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ABSTRACT The rapid increase in energy demand and the disadvantages of using fossil fuels in electricity
production have led to a greater emphasis on renewable energy sources. Consequently, research on the
use of renewable resources has gained importance. Numerous factors influence the energy production of
power plants that generate electricity from these sources. Power plants utilizing solar energy, one of the
renewable energy sources, are significantly affected by environmental factors and meteorological variables,
impacting the continuity of electrical energy production in solar power plants (SPPs). For these reasons, this
study developed prediction models using two different methods based on machine learning and artificial
intelligence to analyze and predict changes in the electrical energy production of SPPs due to environmental
factors and meteorological changes. The data used in the study are real data collected from a 180 kWe solar
power plant currently in operation. Data collection started from the day the power plant was commissioned.
Using real data, the effects of pollution and environmental impacts on PV panels’ energy production
are demonstrated. To mitigate these effects and examine the impact of adverse conditions on production
efficiency, two different analysis methods were used: Random Forest Regression (RFR) Model and Artificial
Neural Networks (ANN). This allowed for a comparison of the results between the models. Long Short-Term
Memory (LSTM) networks, a type of artificial neural network, were utilized. A prediction model was created
for the decrease in energy production of the power plant due to pollution and environmental impacts using
Random Forest (RF) regression analysis, which analyzes energy production based on non-linear independent
input variables and creates a prediction model. The model estimated SPP’s electrical energy production based
on environmental impact measurements and pollution. A graph comparing estimated energy production
amounts with actual values is shown. In another analysis phase, neural networks were trained with data
from the SPP and measurement station using Long Short-Term Memory (LSTM) networks. The energy
production of the power plant was estimated with the trained LSTM neural networks, and the results are
shown graphically. A very large data set was used in the two different prediction models. The training data set
includes hourly sunshine duration, accumulated irradiation (Wh/m?), hourly maximum temperature, hourly
minimum temperature, humidity (%), hourly temperature, hourly total precipitation (kg/m?), and daily and
hourly data since the power plant began operation. It consists of data on wind speed (m/s), pollution, and
energy production values of the power plant. This means a total of 119,808 data points were processed in
the prediction model, highlighting the detail of the analysis. The results were evaluated using four different
performance measures: correlation coefficient (R), fractional gross error (FGE), mean standard error (MBE),
and root mean square error (RMSE). The RF results showed a correlation coefficient of 0.8111 with the
predictions. In contrast, the LSTM network predictions had an R value of 0.9759. Comparing RFR and
LSTM, it is evident that LSTM provides much better results in models created with the entire data set.
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I. INTRODUCTION

As technology advances, the demand for energy continues to
grow. This situation gradually increases the usage of fossil
fuels and exacerbates their environmental impacts. Increasing
energy needs and negative environmental impacts disrupt
the balance of the life cycle on earth. Additionally, energy
costs are rising, leading to a global power struggle. All these
reasons indicate that it is necessary to shift towards renewable
energy to meet energy needs.

Although energy demand is met economically, the primary
cause of greenhouse gas emissions is fossil fuels [1]. In the
studies conducted, the environmental effects of solar energy
systems were discussed in detail and it was emphasized that
the relevant procedures should be followed [2]. Carbon emis-
sions encourage studies in the field of renewable energy, and
a study on the benefits of renewable energy in terms of emis-
sions was conducted in [3]. Although the use of fossil fuels
is considered economical, it has many harmful effects on the
environment [4]. However, the generation of large amounts
of greenhouse gases has a negative impact on the carbon
footprint [5].

It is predicted that the world population will double in the
next 25 years [6], [7]. The need for energy has increased as
a result of increasing population growth and parallel devel-
opment of industry in the world [8]. The fact that fossil fuels
do not have sufficient reserves to meet the increasing energy
need shows that renewable energy sources are needed [9].
Reducing dependence on fossil fuels encourages the tran-
sition to renewable energy technologies [10]. To prevent a
climate crisis in the future, the 2015 Paris Agreement set a
target of limiting global temperature rise to 1.5 to 2 degrees
above pre-industrial levels [11]. Therefore, minimizing the
use of fossil fuels and ensuring the use of energy obtained
from clean energy sources should become the goal [12]. It is
estimated that in 2040, more than one third of the energy
produced from renewable energy sources will be obtained
from solar and wind energy and solar energy production will
reach 7200 TWh [13]. The sun has the capacity to provide
1.7 x 10%? J of energy in 1.5 days, which is equal to the total
energy that 3 trillion barrels of oil resources can provide [14],
[15].

Solar energy systems are seen as a useful energy source
in regions where transmission lines are weak [3]. It has been
examined that photovoltaic panels can be operated hybridly
with batteries and diesel fuel. Data obtained from solar panels
on the truck were used in the study [16].

Therefore, harnessing solar energy will be a successful way
to meet the world’s energy needs, eliminate energy poverty
in developing countries, and accelerate the transition to clean
energy. The main benefits of using solar energy to generate
electricity are widespread availability, easy installation, scal-
ability, and environmental friendliness [17].
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Itindicates the ideal solar energy system size to be installed
in different regions with the least system cost. Technical
investigation of the fields has shown that there is a direct
relationship between the efficiency of the system and the
climate parameters [18].

The solar panel is a critical part of the solar energy
system. PV technology collects solar radiation using
semiconductor-based solar cells (panels) and converts it into
electrical energy [19]. They perform better when there are no
environmental issues and the panels are oriented and tilted to
ideal angles. The accumulation of airborne dust on solar panel
surfaces is one of the worst problems because it significantly
reduces the efficiency of the panels [20].

PV cells produce electricity through an energy conversion
process. Most often, photons or light energy strike photo-
voltaic cells, energizing electrons in semiconductor material
atoms, resulting in an electrical voltage and current [21].

Their biggest disadvantage is that they are sensitive to
weather changes. Environmental factors that affect the effi-
ciency of solar systems include wind speed, solar radiation,
ambient temperature, humidity and dust [22]. In another
study, PV pollution was simulated with an aerosol model
of dust particle densities typically collected from solar pan-
els [23]. When dust accumulates on the surface of solar
panels, less light reaches the solar cell and solar flux is
restricted, resulting in power loss [24].

The effects of atmospheric effects on the efficiency of
solar panels have been investigated. The performance effect
of different particles on monocrystalline and polycrystalline
panels has been studied [25]. It presents the result of a
study on the impact of dust accumulation on power output
in solar PV modules in the eastern region of Saudi Arabia.
The study shows that solar PV modules left dirty for more
than six months can experience power degradation of up to
50%. The solar tracker increases power output and helps
reduce the impact of dust accumulation during off-peak times
by 50% [26].

PV panel material, weather and location are just some of
the many factors that affect the accumulation, adhesion and
clearance processes of air particles [27]. In another study,
it was stated that dust accumulating on the panel during
certain periods reduces energy efficiency [28].

Soiling, the accumulation of dirt and dust on solar panels,
is a major obstacle to their efficiency, leading to a significant
drop in performance. This review [29] highlights how soiling
has a particularly severe impact in arid and semi-arid regions,
where abundant sunlight offers vast untapped potential for
solar energy [29].

According to another study, air dust reduces the perfor-
mance efficiency of solar energy systems by reducing the
amount of sunlight reaching the surface [28]. Dust particles

VOLUME 12, 2024



K. Olcay et al.: Forecasting and Performance Analysis of Energy Production in SPPs

IEEE Access

cover the surface of the panels in a thin layer. In general,
the size of these dust particles can be up to 10 mm. It has
been determined that this situation may vary depending on
geographical conditions [30]. This affects the performance of
the panels [31].

Power output and module efficiency decrease as the mass
of dust accumulation increases, and as particle size decreases,
power output also decreases because smaller particles block
more radiation and prevent it from reaching the surface of
the solar system. This can cause a 6.5% loss in solar panel
efficiency after two months of pollution; in desert environ-
ments, this rate of decline can be as high as 40% [21].
The pollution rate in the relevant regions determines this.
The Middle East, North Africa, India and China are the
regions most prone to dust accumulation, with losses ranging
from 10% to 70% [13].

In a study conducted in Norway, energy losses due to
pollution were examined. A high-precision method has been
developed in which the weights of the cloths used to clean
accumulated dust residues are evaluated [32].

It has been found in many studies that the angle of incli-
nation has a significant effect on dust accumulation. In this
regard, it has been determined that the panels in Europe are
more inclined than in the Ecuadorian region and the dust
effect should be evaluated appropriately [33].

For example, one study showed that Iraq has the highest
annual average solar energy in the world and is among the
countries with the greatest potential for the installation of
large photovoltaic systems. The country also has the highest
political support and interest in changing the energy mix and
initiatives to develop photovoltaic power plants. It is reported
to have one of the radiation values [34]. However, given that
Iraq is a largely desert country, the country’s climate and
environmental factors can pose a significant obstacle [29].

Renewable energy sources, especially solar energy, play a
critical role in the transition to sustainable energy systems.
Accurate estimation of energy production is important for the
efficient operation of solar power plants and their integration
into the energy grid. In this context, the Random Forest (RF)
regression model is widely used due to its robustness and
high accuracy in handling complex, nonlinear relationships
in large data sets. RF is an ensemble learning method that
combines multiple decision trees to improve prediction per-
formance and reduce overfitting. Advantages of RF compared
to other regression models include its ability to capture inter-
actions between variables well, its low risk of overfitting, and
its robustness to missing data or noise. These features make
RF stand out in multivariate and noisy data sets such as energy
production. Breiman [35] demonstrated the effectiveness of
RF in various regression tasks, and subsequent studies have
demonstrated the successful use of this method in environ-
mental modeling and energy forecasting applications. In [36],
hourly solar energy estimation was made using RF. It has been
said that the model created using RF in predicting energy
production for three different regions has high prediction
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accuracy. In the same study, it was emphasized that RF is
widely used with large data sets due to its high tolerance
and adaptability to bad data. In another study [37], hourly
global solar radiation prediction was made using RF. Here,
firefly algorithm was also used to optimize the created RF
model. In addition, the optimized RF model was compared
with traditional artificial neural networks (ANN) and ANN
predictions optimized using the firefly algorithm, and it was
said that RF gave better results. In another study, the RF
model was proposed to achieve compatibility with nonlinear
data in time series and to make a successful prediction [38].
With the created data set, solar radiation was estimated and
high performance was achieved. Measuring variable impor-
tance and the problem of overfitting brings machine learning
methods to the fore and is gaining popularity in studies in
the field of energy. With this incentive, another study [39]
recommends the use of RF for solar radiation estimation.
A prediction model was created using meteorological vari-
ables and air pollution index for three different regions in
China. The results were compared with empirical models and
were shown to give better results. In [40], RF was used to
obtain a new data set and estimate solar radiation by using
estimates from different radiation data sets.

In recent years, deep learning techniques, especially Long
Short Term Memory (LSTM) networks, have emerged as
powerful tools in time series forecasting. LSTM is a type of
recurrent neural network (RNN) widely used in time series
data due to its ability to capture long-term dependencies
and temporal patterns in sequential data. The advantages
of LSTM compared to other artificial neural network mod-
els include its ability to preserve past information for a
longer period of time, to be resistant to the vanishing gra-
dient problem, and to model temporal dependencies better.
This makes LSTM a promising approach for solar energy
production predictions, where energy output is affected by
time-varying environmental factors. Previous research has
shown that LSTM networks can outperform traditional statis-
tical and machine learning models in a variety of prediction
applications. In [41], ANN types used in different solar
energy studies were discussed and it was said that the use
of ANN in modeling not only energy production but also
solar devices such as solar cookers, dryers and heaters has
significant benefits due to high accuracy, generalization abil-
ity and low calculation time. ANNs are used not only for
the prediction or modeling of variables in solar electricity
generation systems but also for the analysis of different solar-
based applications. In [42], ANN was used to model a large
thermal energy system and the prediction results obtained
were evaluated as satisfactory. Various hybrid models and
different approaches have also been studied in different stud-
ies. Studies on modeling solar energy electricity systems,
analyzing their performance, and making various predic-
tions using artificial intelligence methods between 2009 and
2019 were examined in [43]. In the literature review, more
than 90 publications were examined and the reliability of
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ANN, fuzzy logic and genetic algorithm (GA) in analyzing
and predicting the performance of solar radiation and PV
systems was demonstrated. In [44], a literature review was
conducted for the use of ANN in estimating solar radiation
originating from solar energy, and it is said that ANN is more
accurate in hourly and monthly solar radiation predictions.
In [45], solar radiation prediction was made by comparing
ANN models among themselves. In the study, predictions
were made using data from a local meteorological station and
deep learning methods models were created using traditional
ANN recurrent neural network (RNN). The results showed
that RNN prediction had higher accuracy than the perfor-
mance criteria. From this, it can be seen that the suitability of
deep learning algorithms for the prediction to be made within
themselves is important and that the criteria for this suitability
should be reviewed when determining the algorithm to be
chosen.

In this research, RF and LSTM networks models were cre-
ated to predict the energy production of the solar power plant
using hourly data for a year. Data were collected from this
field from the day an SPP was installed and started producing
energy. The collected data set; solar power plant electrical
energy production, hourly measurement data, measurement
month, measurement time, sunshine duration, cumulative
radiation (Wh/m?), hourly maximum temperature, hourly
minimum temperature, humidity (%), hourly temperature,
hourly total rainfall (kg). /m2), wind speed (m/s) and pollution
data. Using these data, how the RF and LSTM models model
temporal relationships and their prediction performance were
analyzed. These two methods were evaluated and compared
using a comprehensive dataset containing approximately
120,000 data observations. This comparative analysis aims
to provide insights into the relative strengths and weaknesses
of RF and LSTM in the context of solar energy forecasting,
contributing to optimizing forecasting models for renewable
energy production. In addition, when looking at the literature,
the scarcity of studies in this scope and by creating a large
data set through a implemented SPP gives this study a special
importance. In addition, RF and ANN methods have been
used to estimate different variables of solar energy, as will be
discussed in the literature review. In addition, the use of the
LSTM and prediction model in SPP energy production is also
important in terms of the contribution of prediction methods
to the literature.

Il. MATERIAL AND METHODS

In this chapter; In the study, the SPP from which the data
was collected is explained. The features of SPP and field
information are shown in detail. Information on the efficiency
losses and energy production that will occur are given here.
Additionally, data collection methods from SPP and types of
data collected are explained. The characteristics of the data
received, their numbers and the analysis made for their effect
on energy production are explained. The data set created
for SPP energy production estimation and the methods of
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FIGURE 1. Solar power plant image.

estimation with RF and LSTM are explained. Details of these
methods and the reasons for their use are also given.

A. SPP INFORMATION AND LOSS OF PRODUCTIVITY

The aim is to determine the highest efficiency operating point
in solar power plants. For this reason, the main power plant
equipment that needs to be examined is the PV panels used in
the power plant. In this study, an analysis was made with the
data obtained from the solar power plant installed on the land.
The power plant was built on 3525 m? of land. 576 PV panels
and aluminum construction were used. There are also three
inverters with 60 kW output power. The power plant consists
of 16 stands, and each stand has a total of 36 PV panels,
consisting of 4 rows placed horizontally and vertically. Total
DC installed power is 190.08 kW. Figure 1 shows the visual
of the power plant.

The ground of the field was covered with white gravel in
the first application phase. The reason for this is to prevent
mud and dust from accumulating on the panels due to rain
or wind. However, it should be noted that at this stage, the
arrangement and cleaning of the power plant is not done.
In this case, it makes it very suitable for the analysis of power
plant data and pollution within the scope of this study. SPP is
connected to the electrical grid with a 250 kVA transformer
at a voltage level of 34.5.

Information about the panels and inverter used in the power
plant is shown in Table 1.

The solar panel data given in Table 1 was obtained as a
result of analyzes performed under standard test conditions
(STC). These conditions were established to compare the
performance of solar panels and provide a standard reference
point. STC;

« Radiation Intensity: 1000 W/m?,

o Cell Temperature: 25 °C, G

o Solar Spectrum: AM 1.5G (solar spectrum under 1 air
mass index)
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TABLE 1. PV panel characteristic data.

Max. Power (Pmax) 330 Wp

Module Efficiency 19,78

Maximum Power Voltage (Vmp) 3338V

Maximum Power Current (Imp) 9,98 A

Open Circuit Voltage (V) 40,78 V £3%

Open Circuit Current (A) 10,19 A £5%

Fuse Rating 20 A

Maximum System Voltage DC1000V

Cell Technology Mono-Si

Operating Temperature Range -40~+85 °C

Temperature Coefficient (Isc ) 0.042%/°C

Temperature Coefficient (Vsc) -0.284%/°C

Temperature Coefficient (Pmax) -0.38%/°C

Panel Size(mm) 1665x1002x35

Max. Input Voltage 1100 V (DC)

Max. Input Current 22A/22A/22A/22A/22A/22A
(DO)

Isc 30A/30A/30A/30A/30A/30A

MPP Range DC 200-1000V

Out Nominal Voltage (AC)
AC Nominal Operating Frequency

380/400 V AC;3(N)P+E
50/60 Hz

Output Rated Power 60 kW (AC)
Output Max Apparent Power 66 kVA (AC)
Output Max. Current 100A;380 V AC/

Power Factor
Operating Temperature Range
Pollution Degree

95,3A;400V AC/ 79,4A;380
VAC
0,8(lagging)-0,8(leading)
-25-+60 °C

I

Non-Isolation
MBUS/RS485

Inverter Topology
Communication

It is stated as. In light of this data, it shows that the Pmax
value of the solar panel will change with the temperature.
This situation will also affect the efficiency of the power
plant. According to the data in Table 1, the temperature and
power change graph of the panel was created in MATLAB
and shown in Figure 2.

B. DATA TYPES AND COLLECTION METHODS

There are many factors that can affect the efficiency of energy
production in SPPs. In order to determine these effects, in this
study, various data were taken from the power plant whose
land type was given above. First of all, data on the electrical
energy produced by the power plant was collected. Electricity
production data has been recorded hourly, daily and monthly
since the day the power plant was produced. In addition,
meteorological data were collected with a measurement sta-
tion. The meteorological station where measurements were
made is shown in Figure 3.

Data on sunshine duration, humidity, temperature, pre-
cipitation meter, wind speed sensor, wind direction sensor,
accumulated irradiation, maximum temperature and min-
imum temperature are received from the meteorological
measurement station shown in Figure 3. These data can be
recorded at different time intervals. In this study, all these data
were monitored instantly and the data used in the study were
determined as hourly data. Accordingly, hourly sunshine
duration, accumulated irradiation (Wh/m?), hourly maximum
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FIGURE 2. Solar panel temperature-power graph.

FIGURE 3. Meteorological measuring station.

temperature, hourly minimum temperature, humidity (%),
hourly temperature, hourly total rainfall (kg/m?) and wind
speed (m/s) data were used. From this entire data set, data was
collected hourly for 416 days and a total of 79872 measure-
ment data sets were created as impact factors. As explained in
the section above, these actual measured values have a high
impact on the efficiency of the SPP and it is of great impor-
tance to take them into account when calculating or predicting
the efficiency and change of the power plant. In addition, the
size of the data pool consisting of real data collected for a
power plant that is operating and producing energy increases
the importance of the study. In addition, it shows that it will
make a great contribution to SPP operators and investors.
Apart from the comprehensive data received from the
measurement station for the analysis of the effects on SPP
energy production, pollution that causes a decrease in energy
production is also very important. These values should also be
taken into consideration when examining the environmental
impacts of the power plant. For this purpose, the pollution of
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PV Panel

Irradiance
Sensors
Dirty Sensor — [

s

Clean Sensor

FIGURE 4. Dust measuring station.

the PV panels in the power plant was monitored and mea-
surements were taken and recorded. Figure 4 simply shows
the system installed in the field for dust measurement.

As seen in Figure 4, the pollution on the PV panels was
measured through a measurement system located next to
the strings in the power plant. In the system here, analysis
was made by comparing two different measurements on two
sensors. One of the sensors is constantly cleaned and remains
clean. The other sensor is left undisturbed and pollution
is determined. By measuring and comparing the radiation
values with both the dirty sensor and the clean sensor, the
contamination rate is determined using Equation (1).

SRV 0
SR = (1 _ ﬂ) 100 (1)
SRVclean

Looking at Equation (1), SR; soiling rate, SRV spijeq; SRV ciean
refers to the soiling rate value measured from the clean
sensor. Here, measurements can be taken and recorded at
different time intervals. In order to maintain the matrix form
while analyzing the data set, measurements taken hourly were
used. Referring to the IEC 61724-1 standard, which defines
requirements for performance monitoring, measurement and
analysis of photovoltaic (PV) systems, a daily rate for the
contamination rate can be recommended. Because, as in the
system here, the measurement made on radiation may mislead
as a result of radiation fluctuation due to any reason. This
will not be a problem since all parameters will be compared
together here. Additionally, hourly measurement records will
eliminate the effect of instantaneous balances. With this mea-
surement system, not only the amount of dust but also the
cell temperature in dirty cells is measured. Cell temperature
also affects the efficiency of PV panels in the power plant.
Therefore, it is important to include it in the analyses. The
data set mentioned here consists of a total of 416 days and
19968 data in the same measurement intervals as the data set
collected from the meteorological measurement station. With
these, the system grows even more. Since SPP PV panels
are not cleaned, the pollution of the panels increases and
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FIGURE 5. SPP panel pollution.

the energy to be produced decreases. Figure 5 shows SPP
pollution at different time intervals.

The short circuit current (Iy.) of photovoltaic (PV) panels
often decreases due to contamination. Contamination occurs
when substances such as dust, dirt, leaves and bird droppings
accumulate on the surface of PV panels. These substances
reduce the amount of radiation by preventing sunlight from
reaching the surface of the panels. As a result, the electrical
current produced by the panels also decreases. In the IEC
61724-1 standard, it is shown that monitoring the short circuit
current is appropriate among the contamination measurement
methods.

Accumulated irradiation (AI) data was obtained with a
measurement station installed in the power plant. Reference
panel cell was used for measurement. Measurements taken
with this cell were recorded via RS485 connection. The mea-
surement made here is actually the same as the operation of
solar panels. In other words, energy production begins under
radiation from the solar cell. By performing this production,
the short circuit current through the cell is measured. This is
how Al data was collected.

Temperature measurements of SPP solar panels were
made with a thermal camera. Thermal camera measurements
checked whether there was any damage to the cells or connec-
tions. Because in case of physical damage, a high tendency
to resist electrical conduction is expected in damaged areas.
When electric current passes through high resistance points,
more heat will be generated and thus can be detected with
a thermal camera. Measurements were taken at weekly inter-
vals. A few of the measurement images are shown in Figure 6.

In temperature measurements made with a thermal camera,
it was observed that there was a temperature difference not
only in malfunctions but also due to contamination. Polluted
areas receive less sunlight and therefore less energy produc-
tion. The temperature is higher in these regions than in cleaner
areas.

By monitoring the current and voltage values for three
inverters in the power plant, the effects of physical damage
and pollution were monitored. Input current and voltage data,
active power, reactive power and power factor values were
recorded for each inverter on a daily basis. A daily chart
created with this data is shown in Figure 7.

Figure 7 shows the active power, reactive power, power
factor, input current and input voltage values of the power
plant inverter, which has eleven inputs. The data in the graph
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FIGURE 6. Panels thermal measurement.
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FIGURE 7. Inverter-1 data.

are the values recorded within a full day and are included
in the analyzes in the study, confirming the analysis of the
effects of pollution on the power plant.

A performance rate (PR) was created based on these data.
PR is shown in Equation (2).

PR = E7 /Al ,, ()

In Equation 1, PR reflects the efficiency of energy production
to solar radiation per unit area. E7 shows the total amount
of energy produced in a certain period of time and Al,,
shows the average Al value in a certain period. Production
and irradiation data of the power plant are shown in Figure 8.

Equation (3) is given to analyze the efficiency of the power
plant:

_ PRcican — PRsoiled
P Rclean

] (3)
n in Equation (3); yield value, PR j.qn; When the panels are
clean in the power plant, the performance rate value and
PRited; It shows the performance rate value when the panels
in the power plant are dirty.
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FIGURE 8. SPP energy yield-irradiaton change chart according to dates.

C. FACTORS AFFECTING SPP YIELD LOSS AND RANDOM
FOREST REGRESSION ANALYSIS

The efficiency of solar panels that produce energy in SPPs
begins to decrease from the moment of first installation. For
this situation, degradation curves of PV panel manufacturers
are shared. Although these values generally decrease by 1.5%
to 2.5% in the first two years of the panel, it is expected to
decrease by a total of 10% in the next ten years.

When we look at the literature, it can be seen that the high-
est effects causing efficiency loss in SPP energy production
are caused by contamination. Experimental and theoretical
studies have been carried out to determine this decrease.
In [45], pollution refers to a situation that occurs as a result
of particulate matter collected on the windshield surface of
the PV module, preventing the interaction of sunlight on the
module. Studies have shown that if panels are not cleaned for
3-6 months, there can be up to a 30% loss of efficiency. Addi-
tionally, it has been determined that excessive contamination
can lead to a cumulative power loss of more than 1% per day.
In another study [26], it is said that the efficiency loss in SPPs
exceeds 50% when cleaning intervals are more than 6 months.
In order to determine the effects of dust accumulation on the
energy production of PV modules, approaches were made in
experimental studies according to the IEC 61724-1 standard.
The PV modules installed in [46] were divided into two parts
and the short circuit currents (Isc) of the modules left dirty
and the cleaned modules were measured and the pollution
rates of the panels were determined. It has been said that the
contamination rate is the ratio of the measured Ig.

Random Forest (RF) Regression Analysis is a machine
learning method and was proposed by Breiman [35]. Random
Forest regression is an algorithm that aims to make more
accurate and reliable predictions by using multiple decision
trees. Each decision tree is trained on a random subset of
the data set and the results of these trees are combined. This
process increases the generalization ability of the model and
reduces the problem of overlearning. Due to these advan-
tages, it has been used in prediction processes for different
applications. In [47], a short-term load forecast was made by
creating a hybrid model using the RF and mean generating
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function (MGF) model together. In another study, RF was
used for solar power forecasting, again in the field of renew-
able energy resources [48]. In another similar study [49],
RF was used to estimate the amount of solar energy radiation
in an area. Sunshine duration was used when making the
prediction. Installation of solar power plants on roofs and
in the field is quite common. PV potential estimates are
very important in the feasibility of these power plants. Many
studies have examined the solar energy potential in small and
large-scale rooftop solar power plants [50], [51], [52], [53],
[54], [55], [56]. By performing solar energy potential analysis
for rooftop SPP using RF, high accuracy was achieved for this
large-scale rooftop power plant [57].

In the working principle of RF regression, N bootstrap
samples are first created from the given training data set.
Bootstrap sampling is randomly selected subsets of data
(which can be selected recursively) from the data set. This
process creates different training datasets for each decision
tree. The training dataset and bootstrap sampling are shown
in Equation (4) and Equation (5).

D ={(x1,y1), (x2,¥2) 5 ..., &N, yn)} @
D* = {(x}.57) . (63.33) .- - (o ov) } Q)

In Equation (4), D represents the training data set.
In Equation (5), x|, y] values represent the data points
selected from bootstrap sampling. A decision tree is built on
each bootstrap instance. In each branch of the decision tree,
the best split point is selected among m randomly selected
variables (features). The split point is made on the j-th vari-
able in the feature space X:

argminj,s Zi:xffs (yi N &leﬂ)z + Zi:xf>s (Yi B 57right)2 ©)

In Equation (6), jzlef, and jzright are the average target values
of the left and right subnodes, respectively. The other value
in the equation is; j indicates which feature will be divided,
the division point, that is, the value at which the property
values will be divided. This process continues splitting the
branches (nodes) of the tree until a certain depth or until
certain stopping criteria are met. The predictions given by
each decision tree are taken based on the test data. In the case
of regression, the final prediction is obtained by averaging
the predictions from all trees. The predictions made by each
decision tree Tb are denoted asfb(x). The final prediction for
B decision trees is shown in Equation (7):

A 1 N
Feor=530 i ™

Equation (7) is the simple arithmetic average of the predic-
tions of all trees. The predictions given by each decision tree
are taken based on the test data. In the case of regression,
the final prediction is obtained by averaging the predictions
from all trees. Figure 9 shows the working principle of the RF
regression model.
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FIGURE 9. RF regression working principle diagram.

In this study, RF regression analysis was first used to
estimate the electrical energy production of SPP with envi-
ronmental factors and pollution. In RF regression, the training
data set includes hourly sunshine duration, accumulated
irradiaton (Wh/m?), hourly maximum temperature, hourly
minimum temperature, humidity (%), hourly temperature,
hourly total precipitation (kg/m?), wind speed (m/s). and pol-
lution data. With these data, the electrical energy production
of SPP will be estimated using RF regression. All these data
consist of 109,824 separate data in total [58]. This means that
the data pool is quite large and sufficient.

Regression analysis codes were written in MATLAB. Inde-
pendent variables are normalized when finding the equation
model. Z-score normalization was used for this and is shown
in Equation (8).

X —o

=

®)

o

In this equation, z; z-score normalized value, «; the mean of
the data set for each of the independent variables, and o; It
shows the standard deviation of the data set for each of the
independent variables.

Hyperparameters have been optimized to improve perfor-
mance when performing RFR. In RF regression analysis,
hyperparameter optimization and training the model with
these hyperparameters are important steps to maximize the
performance of the model. Hyperparameters are parameters
that must be adjusted during the training process of machine
learning algorithms and determine the configuration of the
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model. These directly affect the model’s learning process
and performance but are not learned by the model itself;
instead, they are determined and optimized externally before
the model is trained. The hyperparameters in the RF model
are number of trees, minimum leaf size, maximum depth,
maximum number of features and bootstrap. The number of
trees indicates how many decision trees will be used in the
model. It determines the minimum number of observations
that should be present in the leaf nodes (last nodes) of each
decision tree. A small leaf size creates more detailed and
complex trees, which can lead to overfitting. A large leaf
size creates more general trees and reduces the risk of over-
learning. Maximum depth determines the maximum depth
of a tree. As depth increases, the tree becomes more com-
plex. Deep trees may show overlearning, while shallow trees
may show underfitting. The maximum number of features
determines the maximum number of features to be considered
for splitting at each node. Using random subsets of features
reduces the correlation between trees and increases the gen-
eralization ability of the model. These variables are adjusted
at certain intervals during the optimization process and used
to find the best values. Bayesian optimization was used to
find the best combination within the hyperparameter ranges
determined for optimization. This method takes into account
the results of past attempts, ensuring that subsequent attempts
are more productive. This optimization is done to maximize
the performance of the model and minimize overlearning
or under learning problems. After the best hyperparameters
were determined during the Bayesian optimization process,
the Random Forest model was trained using these hyperpa-
rameters.

Four different performance evaluation criteria were made
for the result obtained: correlation coefficient (R), fractional
gross error (FGE), mean standard error (MBE) and root mean
square error (RMSE). Equations (9), (10), (11) and (12) were
used for these performance evaluation measures.

Z (Yobserved - flobserved ) X (Ypredicted - ?observed )

R =
\/ Z (Y observed — Y. observed) X (Y predicted — Y predicted )
©))
FGE — Z" Yubserved,i — Ipredictedi (10)
=1 Yobserved N +Y, predicted i
MBE — 2?21 (Yabserved,i - Ypredicted,i) (11)
- n
n 2
RMSE — \/Zi:l (Yobserved‘i - predicted‘i) (12)
n

In the equations given here, Y pserved; Observed values,
Ypred,-cte(ﬁ predicted values, Y observed; average of measured
values, Y ppserved; the average of the predicted values, n; It
represents the number of measured and predicted values.

The data collected for RF regression analysis were trans-
ferred to the algorithm and predictions were made. The
predicted values and actual values in the prediction results
are shown in Figure 10.
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FIGURE 10. Actual-predicted values as a result of RF regression analysis.

TABLE 2. RF regression analysis results performance metrics.

Root Mean Squared Error (RMSE) 0.5865
Mean Bias Error (MBE) 0.0001
Fractional Gross Error (FGE) 0.4356
Correlation Coefficient (R) 0.8111

Performance evaluation criteria were also determined for
the values obtained as a result of the regression analysis. The
results of the performance measures calculated according to
Equations (9), (10), (11) and (12) are shown in Table 2.

D. FACTORS AFFECTING SPP EFFICIENCY LOSS AND
ARTIFICIAL NEURAL NETWORKS

Atrtificial Neural Networks (ANN) are mathematical models
that aim to mimic the information processing capabilities
of the human brain. ANNs were developed inspired by the
working principles of biological neural networks and are
especially effective in learning complex relationships and pat-
terns in large data sets. Its basic structure consists of layers of
interconnected artificial neurons, and each neuron produces
an output by multiplying the input information it receives
with certain weights. This output is usually processed through
an activation function and passed to the next layer.

However, classical artificial neural networks face some
limitations in processing sequential and dependent data such
as time series data. In such data, where information from pre-
vious time steps is important for future predictions, traditional
ANN cannot perform adequately. In this context, Recurrent
Neural Networks (RNN) come into play. RNNs can model
dependencies of data over time. However, RNNs can also
have difficulty learning long-term dependencies, leading to
the “long-term dependency” problem.

Long Short-Term Memory (LSTM) networks have been
developed to solve this problem. LSTMs are a type of RNNs
and are particularly good at learning long-term dependencies.
LSTM cells have a special cell structure that allows informa-
tion to be stored for longer periods of time without being lost.
This cell structure contains components such as the forget
gate, entry gate, and exit gate. While the forget gate deter-
mines what information is forgotten, the entry gate controls
how new information is added to the cell. The output gate
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FIGURE 11. LSTM architecture.

determines which information will be transferred from the
cell state to the new hidden state. Thanks to these gates and
cell state, LSTMs effectively learn long-term dependencies in
time series data and make predictions.

ANN applications and predictions are popular in engineer-
ing studies and are often preferred for different purposes [59],
[60]. These studies provide effective results. In a study exam-
ining solar radiation prediction using ANN, 24 different
articles were selected and examined among 373 articles that
obtained results using ANN with different input data, and it
was said that the ANN study gave accurate predictions in
different climatic conditions [44].

LSTM artificial neural networks also have great potential
in solar power plant production forecasting. Solar energy pro-
duction may vary depending on various weather conditions
and environmental factors. Therefore, accurately analyzing
historical data and trends is critical to predicting future energy
production. LSTMs can be used as an effective tool for
production forecasting of solar power plants, thanks to their
ability to process such complex and time-dependent data.
In this way, energy management and planning can be made
more efficient. The architectural structure showing the work-
ing principle of LSTM networks is shown in Figure 11 [61].

In the working structure of LSTM networks, time series
data is entered at the input gate. The gate time series data in
this study are shown in Equation (13).

T
X = xt,la -xl,2’ xl,?)v xl,41 xt,S, xl,ﬁv xl,79 xt,g’ (13)
xl‘,gﬂxl,l()a xl,]laxt,]z

The values of the vector elements containing the input infor-
mation defined in Equation (13) are as follows:

x;,1:  Month in which the measurement was taken,
X2 Day of the month in which the measurement was
taken,

x;3 . Time of day of the month in which the
measurement was taken,

x;,4 . Hourly sunshine duration,

X5 ¢ Accumulated irradiaton (Wh/m?),

Xt,6 :  Hourly maximum temperature,

X7 :  Hourly minimum temperature,

103308

X8t Humidity,

Xt9:  Hourly temperature,

x:,10 - Total hourly rainfall (kg/ m2),
X;,11 ¢ Wind speed (m/s),

x;,12 ©  Pollution.

The output of LSTM networks and the electrical energy
production in the power plant that will correspond to this data.
The neural network here is the electrical energy production
of SPP as a result of the relevant values at the same time, and
the network is trained with this. At the output, it also makes
predictions as a result of this training. In the forget gate, the
previous state C;_1 and the previous cell state s;_; are taken.
Using the sigmoid activation function, it is decided which
information will be forgotten. The forget gate is calculated
in Equation (14).

S = o(Wr. [hi—1, x:] + by) (14)

In this equation:

fi Output of the forget gate,

o Sigmoid activation function,

W Weight matrix for the forget gate,
h;_1: Previous hidden state,

Xt Current entry,

by : Bias term for forget gate.

By taking the current input (x;) and previous cell state (/;_1)
at the input gate, Sigmoid and tanh activation functions are
used to decide which new information will be added to the
cell state. The entrance door is shown in Equation (15).

ir = oW [h—1, %]+ b;) (15)

According to equation 15:

ir : Output of the input gate,
W;:  Weight matrix for the input gate,
bi: Bias term for the input gate.

It then calculates the candidate cell state using the tanh acti-
vation function for new information that is a candidate for cell
disruption. These calculation equations are found in (16).

~

C; = tanh (We. [hy—1, x:] + bc) (16)
In the Equation (16) above:
C P Candidate cell state,
Wc @ Candidate cell state weight matrix,
bc: Candidate cell state bias term.

After this stage, the cell state is updated. In other words, the
information coming from the Forget gate is multiplied by the
previous cell state. The information coming from the input
gate is multiplied by the candidate new cell state and the
results are summed to obtain the new cell state. This is shown
in Equation (17).

Cr =f.Cro1 +i1.C, (17)
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TABLE 3. LSTM neural networks analysis results performance metrics.

Root Mean Squared Error (RMSE) 0.2183
Mean Bias Error (MBE) 0.0041
Fractional Gross Error (FGE) 0.1360
Correlation Coefficient (R) 0.9759

In this equation:

Cy: New cell state,
Ci_1: Previous cell state,
f;-Ci—1 : The part of the previous cell state passing

through the forget gate,
ir.Cy : The part of the candidate cell state passing
through the input gate.

Then, the current input and previous cell state are received at
the output gate. The output port determines what information
is transferred from the cell state to the hidden state. This pro-
cess is also calculated using the sigmoid activation function.
It is shown in Equation (18).

0 =0 (Wo. [hi—1,x:]1 + by) (18)

In this equation:

0t: Output of the exit gate,
W, :  Weight matrix for the output gate,
b, :  Itis the bias value for the output gate.

Output information is obtained by using sigmoid and tanh
activation functions. In the LSTM output layer, the output
information obtained from the LSTM cell is used for the final
prediction. The new hidden state is calculated using the tanh
activation function by combining the new cell state and the
output gate. It is shown in Equation (19).

h; = o¢.tanh(Cy) (19)

In the Equation (19) above:

h;: New hidden status,
o; :  Output of the exit gate,
C;: New cell status

The new hidden state &, is transferred to a fully connected
layer or another neural network layer. This layer is used
to make the final prediction. In this process, it is usually
processed with a weight matrix and activation function. The
final estimate is defined in Equation (20).

)A’t = Wout-ht + bout (20)
where:
Ve Final estimate,
Wour © Weight matrix for final prediction,
bout: Final prediction bias value.
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FIGURE 12. Actual and predicted values as a result of LSTM networks
analysis.

In this process, A, is the output of the LSTM cell and is an
important intermediate step used in making the final predic-
tion. Using the fully connected layer, /,, the final prediction
vy is calculated.

The energy production of the power plant was estimated
using LSTM networks with the data set created by long-term
measurements made in the SPP field. The LSTM model is
trained with input and output data. To increase the perfor-
mance of the model, 500 epochs were used, the number of
neurons was increased, and the learning rate was adjusted
with the optimization algorithm. Predictions were made with
the trained model and the results were visualized by cal-
culating performance evaluation metrics. These steps were
taken to increase the accuracy of the model and make better
predictions. The result obtained is shown in Figure 12.

Performance evaluation criteria were also determined for
the values obtained as a result of LSTM networks analysis.
The results of the performance measures calculated according
to Equations (9), (10), (11) and (12) are shown in Table 3.

Ill. CONCLUSION

In this study, the efficiency loss of environmental factors and
pollution in SPPs was made by creating a linear regression
analysis model. Prediction models were created using SPP
data, which produces 180 kWe energy in Dumlupinar District
of Kutahya province of Turkey. It is aimed to analyze the
effects of environmental factors and meteorological variables
on energy production and to predict the energy production
of the power plant based on these effects. Prediction mod-
els were developed using two different machine learning
methods, Random Forest Regression (RFR) Model and Long
Short-Term Memory (LSTM) artificial neural networks. The
data used in the study is based on real data collected from
a 180 kWe solar power plant in operation. These data were
collected from the day the power plant was put into operation
and a total of 119,808 data sets were included in the analysis.
The results obtained were evaluated with R, RMSE, MBE
and FGE performance criteria. Predictions made using the RF
model were used to analyze how the power plant’s energy pro-
duction was affected by environmental impacts and pollution.
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The obtained R, RMSE, MBE and FGE results are 0.8111,
0.5865, 0.0001 and 0.4356 respectively. The results of the RF
model show that the model generally exhibits good prediction
performance. The correlation coefficient is 0.8111, which
shows that the model’s predictions are quite compatible with
the real values. A low RMSE value indicates that the predic-
tion errors are generally small, while a MBE value very close
to zero indicates that the model does not have a systematic
error. The fact that the FGE value is 0.4356 shows that the
model has an acceptable error rate in its predictions.

LSTM networks were used as the secondary method. Pre-
dictions made using the LSTM network aimed to obtain
higher accuracy results by learning more complex and non-
linear dependencies. The obtained R, RMSE, MBE and FGE
results are 0.9759, 0.2183, 0.0041 and 0.1360, respectively.
The results of the LSTM model show that the prediction
performance of this model is much higher than that of the
RF model. The correlation coefficient is 0.9759, indicating
that the predictions of the LSTM model are in almost perfect
agreement with the actual values. A very low RMSE value
indicates that the prediction errors of the model are very
small, while a low MBE value indicates that the model does
not have a systematic error. The fact that the FGE value is
0.1360 shows that the model has a very low error rate in its
predictions.

When the results of the two different prediction models
used in the study are compared, it is seen that LSTM artificial
neural networks perform much better than the RF model. This
is due to the fact that LSTM networks have a better capacity
to learn time series data and complex dependencies. The
ability of the LSTM model to make high-accurate predictions
allows solar power plants to predict future energy production
amounts more reliably. This is important to ensure continuity
in energy production and to minimize the impact of adverse
environmental conditions.

ACRONYMS
Acronyms used in this paper are tabulated here.

Al Accumulated Irradiation
ANN Artificial Neural Networks
FGE Fractional Gross Error

LSTM Long Short-Term Memory
MBE Mean Standard Error
MGF  Mean Generating Function
PR Performance Rate

PV Photovoltaic

R Correlation Coefficient
RF Random Forest

RFR Random Forest Regression
RMSE Root Mean Square Error
RNN Recurrent Neural Network
SPP Solar Power Plant

SR Soiling Rate

STC Standard Test Conditions
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