhanced AI and blockchain model that enhances
accuracy through fuzzy-based feature selection, which will
improve the performance of AI models and the blockchain
layer for safely securing patient data.

B. NOVELTY
In recent years, the healthcare sector has been adopting
smart devices and wearables to improve patient care by
enabling real-time monitoring and seamless data sharing.
Although these technologies provide numerous benefits,
they also pose significant security risks. These security
risks mainly arise from the reliance on weak protocols
that make these systems vulnerable to a variety of cyber-
attacks, such as distributed denial of service (DDoS), data
injection, and man-in-the-middle (MiTM) attacks. While
traditional cryptographic methods have been effective, they
are gradually becoming inadequate against the sophisticated
attacks enabled bymodern supercomputer capabilities.While
numerous researchers have used AI to enhance data security,
there is a gap in the proper feature selection method. The
literature also shows that many researchers have not explored
the integration of AI and blockchain to develop multi-layer
security mechanisms for health data. Therefore, there is a
stringent requirement for a secure architecture. Motivated by
these, this paper proposes a framework that integrates fuzzy,
AI, and blockchain-based security mechanisms. Fuzzy logic
is used for better feature selection, AI is used to classify data
intomalicious and non-malicious, and blockchain technology
is used to store non-malicious healthcare data from data
tampering attacks. The developed smart contract validates
the non-malicious healthcare data and only allows it to be
securely stored inside the interplanetary file system (IPFS)-
based public blockchain.

C. RESEARCH CONTRIBUTION
The following are the salient contributions of the paper:
• To propose a secure data exchange framework for smart
healthcare systems by amalgamating AI and blockchain.

• We utilized different AI algorithms, such as logistic
regression (LR), random forest (RF), decision trees
(DT), stochastic gradient descent (SGD), and Gaus-
sian naive Bayes (GNB) to classify malicious and
non-malicious healthcare data. Further, to enhance the
detection rate of AI algorithms, we employed fuzzy
logic that efficiently selects essential features from the
network dataset, improving the overall performance of
the proposed framework.

• We adopted blockchain technology to tackle data
integrity attacks, where we first deployed a robust smart

contract that validates the non-malicious healthcare data
from AI models. Upon successful validation, the data
is forwarded to the interplanetary file system (IPFS) to
improve the response time and blockchain scalability.

• To evaluate the performance of the proposed framework
using various performance evaluation metrics, such as
accuracy, F1-score, precision, recall, entropy value, and
blockchain scalability.

D. PAPER ORGANIZATION
The flow of the remaining paper is described as follows.
Section II discusses the related work done and the motivation
behind the proposed work by comparing it with the existing
work. The system model and the problem formulation
are presented in Section III. The proposed framework
is displayed in Section IV. The results are discussed in
Section V. Lastly, Section VI provides concluding remarks
and shows the future scope of this work.

II. RELATED WORKS
Misra et al. [13] have proposed a framework that introduces
health recommendations in IoT-driven health systems named
kea edge(KEdge). It utilizes data from different sensors
to calculate the health condition index (CI). It uses a
convolutional neural network for heart disease detection and
a random forest (RF) model for respiratory analysis. KEdge
specifically includes the sound of the digital stethoscope
SkopEdge, enhancing its diagnostic capabilities. Its accuracy
rate is 98.53% for cardiac arrhythmias and 98.68% for res-
piratory diseases, coupled with good memory, demonstrates
its practicality in real-world clinical practice. Wazid et al.
[15] provides an in-depth study of the growing threat of
ransomware, particularly in areas such as smart healthcare.
Varieties of malware lock files that demand ransom are
causing serious problems across industries and across
borders. Considering blockchain as a powerful and secure
solution, the authors have introduced a blockchain-enabled
security framework against ransomware attacks for smart
healthcare (BSFR-SH). They have tested the framework
using several machine learning algorithms, in which the
decision tree approach achieved an accuracy of 98%. Their
results underscored the superiority of BSFR-SH in terms of
accuracy, F1-score, and overall performance against other
existing mechanisms.

Ieracitano et al. [22] has addressed the challenge of inter-
preting chest x-rays (CXR) for the diagnosis of COVID-19
by presenting a convolutional neural network for Covid-
19 (CovNNet) which is a hypothetical assumption that
supports deep learning models. They combine fuzzy features
obtained from CXR and edge detection algorithms; the
model surpasses deep learning models and reaches 81%
classification accuracy. In addition, CovNNet achieved a
sensitivity of 76% and an accuracy of 75.6%, demonstrating
its potential to integrate into clinical decision-making. More
importantly, its best performance is found when CXR
and fuzzy features are combined with 80.9% accuracy.
In their study of cloud applications, PG Shynu et al. [23]
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TABLE 1. Comparative analysis of the proposed work with the existing state-of-the-art works.

demonstrated new blockchain technology for medical use
with a focus on diabetes and heart disease. They issued
a special policy as a collaborative effort to improve the
effectiveness of themedical records of the patients. Next, they
used the adaptive neuro-fuzzy inference system (FS-ANFIS),
a hybrid model combining Artificial neural network (ANN)
and fuzzy logic for disease prediction. The comparison shows
the superiority of their methods, achieving 81% prediction
accuracy and outperforming other neural network algorithms.
The model also shows admirable purity and normalized
mutual information (NMI) values for both disease datasets,
marking a major advance in medical technology.

Deveci [14] explores the integration of AI in different
areas that highlight the disparity in AI adoption around the
world. It highlights the historical struggle for new technology,
comparable to the initial decision taken during the Eighth
Industrial Revolution. They used the Aczel-Alsina-based
decision model in their research for the healthcare market,
with a particular focus on post-pandemic export distribution.

Research based on the Turkish healthcare system shows
that technical power, testing, and government support are
important for the success of artificial intelligence. This
insight has the potential to pave the way for policy
reforms to leverage AI in the healthcare supply chain.
Zulkifl et al. [21] have addressed the critical challenge of
ensuring authentication, authorization, and audit logs (AAA)
services in the IoT environment, highlighting the limitations
of traditional security mechanisms. The proposed fuzzy
and blockchain-based adaptive security for healthcare IoT
(FBASHI) framework integrates fuzzy logic and blockchain
using hyperledger. Focusing on the IoT of healthcare,
this study proposes a security behavior change for AAA
services. Comparing FBASHI’s performance with other
blockchain solutions shows its potential to increase and
improve latency, especially in high-security healthcare envi-
ronments. Secure data transfer is important. This highlights
FBASHI’s innovation and utility in IoT security regarding
its impact on healthcare practices and the optimisation
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of blockchain to improve data integrity and privacy
policies.

Ali et al. [20] presented an optimisation fuzzy logic
combined with blockchain technology to solve authentication
and consensus issues important in digital healthcare. By inte-
grating fuzzy logic, the system minimizes negative and
non-negative effects and improves protection against attacks.
Additionally, the integration of blockchain technology pro-
vides a unified, tamper-proof infrastructure to securely store
andmanage original and important confirmation information.
The evaluation of the proposed method using the special
database highlights its superior performance over existing
approaches. It achieves minimal false rejection rate (FRR),
false acceptance rate (FAR), and response time, ensuring high
authentication accuracy consistently above 95%. The simu-
lation underscores the system’s robustness, with over 90% of
authentication attempts achieving successful identification.

Panja et al. [19] provided real time monitoring system for
COVID 19. They have introduced fuzzy logic-based solu-
tions for COVID-19 identification, prediction, and remote
diagnosis. Then, Abid et al. [17] proposed a distributed
access control solution-based framework that utilized smart
contracts. They introduced a smart contract-enabled access
control framework for transparency and privacy in smart
healthcare systems. Rahman et al. [18] enabled timely
healthcare and diagnosis for COVID-19. They proposed
a fuzzy logic-based solution with IoT for the intelligent
healthcare system. Their proposed solution facilitates
accurate and cost-efficient solutions for the remote healthcare
monitoring and diagnosis of COVID-19 patients. Table 1
shows the comparative analysis of the proposed scheme with
the existing schemes of the healthcare system.

III. SYSTEM MODEL AND PROBLEM FORMULATION
In this section, we discuss the system model with the
problem formulation of the fuzzy-based intelligent healthcare
framework as shown in FIGURE 1.

A. SYSTEM MODEL
Every patient has a smart wearable device that tracks and
monitors the patient’s health data. The primary goal of the
proposed system is to secure the data from various attacks
and store the patient’s health data in the blockchain so that
only trusted and authorised users, like doctors or patients,
can access the data. Therefore, healthcare network data
is passed through fuzzy logic and certain AI techniques,
which ensure important and non-attacked data is stored on
the blockchain through smart contracts. The system model
comprises different patients P and smart wearable S in the
following way.

P = {P1,P2, . . . ,Pk , . . . ,PN } (1)

S = {S1, S2, . . . , Sj, . . . , SN } (2)

where j stands for a single smart wearable and N for the total
number of all smart wearables so that 1 ≤ j ≤ N . k stands

for a single person, and each patient Pk is outfitted with a
wearable device. Sk , such that each Si has sharing capabilities
by which they can share data, this is represented as follows.

D = {d1, d2, . . . , dN } (3)

Si
di
−→; Sj (4)

Health dataDj fromPj is gathered byWk and sent to AImodel
M for evaluation.

Si
collects
−−−−→ Di (5)

M
evaluates
−−−−−→;Dj (6)

FIGURE 1. System model.

Then, the AI system S predicts whether the data is attacked
or not.

AIP(Di) =

{
1 if Di is safe
0 if Di is attacked

(7)

If the data Dj is safe (AIP(Dj) == 1) from the malicious
user or attacker, it goes through the smart contract SC , where
it is transmitted to IPFS I , and is stored in the blockchain B
which is thus only accessible to those involved in the patient’s
treatment. Mathematically, it is defined as follows.

SC(Dj) = Dj × AIP(Dj) (8)

I ← SC(Dj) (9)

B← I (10)

B. PROBLEM FORMULATION
Based on the aforementioned discussion, we formulated an
objective function (Ob), which aims to mitigate the security
aspects of the smart healthcare system.

Ob =
m∑
i=1

(di)+max
m∑
i=1

(M )(di) (11)

where,
• Ob is the objective function.
• di represents all the data collected from the smart
wearables.

• M (di) represents the AI model applied to each data
instance di.

•

∑m
i=1(di) Represents all the data collected from the

smart wearables.
• max

∑m
i=1(M )(di) is intended to maximize the accuracy

of the AI model.
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The main aim of the objective function is to enhance
the security of the smart healthcare system by using
fuzzy-assisted AI and blockchain technology. It ensures
safe data collection from all smart wearables. Additionally,
it focuses on maximizing the accuracy of the AI model
so that only non-malicious healthcare data is stored in
the blockchain. By filtering malicious data, the system
ensures the integrity and security of health information. This
approach ensures that the data collected is secure and reliable,
making it accessible only to trusted and authorized users, such
as physicians and patients. Hence, it improves the overall
effectiveness of the healthcare system.

IV. PROPOSED FRAMEWORK
This section discusses the proposed fuzzy logic-based
intelligent framework for the healthcare system. As shown in
FIGURE 2, the proposed framework comprises data, fuzzy,
AI, and blockchain layers.

A. DATA LAYER
The proposed framework encompasses a data layer of
medical devices, each equipped with an array of sensors
responsible for monitoring various patient health metrics
such as heart rate, blood oxygen level, and temperature.
However, the communication between these sensors and
medical practitioners is far from secure. Despite techno-
logical advancements, the devices often operate on legacy
systems that utilize insecure or weak protocols like HTTP.
This opens the door for attackers to infiltrate the network
and manipulate patient data, making the healthcare system
vulnerable to DDoS and man-in-the-middle attacks. Such
manipulations can be life-threatening, especially in critical
care scenarios where accurate data is imperative for diagnosis
and treatment. To counter these security threats, an advanced
AI mechanism is needed to identify and mitigate such
vulnerabilities, thereby ensuring the integrity and reliability
of patient data.

B. FUZZY LAYER
1) DATASET DESCRIPTION
In our proposed framework, we employ the IEEE IoT
healthcare security dataset developed by Hussain et al. [24].
It contains both normal and malicious traffic data from
IoT healthcare service applications. This dataset provides
realistic traffic information for normal operations and various
cyberattacks. It addresses specific security challenges such
as intrusion detection, data integrity, and the availability
of healthcare services. Including a wide range of attack
scenarios, including specific DDoS and MQTT attacks, the
dataset is valuable for developing and testing IoT-based
security solutions. It features a comprehensive set of columns
capturing network attributes and message queuing telemetry
transport (MQTT) protocol parameters, such as time-related
frames, internet protocol (IP) addresses, transmission control
protocol (TCP) ports, and flags, as well as MQTT message
types, client IDs, and quality of service levels, culminating

in a ‘label’ column for binary classification. The dataset,
comprising 188695 rows and 43 columns, is for a binary
classification problem with class labels ranging from 0 to 1.
This dataset enables us to robustly test our AI mechanisms
for identifying and mitigating security vulnerabilities in
healthcare IoT networks.

2) FEATURE EXTRACTION
When dealing with large and dimensional data, one often
encounters problems with irrelevant features, missing values,
and other discrepancies that affect the quality of model
predictions. Selecting tree-based feature selection algorithms
according to traditional rules is not enough and often leads
to overfitting and putting too much emphasis on differences
between different groups. To solve these problems, we use
the fuzzy-based feature selection method. Unlike traditional
algorithms, fuzzy-based methods provide a powerful tech-
nique for dealing with noise and uncertainty, allowing for a
better understanding of values. This approach leads to a more
efficient training process and improves the performance of
our machine-learning models.

In the framework used in this study, the data is then split
into training and test sets using the 80-20 distribution. In order
to ensure the equality and comparability of the features in
the training process, the min-max scaling method is used by
keeping all the variables [0, 1] the same for many things.

In the feature selection phase, we incorporate a technique
called fuzzification, which is derived from fuzzy logic.
Various types of fuzzification functions are employed, such
as Gaussian, triangular, and multiple forms of sigmoid
functions. Each function is designed to suit data distributions,
thereby optimizing the usefulness of each feature. For exam-
ple, gaussian functions work well for features that follow
a distribution, while sigmoid functions are more suitable
for features with an s-shaped distribution curve. Through
the fuzzification process, the dataset’s crisp values are
transformed into degrees of membership, providing nuanced
representations that enhance the classifier’s decision-making
capabilities. After applying the preprocessing and fuzzifi-
cation steps for the dataset, the subsequent stage involves
computing entropy for each feature. Fuzzy entropy serves
as a metric to evaluate how a feature distinguishes between
different classes. The formula used to calculate entropy for a
given feature is provided as follows.

Fuzzy Entropy(i) =
n∑
j=1

µij · log(µij + 1× 10−6)

+ (1− µij) · log(1− µij + 1× 10−6)
(12)

In this formula, n is the number of data points,µij denotes the
fuzzy membership value jth data point for the ithfeature. Once
the fuzzy entropy values are computed for each feature, they
are ranked in descending order, starting with the top-ranked
feature and gradually adding one additional feature at a time.
To evaluate each composed feature set, we use regression
models and employ 5-fold cross-validation to assess their
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FIGURE 2. Proposed framework.

performance for each newly formed feature set. The study
investigated various feature set sizes, ranging from the top
10 to the top 42 features, based on fuzzy entropy scores. It was
observed that the mean cross-validated accuracy reached its
peak at around 0.969 when utilising a set of 16 features.
However, adding more features beyond this count led to a
decrease in model accuracy, emphasising the importance of
feature selection. Let D represent the size of the dataset used
in our proposed framework. We D′ from the fuzzy-based
approach.

D = D188695×42 Fuzzification
−−−−−−−→ D188695×16

= D′ (13)

The mean cross-validated accuracy achieved its zenith of
approximately 0.968 with this reduced feature set of 16,
reinforcing the importance of precise feature selection in
achieving high classification performance. In the proposed
architecture, we have used fuzzy entropy-based feature
selection to pinpoint key features that help in distinguishing
between attacked and non-attacked data. After feature
selection in the fuzzy layer, the data will be sent and classified
in the AI layer after training and testing of the data.

C. AI LAYER
In the AI layer of the pipeline, we experimented with various
classifiers, including logistic regression (LR), stochastic
gradient descent (SGD) classifiers, RF, gaussian naive Bayes
(GNB), and decision trees (DT), to classify the pre-processed
and feature-selected data. Then, we assessed this model
using metrics such as accuracy, precision, recall, F1 score,
and area under the curve (AUC). Notably, the RF achieved
an accuracy of 0.992 while requiring a training time of
only 0.345 seconds. The model also performed well on
performancemeasures, with an F1 score of 0.992 and anAUC
of 0.999. These outcomes highlight the effectiveness of our
feature selection process.

In the proposed architecture, after AI algorithms are trained
and validated on these selected features, which show high
accuracy in classification tasks, all the data flagged as

‘attacked’ is promptly discarded to maintain system integrity.
Meanwhile, the verified, non-attacked data is then sent to the
blockchain layer for further secure processing and storage.

D. BLOCKCHAIN LAYER
The blockchain layer in the proposed framework ensures
security, data integrity, and data validity. Blockchain is crucial
in healthcare for safeguarding sensitive electronic records,
including patient and billing information [25]. The core
features of blockchain are transparency, immutability, and
distributed networks, which enhance data security and trust.
The technology also streamlines processes, from medication
safety monitoring to credential verification, thereby reducing
fraud and errors. The classified, non-attacked data from the
AI layer is now routed through the blockchain network with
the help of smart contracts, which validate the data. Then, the
data is stored in the interplanetary file system (IPFS)-based
public blockchain. In this blockchain layer, smart contracts
are employed to exclusively permit access to the data by
the patient and authorized medical practitioners. These smart
contracts facilitate not only secure storage but also allow
doctors to prescribe medication and suggest treatments based
on verified data. Employing features like Merkle Trees and
unique digital signatures, the blockchain layer ensures the
integrity, security, and quick retrieval of healthcare data.
Thus, this integrated approach enhances both privacy and
the quality of patient care. Moreover, Algorithm 1 and 2
discuss fuzzy feature selection and health data security,
respectively. FIGURE 3 shows the organizational flow of the
proposed framework, where each layer briefly demonstrates
its involvement in securing the data exchange of a smart
healthcare system. Thus, the blockchain layer ensures the
security of a smart healthcare system, and the data is accessed
by authorized persons only. Smart Ambulance data collected
from IoT devices would be safely stored in the IPFS system
through smart contracts in the blockchain layer. This secure
and streamlined process would be beneficial in emergency
situations for the patients. Also, it helps themedical personnel
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to access the correct and authorized data which will result
in effective treatment and care of the patients. This robust
security mechanism thus plays a pivotal role in improving
patient outcomes and fostering confidence in healthcare
systems.

Algorithm 1 Fuzzy Feature Selection
Input:
• data: Dataset
• target: Labels
• function_mapping: Mapping of features to fuzzification
functions

Output:
• Optimal feature set and corresponding accuracy

1: procedure FuzzyFeatureSelection(data, target ,
function_mapping)

2: Divide data into training and test sets
3: Normalize both sets
4: for each feature in training data do
5: Fuzzify using function_mapping
6: end for
7: for each feature do
8: Compute fuzzy entropy
9: end for
10: Rank features by entropy
11: for each possible feature subset do
12: Select features
13: Perform cross-validation
14: Store subset and accuracy
15: end for
16: Choose the subset with the highest accuracy
17: return selected subset and accuracy
18: end procedure

V. RESULTS AND DISCUSSION
The results are included in the analysis of various machine
learning models and their performance metrics, provid-
ing insight into their effectiveness in specific contexts.
An interesting aspect of evaluation is the integration of
fuzzy logic, a method that captures approximate causes by
considering the fact that things can happen in half at once.
This approach reflects more concrete concepts than binary
thinking and is particularly relevant to real-life situations
where there is ambiguity and uncertainty. This section aims
to provide a holistic understanding of the model’s power,
accuracy, and overall performance by juxtaposing fuzzy logic
with traditional machine learning metrics. Through detailed
illustrations and analysis, readers will gain insight into the
integration of traditional methods and flexible fuzzy logic in
predicting results.

A. EXPERIMENTAL SETUP AND SIMULATION ANALYSIS
We have used Anaconda Jupyter version 6.4.5 as a develop-
ment environment for the implementation and simulation of
fuzzy logic. Anaconda is a popular platform that is easier

Algorithm 2 Sequential Flow of AI Layer
Input:
• D = {d1, d2, . . . , dN }: Input health data
• RF : Trained random forest model

Output:
• Secure health data stored in the blockchain B

1: procedure DataSecurityRandomForest(D, RF)
2: Data evaluation
3: for each di in D do
4: Evaluate di using RF
5: AIP(di)← 1 if di is safe, 0 otherwise
6: end for
7: Safety Check and Data Storage
8: for each di in D do
9: if AIP(di) == 1 then

10: Process di through smart contract SC
11: Store di in IPFS I
12: Add di to blockchain B
13: end if
14: end for
15: end procedure

to use and provides integrated solutions for data science
and scientific computing research. We have implemented the
whole research work in the Python version (3.9.7). We have
used it due to its adaptability and extensive support for
the vast range of libraries available. Libraries like NumPy,
Pandas, Scikit-Learn, Seborn, Matplotlib, and Time are
used to implement our proposed work. NumPy (Version
1.19.5): NumPy is a fundamental library for numerical
computing in Python. It enables efficient manipulation
of large multi-dimensional arrays and provides essential
mathematical functions to support various data analysis tasks.
Pandas (Version 1.3.4) creates easy-to-use data frames for
data analysis, time series, and statistics. Scikit-learn Sklearn
(version 0.24.2): We have implemented this library for
training and testing the data and also for preprocessing the
data using the MinMaxScaler library present in it. Seaborn
(Version 0.11.2): We have used Seaborn for statistical data
visualization. Matplotlib (Version 3.4.3) was used to plot
various graphs and to visualize and analyze the data. Time
(Version 3.9.7): We have used the built-in time library to
calculate the time taken for implementation.

For blockchain implementation, we used an Ethereum-
based Remix integrated development environment (IDE)
to develop a smart contract. The smart contract has
different user-defined functions, such as submitData(), get-
PatientData(), transferOwnership(), and isDataValidated(),
written in solidity language with version v0.8.25. The
aforementioned functions assist in securing the patient’s
healthcare data, which is marked as non-malicious by the
AI model. Further, the functions were compiled using
a solidity compiler with version 0.8.26+commit.8a97fa7a
and deployed on an Ethereum blockchain. To deploy,
we used a MetaMask wallet (v11.16.13) and a Sepolia test
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FIGURE 3. Organizational flow of the proposed framework.

TABLE 2. Experimental parameters used in the proposed framework.

network - sepolia.etherscan.io. The entire proposed frame-
work is implemented with a system with specifications such
as 8GB RAM, Intel Core i7 processor with 8 CPUs, and
DirectX 12. Table 2 shows all the experimental parameters
used by each layer of the proposed framework.

B. EVALUATION METRICS
In this section, we have discussed the metrics to evaluate the
proposed framework. In the context of health data security,
true positive (sj) means the AI model truly predicted the

safe health data as safe; false positive (pj) means the AI
model wrongly predicted the attacked health data as safe;
true negative (vj) means the AI model truly predicted the
attacked health data as attacked; false negative (mj) means the
AI model wrongly predicted the safe health data as attacked.

1) ACCURACY (OVERALL CLASSIFICATION ACCURACY)
Accuracy is defined as the ability of the model to correctly
classify safe health data as ‘‘safe’’ and attacked health data as
‘‘attacked.’’ It is the ratio of the sum of true positive and true
negative samples (sj + vj) to all the samples of the prediction
(sj+pj+ vj+mj). Mathematically, it is expressed as follows.

Accuracy =
sj + vj

sj + pj + vj + mj
(14)

2) PRECISION (DATA SAFETY IDENTIFICATION RATE)
Precision is defined as themodel’s ability to correctly identify
safe health data among all instances classified as safe. It is the
ratio of true positive samples (sj) to the sum of true positive
and false positive samples (sj + pj). Mathematically, it is
expressed as follows.

Precision =
sj

sj + pj
(15)

3) RECALL (DATA SAFETY DETECTION RATE)
It is defined as the model’s ability to correctly identify safe
health data among all actual safe health data in the sample.
It is the ratio of true positive samples (sj) to the sum of true
positive and false negative samples (sj+mj). Mathematically,
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FIGURE 4. Entropy of features.

FIGURE 5. Cumulative fuzzy entropy.

it is expressed as follows.

Recall =
sj

sj + mj
(16)

4) F1 SCORE (HARMONIC MEAN OF SAFETY
IDENTIFICATION AND DETECTION RATES)
The F1 Score is the harmonic mean of precision and recall.
It describes the balance between the precision and recall
for both safe and attacked health data. Mathematically, it is
expressed as follows.

F1 Score = 2×
Precision× Recall
Precision+ Recall

(17)

FIGURE 6. Distribution of fuzzy entropy values.

C. PERFORMANCE ANALYSIS OF THE FUZZY AND AI
LAYER
FIGURE 4 illustrates the relationship between features and
their corresponding calculated fuzzy entropy. Higher entropy
values indicate features that capture more complex data
patterns, while lower values suggest more deterministic
patterns. This graph serves as a roadmap, highlighting the
significance of utilizing high-entropy features to enhance the
predictive capabilities of the model. FIGURE 5 shows how
fuzzy entropy builds up across a group of characteristics
in descending order. The x-axis represents the number
of features considered, whereas the y-axis depicts the
cumulative fuzzy entropy. There is an initial spike, but it
gets stabilized after 25 features, which suggests that adding
more features after this point would not be beneficial.
To gain a more detailed understanding of the fuzzy entropy
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FIGURE 7. Feature values.

FIGURE 8. Accuracy of different feature sets.

distribution, a histogram combined with kernel density
estimation (KDE) was constructed in FIGURE 6. The
distribution exhibits considerable variability, with a distinct
peak of about 104,633 entropy values. This peak indicates

that a significant subset of features share high entropy values,
which can indicate high prediction power. In contrast, low
entropy peaks, especially around 13,838 and 9,119, indicate
features with limited predictive power. This statistical insight
enhances the feature selection method, potentially increasing
the prediction accuracy of the model.

As depicted in FIGURE 7, the visualization shows
the membership functions of various selected features,
demonstrating the degree to which each normalized fea-
ture value belongs to a certain fuzzy set. The x-axis
indicates the normalized feature value, whereas the y-axis
represents the membership degree. Moreover, FIGURE 8
demonstrates the feature selection process undertaken using
fuzzy entropy, starting with an initial set of 10 features.
As the number of characteristics that are integrated varies,
the graph shows a shifting trend in the mean cross-validated
accuracy. Notably, optimal performance is achieved with a
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FIGURE 9. Performance of AI classifiers - (a) Accuracy. (b) Training time. (c) Log loss.

FIGURE 10. ROC curve of different AI classifiers.

FIGURE 11. Validation curve of RF.

subset of 16 distinct features, registering a mean accuracy
of approximately 96.86%. We can conclude that not all
features contribute equally, so selecting the subset would
be appropriate. After thorough analysis, it’s evident that not
all features in the dataset hold equal weight, with the first
16 features accounting for half of the total fuzzy entropy,
highlighting their significance. FIGURE 9a showcases the
accuracy scores of several machine learning classifiers like
LR, SGD classifier, RF, GNB, and DT. Among these,
RF emerges as the most accurate and precise, delivering an
accuracy of approximately 98.97%. However, efficiency is
also of paramount importance. As illustrated in FIGURE 9b,
the Gaussian Naive Bayes is the quickest, completing training
in just over 0.026 seconds. LR and SGD classifiers perform

FIGURE 12. Smart contract interface.

TABLE 3. Comparison of accuracy and incorporation of fuzzy logic and
blockchain technology in different studies.

fairly accurately but are the most time-consuming. These
variations in training times showcase the computational
trade-offs inherent in different models.Thus, Table 3 shows
the comparison of the proposed framework with the existing
state-of-the-art approaches where we can see that the
proposed framework is achieving 98.97% accuracy in which
we have integrated fuzzy and blockchain layer.

Similarly, FIGURE 9c displays the log loss values for
several classifiers, notably LR, SGD classifier, RF, GNB, and
DT. The log lossmeasures the uncertainty of predictions, with
lower values denoting better performance. Remarkably, the
RF classifier achieves the lowest log loss of about 0.07411,
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FIGURE 13. (a) Comparison of blockchain’s response time. Scalability performance with 100%, 50%, and 10% CPU utilization (b) at 50 data
transactions. (c) at 100 data transactions.

FIGURE 14. Transaction throughput comparison with dynamic data size.

indicating high-confidence predictions. On the other end, the
SGD classifier logs a value of approximately 4.2198, pointing
to increased prediction uncertainty. Thus, this graph points to
the dual importance of accuracy and prediction confidence in
model assessment.

Further, FIGURE 10 represents the receiver operating
characteristic (ROC) curve, which offers a comparative
visualization of different classifiers’ performance. The AUC
score of RF is around 0.9997, which indicates that it handles
classification well. LR and GNB also perform well, with
AUC scores of 0.9946 and 0.9882, respectively. On the
other hand, the decision tree classifier and SGD’s low AUC
value for the model highlight its poor ability to distinguish
between classes and indicate a need for a significant
improvement in its classification performance. Table 4
depicts the performance metrics of five different classifiers:
LR, DT, SGD classifier, RF, and Gaussian classifier. We have
produced results usingmetrics like precision, recall, F1 score,
and AUC. In terms of classifier performance, RF emerged
as a frontrunner, boasting superior accuracy, optimal log
loss, and a commendable AUC score. While GNB was the
swiftest in training, the RF not only excelled in accuracy but

TABLE 4. Performance evaluation metrics of different AI classifiers.

also demonstrated efficient training time. Thus, considering
both precision and efficiency, the RF stands out as the most
promising model for this dataset.

FIGURE 11 illustrates the validation curve for the RF clas-
sifier, demonstrating the model’s performance as a function
of the number of trees. The x-axis represents the range of
the hyper-parameter ‘‘Number of Trees’’ varying from 1 to
31 in increments of 5. The y-axis shows the model’s accuracy
score, confined to a narrow range between 0.9790 and
0.9994 for enhanced visibility of variations. The red and
blue lines represent average accuracy scores for training
and validation sets, respectively. The shaded area around
these lines represents the standard deviation of the scores
and provides a measure of the consistency of the sample.
Notably, both training and validation accuracy display a trend
of improvement as the number of trees increases, converging
around an accuracy score of approximately 0.99. The fact that
the standard deviation is particularly narrow for large trees
indicates that the model is robust with little overfitting. Based
on a comprehensive evaluation of ML models, RF stands
out as a superior model due to its performance on several
metrics. RF has the highest accuracy at about 98.97%.
Although GNB was the fastest, it completed the training in
just over 0.026 seconds. Despite the speed, its lower accuracy
compared to RF makes it unsuitable for this application.
Moreover, RF has aminimum log loss value of about 0.07411.
The validation curve illustrates the robustness of the RF
with minimum overfitting, and an AUC score of almost
0.9997 shows its high classification efficiency. Given its
high accuracy, reasonable training time, and strong predictive
reliability, RF stands out as the best model for classification.
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FIGURE 15. Verification of the deployed smart contract.

D. PERFORMANCE ANALYSIS OF THE PROPOSED
BLOCKCHAIN
Further, we evaluated the performance of the proposed
framework by analyzing the blockchain’s transaction cost
and IPFS bandwidth utilization. In the blockchain layer,
we implemented a smart contract to validate the non-attack
data of healthcare systems (e.g., smart wearable) to protect
them from data manipulation/injection attacks. FIGURE12
shows the smart contract interface with different user-
defined functions, such as owner(), setRequiredFields(),
validateData(), submitData(), and getPatientData(). These
functions act as data validators by which each entity of the
proposed framework has to verify the healthcare data that is
going to be stored in the blockchain nodes. Conventionally,
it is verified by the intermediaries; however, it can be tainted
to manipulate the data and jeopardize the entire healthcare
system. Therefore, smart contracts play an essential role in
verification and data validation and enforce access control to
ensure data privacy and integrity.

Once the data is validated, it is forwarded to the IPFS con-
tainer using IPFS application programming interfaces (APIs)
and storeDataOnIPFS() function. It computes the hash for
each incoming validated data and simultaneously forwards it
to the immutable blockchain ledger. Here, we used Filebase
APIs to get the IPFS bucket, where each healthcare data gets a
unique IPFS content identifier (CID) for storage and retrieval
purposes. It is to be noted that the use of IPFS improves
the response time and performance of the blockchain
network. Since only hash is stored in the blockchain instead
of the original healthcare data, the blockchain’s response
time is reduced. FIGURE 13a shows the response time
comparison between the conventional blockchain (without
IPFS) and the blockchain with IPFS. Based on the aforesaid
discussion, it is evident from FIGURE 13a that the proposed
framework with IPFS has a lesser response time compared
to the conventional blockchain. It can be observed that
the blockchain’s processing capacity is directly influenced

by the response time. In essence, the shorter the response
time, the greater the number of data transactions the
blockchain can effectively process. Hence, a scalability
parameter is utilized to measure blockchain performance
under the influence of CPU utilization. FIGURE 13b and
FIGURE 13c shows the scalability performance with 10%,
50%, and 100% CPU utilization when data is transacted
(stored and retrieved). From the graphs, it becomes evident
that the integration of IPFS represents a significant and
transformative advantage in the context of scalability within
blockchain ecosystems. In addition to that, we also evaluated
our smart contract with dynamic data size for scalability
assessment. From smart contract, we send different chunks
of data to IPFS, such as low data, medium data, and
high data of sizes, ∼100-200 KB, ∼1.83- 2.16 MB, and
∼ 4.56 - 7.38 MB, respectively. Based on such dynamic
transactions in the blockchain, we found that due to the
incorporation of IPFS, the response time becomes minimal
and eventually improves scalability. FIGURE 14 illustrates
the transaction throughput comparison with different data
sizes. From the graph, we can observe that low data has higher
transaction throughput at the initial time (10-20 (s)), but
later, it gradually decreases due to the high IPFS bandwidth
utilization by other participants. Similarly, medium and high
data have better throughput at the initial timespan, but since
it has a huge amount of data (in MBs) traversing through
the blockchain network, it has lower transaction throughput
compared to low data (shown in the black line). Overall,
the blockchain network offers a transaction throughput
of ∼ 60 tx/sec while storing and retrieving the transaction
from IPFS storage. The transaction and response time
are directly related to scalability, and since the proposed
framework has higher transaction throughput and minimum
response time for storing and retrieving healthcare data, it has
higher scalability compared to the conventional blockchain.

Furthermore, we verified the developed smart contract
on a Sepolia test network via a MetaMask wallet. Smart
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FIGURE 16. (a) Read contract and (b) write contract on Sepolia Etherscan.

contract verification ensures that the contract is free from
potential security risks. Additionally, it provides transparency
and ensures that the contract’s logic is correct and developed
for the intended behavior. This verification ensures that
the contract’s logic correctly implements the intended
behavior, reducing the risk of unexpected behavior or
errors. Toward this goal, we deployed the smart contract
on Sepolia.etherscan.io with the contract hash address -
0 × 1E9386BE908b356be546698C3cb73B1aEBc6a3Fb as
shown in FIGURE 15. From the verified smart contract,
we can access both the read and write smart contract
functionalities. FIGURE 16 shows the read and write contract
of the deployed smart contract, which has all the functions
related to get() and set() that secures the predicted healthcare
data.

VI. CONCLUSION AND FUTURE SCOPE
In this article, we proposed a novel secure data dissemination
framework to secure healthcare data in smart healthcare
systems. For that, we amalgamate AI and blockchain
technology that first classifies healthcare data, i.e., malicious
and non-malicious data, and then offers secure data storage.
Firstly, we pre-processed the data and performed feature
scaling on the standard network security dataset by applying
fuzzy logic. Then, we trained the AI algorithms, such as
LR, RF, DT, Gaussian classifier, and SGD, on this specific
dataset to classify malicious and non-malicious healthcare
data. Fuzzy logic reduces the computation overhead from
the AI algorithms since it efficiently selects the crucial
features from the dataset and only allows them to partake
in AI training. However, since the non-attacked predicted

data can be maneuvered by the attackers, there is an
imperative requirement for tampered-proof storage to tackle
data integrity issues in the healthcare domain. Therefore, the
non-attacked predicted data is forwarded to the blockchain
network, where we developed a smart contract that takes the
data from the AI model to offer secure data storage in the
immutable ledger. To improve the scalability performance of
the blockchain network, we employed IPFS, which computes
the hash of each raw healthcare data and forwards the hash
to the immutable ledger. Lastly, the proposed framework is
evaluated against several performance metrics like accuracy,
log loss curve, ROC curve, and validation curve. The
results show that the RF classifier achieves 98.97% accuracy
compared to other classifiers.

In future work, we will enhance the performance of the
proposed framework by incorporating the imperative benefits
of the 5G network. We will also address the integration
challenges that lie across all the layers of the proposed
framework, whichwill be crucial in strengthening the security
of the proposed framework. It will make the proposed frame-
work more robust and enhance efficiency. In the data layer,
work should be done in order to make the heterogeneous
data more synchronous and secure, which can be integrated
with the fuzzy layer. In the future, we will work in the
fuzzy layer to decrease the computational overhead of feature
extraction and also maintain the accuracy of AI models.
While integrating the AI layer, we can encounter challenges
like scalability issues ofMLmodels, computational resources
with DL models, latency, and synchronization challenges
with the blockchain layer. Therefore, in the future, we will
focus on reducing these integration problems.
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