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ABSTRACT Shoulder pain and injuries present significant challenges to researchers and clinicians for
diagnosing underlying structural changes due to the complexity of the shoulder joint. Ultrasonography has
been used for diagnosing shoulder impairment and can non-invasively assess structures and mechanical
properties of the shoulder. However, the complexity of the shoulder structures often results in diagnostic
difficulties and misdiagnosis. Although deep learning of artificial intelligence has been applied in various
biomedical imaging, the adoption of deep learning techniques in the segmentation of musculoskeletal
ultrasound images, especially the shoulder, is limited. This study addresses this gap by assessing the
effectiveness of 3 deep learning models, U-Net, Mask R-CNN, and DeepLab V34, for the segmentation of
soft tissues from shoulder ultrasound images. We collected 721 images from the shoulder area of 17 healthy
adults, including the anterior deltoid, medial deltoid, posterior deltoid, and supraspinatus. We employed
a combination of three augmentation methods (elastic transform, horizontal flip, and shift scale rotate) to
enhance the dataset. The mixed augmentation strategy resulted in U-Net outperforming Mask R-CNN and
DeepLab V3+ with a mean Average Precision (mAP) of 78-81%, a mean Intersection over Union (mloU)
of 81-87%, and Recall and Precision values between 91-94% and 87-91%, respectively. The effective use of
deep learning methods could assist clinicians on assessing shoulder structures from ultrasound images.

INDEX TERMS Artificial intelligence, computer assisted diagnosis, muscle, and ultrasonography.

I. INTRODUCTION

Improper and over use of shoulder muscles can lead to shoul-
der pain and injury [1]. Athletes who repetitively strain their
shoulders may develop conditions, such as shoulder impinge-
ment syndrome, characterized by persistent shoulder pain and
weakness [2], [3]. These shoulder problems can significantly
impact their activities of daily living, leading individuals
to seek medical attention to manage this musculoskeletal
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impairment [4]. Due to the complex structure of the shoulder
joint, the manual examination by the clinician is usually not
able to accurately identify the underlying impairment for
shoulder pain. In recent years, the use of ultrasound imaging
has been becoming a popular tool to accurately identify the
underlying cause of pain [4], [5]. Through real-time diag-
nosis of the musculoskeletal structure of the shoulder joint,
clinicians can examine the specific location and structure of
the soft tissue of the shoulder for identifying pathological
changes. Clinically, accurately locating the soft tissue injury
from musculoskeletal ultrasound images can be challenging
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because of the complex shoulder joint consisting of bones,
muscles, tendons, and nerves.

To identify the components (eg. muscle and tendon)
from the musculoskeletal ultrasound images, the segmen-
tation of each component is paramount, serving as a
crucial step for injury diagnosis and healing monitoring.
Bonaldi et al. pointed out the importance of medical image
segmentation, particularly in analyzing ultrasound images
of musculoskeletal structures [6]. However, most of the
segmentation methods have been developed for computed
tomography (CT) and magnetic resonance imaging (MRI),
and only a few studies focused on ultrasound images.
In the MRI images of the upper limb, research studies
have explored region-based methods, deformable models,
and deep-learning approaches [7]. Investigations in the lower
limb and trunk have used manual, semi-automated, and
fully automated methods, contributing to our understand-
ing of muscle segmentation techniques, their accuracy, and
potential applications in clinical settings. Building on this
foundation, the application of computer-assisted diagnosis
with ultrasound in the field of sports medicine has revolu-
tionized the precise segmentation of muscles and tendons.
Liu et al. introduced an innovative segmentation algorithm
for the identification of carcinoma area from the ultrasound
images, employing deep feature fusion to segment muscles
and tendons with impressive accuracy [8]. Their research
underscores the indispensable role of ultrasound image seg-
mentation, particularly in the examination of muscles and
tendons from ultrasound images. Lumsden et al. incorporated
the upper limb and shoulder assessment for improving the
segmentation of structures from the ultrasound image [9].
These studies demonstrate the important role of ultrasound
image segmentation in medical practice, highlighting its
potential to improve injury assessment and rehabilitation.

Among medical imaging modalities, ultrasound has
emerged as a particularly valuable tool, especially in mus-
culoskeletal imaging, due to its unique advantages. Nobel
and Boukerroui highlighted the value of ultrasound imag-
ing in the musculoskeletal system due to its non-invasive
nature, real-time imaging capabilities, and the ability to
provide high-resolution images of subcutaneous tissue and
structures [10]. It is frequently employed for diagnostic
purposes, such as identifying musculoskeletal injuries, joint
effusions, and tendon abnormalities. Ultrasound imaging
holds several advantages over other imaging modalities, such
as CT and MRI. First, ultrasound is non-invasive and does
not employ ionizing radiation, unlike CT scans, making it
safer for repeated use and particularly suitable for special
populations, like pregnant women and children. Second,
ultrasound provides real-time imaging, a feature that allows
clinicians to observe the movement of internal organs and
blood flow in vessels. Third, ultrasound is a cost-effective
option that is generally less expensive than their CT and
MRI counterparts [11]. Additionally, the portability of ultra-
sound machines is a significant advantage that can be easily
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transported and used at the patient’s bedside, unlike large
and stationary CT and MRI machines. In clinical practice,
ultrasound remains the most widely used imaging modal-
ity. While ultrasound imaging offers numerous advantages,
its limitations include lower resolution, image blur, noise,
low contrast, and significant variations between images.
Moreover, in clinical settings, medical images are typically
interpreted by humans, and broad variations in pathology
can place a significant burden on clinical specialists and
physicians. Given these challenges, segmentation of vari-
ous structures (eg. muscles, tendons, and fat) becomes a
crucial task in musculoskeletal ultrasound. Additionally, pre-
vious studies on ultrasound image segmentation, such as the
work by Zhao et al. [12], have identified several limitations.
These include susceptibility to artifacts and the influence of
echo, shadow, and reflection, which can degrade the qual-
ity of the acquired images. The study further emphasizes
the need for substantial computational resources, including
large memory capacity and intensive calculations. These
challenges often hinder the achievement of consistent and
reliable segmentation, especially in anatomically complex
regions like the shoulder joint. In light of these limitations,
Deep Learning (DL) techniques offer a promising avenue
for improvement in musculoskeletal ultrasound diagnosis.
DL models have the potential to enhance image resolu-
tion and reduce noise, thereby facilitating more accurate
and reliable clinical interpretation and diagnosis. [13] DL
could aid in the clinical diagnosis and treatment of con-
ditions like rotator cuff tears and tendinitis by providing
valuable information for treatment planning and assess-
ing the effectiveness of interventions. Segmentation enables
biomechanical analysis, assisting in understanding muscle
activation patterns and mechanics during shoulder move-
ments. Tokuda et al. explored muscle activation patterns
during reach-to-grasp movement, focusing on the shoulder
muscles’ role in different phases of reaching movements [14].
Eriksson Crommert et al. investigated trunk muscle activation
patterns during rapid bilateral shoulder flexions, emphasizing
the need to standardize arm movements [15]. These studies
highlight the importance of segmentation of various mus-
cles in biomechanical analysis, particularly in the context
of shoulder movements. In addition, segmentation of the
structures from ultrasound images helps surgical planning
by guiding surgeons in visualizing affected structures and
achieving optimal outcomes. In conclusion, precise segmen-
tation of musculoskeletal ultrasound images is invaluable for
image-guided interventions, enhancing accuracy and safety
during procedures like injections.

However, despite these advantages of using deep learning
for ultrasound diagnosis, many clinicians have yet to adopt
deep learning-based segmentation methods for diagnosis,
continuing to rely on conventional segmentation methods.
Traditional techniques often require extensive prior knowl-
edge and numerous attempts at arranging and combining
various elements, and they can be easily influenced by factors
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such as field of view, inclination, illumination, and noise [16].
In stark contrast, the rapid advancement of deep learning and
artificial intelligence in medical imaging has shown remark-
able promise, far surpassing conventional methods [17],
[18], [19], [20], [21]. Brehar et al. compared deep-learning
and conventional machine learning methods for the auto-
matic recognition of hepatocellular carcinoma areas from
ultrasound images and found the superior performance of
deep-learning approaches compared to conventional machine
learning methods [22]. Deep learning offers the potential for
accurately diagnosing, precisely segmenting, classifying, and
predicting various diseases through quick and accurate pro-
cessing of ultrasound images. Various deep learning models
have been demonstrated for producing significant attention
and demonstrating great promise in improving the accu-
racy and efficiency of disease diagnosis and classification
by authors such as Ronneberger et al. [23], who intro-
duced the U-Net architecture, He et al. [24], who developed
Mask R-CNN, and Chen et al. [25], who proposed DeepLab
V3+4. Despite these advancements, to our knowledge, deep
learning-based research has yet to be conducted specifically
on segmenting B-mode ultrasound images of the shoulder
joint. The contrast between traditional methods and the capa-
bilities of deep learning techniques emphasizes the urgent
need for further exploration and adoption of these advanced
models in medical practice, particularly in the context of
ultrasound imaging.

While data augmentation techniques have been extensively
studied in various medical imaging modalities and anatom-
ical structures, their application to ultrasound imaging of
the shoulder joint is less explored. Nonetheless, a com-
prehensive survey [26] provides strong evidence for the
generalizability of data augmentation methods such as rota-
tion, flipping, and scaling across different types of medical
imaging (Shorten and Khoshgoftaar 2019. These techniques
have proven effective in enhancing model performance and
are widely applicable, including in medical image analysis.
Therefore, leveraging these established methods could offer
a viable strategy for improving the accuracy and robustness
of deep learning-based segmentation models for the shoulder
joint, without the need for developing entirely new augmen-
tation techniques.

In this study, the deep learning-based segmentation meth-
ods were compared to segment the soft tissue of the
shoulder ultrasound images, including the subcutaneous tis-
sue, muscles, and tendons. Specifically, U-Net [23], Mask
R-CNN [24], and DeepLab V34 [25] have been used to
segment shoulder structure of the ultrasound image. Further-
more, using the outcomes from our segmentation model, such
as U-Net, we explored whether specific regions from the
ultrasound images could be cropped out for further quan-
tification analysis. We then computed the mean error and
standard deviation for both the labeled muscle areas in the
ground truth and the regions segmented by our models. This
quantitative approach serves as a robust metric for assess-
ing the model’s performance. The mean pixel value and its
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standard deviation are commonly used in medical imaging to
provide insights into tissue characteristics, thereby ensuring
diagnostic accuracy and reliability [27]. The application of
machine learning in segmenting musculoskeletal ultrasound
images, particularly of the shoulder joint, still needs to be
explored. The primary objective of this study was to eval-
uate the comparative effectiveness of three deep learning
techniques (U-Net, Mask R-CNN, and DeepLab V3+) in
segmenting soft tissues from shoulder ultrasound images. The
secondary objective was to assess the effectiveness of three
augmentation methods (elastic transform, horizontal flip, and
shift scale rotate) to enhance the dataset of ultrasound images.

Il. MATERIAL AND METHODS

A. ULTRASOUND IMAGES

The study involved capturing ultrasound images from 13 dis-
tinct locations (planes) on the shoulder to evaluate the soft
tissue, including the muscles, tendons and joint space. Mus-
culoskeletal ultrasound images, a unique type of biomedical
image, present their own set of challenges for segmentation
using deep learning algorithms. Unlike other medical images,
musculoskeletal ultrasound images have specific features that
make segmentation more difficult, especially the use of a
limited number of 2D ultrasound images to characterize a
3D structure [28]. One of the main challenges is the regular
movement of muscles, which can result in noise in the images.
This noise can affect the effectiveness of the deep learning
results. Additionally, the area-specific nature of skeletal mus-
cle classification requires a cropping strategy, which adds
another layer of complexity to the segmentation process [29].
Despite these challenges, deep learning algorithms hold great
promise for improving the diagnosis and treatment of mus-
culoskeletal conditions. An elastography ultrasound device
(ProSound A7; Hitachi Healthcare Americas, Twinsburg,
OH) [30] was used to measure the shoulder muscle (long head
of biceps brachii muscle and tendon [31], supraspinatus mus-
cle and tendon [32], infraspinatus muscle, deltoid (anterior
and medial) muscles and biceps muscle) in healthy adults.
The ultrasound probe operates within a frequency range of
17-21 MHz (UST-5412; Hitachi Healthcare Americas), with
a selected operational frequency of 17 MHz for this study.
This frequency was chosen because of its optimal balance
between penetration depth and image resolution, making it
ideal for our specific application in medical imaging [33]. The
probe utilizes a phased array transducer, which allows for a
wide field of view and high-resolution imaging capabilities.
Additionally, we have configured the probe to function at
an 8§ MHz frequency, with a depth setting of 7.5R and a
gain level of 70. Our training and validation data consisted of
721 images from 17 healthy adults. In Figure 1, we evaluated
five areas of each participant’s shoulder structure, specifi-
cally (a) anterior deltoid, (b) medial deltoid, (c) posterior
deltoid, (d) supraspinatus, and (e) horizontal supraspina-
tus), along with B-mode images of the supraspinatus. For
the anterior deltoid, medial deltoid, posterior deltoid, and
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FIGURE 1. From left to right, the pictures show five areas of the shoulder:
(a) Anterior Deltoid, (b) Median Deltoid, (c) Posterior Deltoid,
(d) Supraspinatus, and (e) Horizontal Supraspinatus.

Anterior Deltoid Horizontal

Medial Deltoid Posterior Deftoid

FIGURE 2. B-mode ultrasound images correspond to the five distinct
areas of the shoulder structure of Figure 1.

supraspinatus, the subcutaneous tissue, muscle, and tendon
were marked into three portions because the muscles intended
for recording would overlap, as shown in Figure 1. Each area,
except for the horizontal supraspinatus, was measured three
to five times to ensure data completeness. The horizontal
supraspinatus was only measured once due to the limited
space available. Additionally, for each position, we collected
data three to five times. Figure 2 illustrates the corresponding
locations of ultrasound images in our study.

B. IMAGE LABELING

We labeled our data with muscles, tendons, and subcuta-
neous tissue through LabelMe. LabelMe is a graphical image
annotation tool in Python that uses Qt for its interface [34].
In Figure 3, the B-mode images on the right-hand side of
panels (a), (d), and (e) show that the top layers typically
consist of subcutaneous tissues and muscles. The lower layers
are generally composed of muscles and tendons, with muscle
borders appearing darker than tendons. A brighter border
at the bottom of these images, extending beneath the black
area, signifies bone. In some positions, such as in panels (b)
and (c), tendons are not visible. Our study focuses primarily
on subcutaneous tissue, so we opted not to label the bone
regions. Occasionally, the presence of human fat can make
the boundary between subcutaneous tissue and muscle less
distinct, adding complexity to the labeling task [35]. Figure 3
displays the images we successfully labeled through manual
annotation by the authors with clinical expertise on using
ultrasound [30], [33], while Figure 3 features the images
that posed challenges for labeling. As for the anterior del-
toid, medial deltoid, posterior deltoid, and supraspinatus,
we marked the subcutaneous tissue, muscle, and tendon into
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(a) Anterior Deltoid (b) Median Deltoid (¢) Posterior Deltoid

(d) Supraspinatus

(e) Horizontal Supraspinatus

FIGURE 3. Each picture demonstrates the labeled picture (left side) and
the original ultrasound image (right side). Red stands for the
subcutaneous tissue, green is the muscle, and yellow is the tendon.

three portions for each position and then took three images
on each portion.

C. SEGMENTATION

To optimize the learning process of our model, we employed
a two-fold data partitioning strategy: Intra-subject and Inter-
subject. This approach was inspired by the work of Saha and
Baumert [36], who emphasized the importance of considering
both intra- and inter-subject variability in data partition-
ing. Our methodology was further informed by the study
of Nguyen et al. [37], which examined the influence of
data splitting ratios on machine learning model performance.
In the Intra-subject form, data from each participant were ran-
domly mixed, ensuring that both the training and validation
datasets included images from all participants, albeit without
any overlap. For the Inter-subject form, we allocated the data
from two randomly selected participants for validation, while
the data from the remaining 15 participants constituted the
training set. Although the study by Nguyen et al. utilized
an 80/20 training-to-testing ratio, we opted for a 90/10 split
for our training and validation sets [37]. This deviation was
motivated by our collection of a separate, individual test set.
We hypothesized that a larger training set would enhance the
model’s accuracy, particularly given that our total dataset of
721 training and validation images is relatively small for deep
learning applications. This hypothesis is supported by the
research of An et al. [38], which emphasizes the challenges
and potential solutions when applying deep learning models
to small medical image datasets. Our two-fold partitioning
strategy aims to account for both intra- and inter-subject
variability, thereby enhancing the model’s generalizability
and robustness.

1) U-NET
U-Net is a convolutional network architecture for fast and
precise segmentation of images and has been widely adopted

VOLUME 12, 2024



Y.-C. Lee et al.: Using DL-Based Methods for Automated Segmentation of Soft Tissues

IEEE Access

256 % 256
128x 128
56

256 x 25

128x 128
64x64

128x 128

| ]

\ 256 fzss

64x64
32x32

64x 64

_.

32x32

l —

p
el

16x 16

MisPoolng > UpConv

> SkipConnection > MaxPooling

FIGURE 4. Structure of the U-Net.

in biomedical image segmentation due to its effectiveness
on smaller datasets and the ability to capture detailed fea-
tures [23]. The architecture also includes skip connections,
which help in preserving intricate details that might be lost
during the encoding process. Furthermore, U-Net’s abil-
ity to perform multi-scale feature extraction allows it to
capture both global and local image information, making
it particularly effective for ultrasound image segmentation.
Meanwhile, It has been successfully applied in various
biomedical applications, including dental X-ray and EM
image segmentation [39]. The structure of U-Net is shown
in Figure 4.

2) MASK R-CNN

Mask R-CNN is an extension of Faster R-CNN and is
another deep learning model, for instance, segmentation
tasks. It extends Faster R-CNN by adding a branch for
predicting an object mask in parallel with the existing
branch for bounding box recognition [24]. This addi-
tional branch allows Mask R-CNN to handle complex
structures, tissues, and organs in medical images, making
it particularly useful for ultrasound image segmentation.
Furthermore, Mask R-CNN reuses low-level feature infor-
mation, which can be beneficial for segmenting specific
organs [40]. The structure of Mask R-CNN is shown in
Figure 5.
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FIGURE 5. Structure of the Mask R-CNN.

3) DEEPLAB V3+

DeepLab V3+ is an encoder-decoder structure for seman-
tic image segmentation. It combines the advantages of
both the spatial pyramid pooling module and encoder-
decoder structure, thereby enabling effective segmentation
of objects at multiple scales. This architecture is particu-
larly beneficial for ultrasound image segmentation as it can
handle complex structures and tissues in medical images.
Furthermore, DeepLab V3+ reuses low-level feature infor-

-
1x 1 Conv I

3x 3 Conv
Rate 6

3x3 Conv
Rate 12

v 3 x3 Conv
Rate 18

Image
Pooling

Ix1 /
Conv _ IxlCow

memple By 4

3x3Conv+

Concatenate Upsample By 4
-

FIGURE 6. Structure of the DeepLab V3+.
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mation, which can be beneficial for segmenting specific
organs [41]. The structure of DeepLab V3+ is shown in
Figure 6.

D. MIXED DATASET

We implemented a Mixed Dataset that combined three
augmentation methods: horizontal flip, elastic transform,
and shift scale rotation [42]. Specifically, we applied these
augmentations with probabilities of 20%, 20%, and 10%,
respectively, using the Sometimes function. This means that
each image in the dataset had a 20% chance of being
horizontally flipped, a 20% chance of undergoing elastic
transformation, and a 10% chance of being shifted, scaled,
or rotated. The remaining 50% of the dataset consisted of
the original, un-augmented images. This approach aimed to
achieve better segmentation results by introducing variability
into the dataset, compared to using a single augmentation
method.

E. AUGMENTATION METHODS

In the augmentation settings for shift-scale-rotate, we set
the shift to +0.0625, the scale to 0.1, and the rotation
to +15 degrees. For the elastic transform function, we set
alpha to 120 and sigma to 6. After completing all parameter
settings, we train U-Net and DeepLab V34 in 300 epochs
and Mask R-CNN in 150 epochs, with the first 100 epochs
dedicated explicitly to the head layer of Mask R-CNN. This
approach prevents overfitting by ensuring the model learns
task-specific features before more abstract ones and enhances
training efficiency. The models were trained on 32, 8, and
32 batch sizes corresponding to U-Net, Mask R-CNN, and
DeepLab V34, respectively. All mentioned models have been
implemented using TensorFlow 2.10 (Unet & DeepLab V3+-)
and 2.5 (Mask R-CNN) with Cuda 11.8 in a computer with an
RTX 4090. The U-Net and DeepLab V34 code used in this
study is based on the GitHub repository by bubbliiiing [43],
[44]; for Mask R-CNN we edited the implementation avail-
able in the repository by zouyuelin [45].

F. APPLICATIONS

We obtained both the B-mode image and its corresponding
elastic image from the raw image data. After completing the
labeling of the ultrasound image, we mapped the labeled area
on the elastic image and divided it into three distinct parts:
subcutaneous tissue, muscle, and tendon. We then calculated
the mean of the non-zero pixels within these areas. Addition-
ally, we computed the standard deviation for these values.
Figure 7 illustrates the specific regions within the elastic
image that were chosen for segmentation.

Ill. RESULTS

Table 1 offers a comprehensive assessment of our model’s
performance, utilizing key metrics such as mAP (Mean
Average Precision), Precision, Recall, and mIoU (mean Inter-
section over Union). According to the data, the U-Net model
emerges as the most fitting option for our requirements.
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(@) (b)

FIGURE 7. Mapping Labeled Regions onto the Elastic Image. (a) Anterior
section of the shoulder with regions labeled in descending order:
subcutaneous tissue, muscle, and tendon. (b) Median section of the
shoulder labeled from top to bottom as subcutaneous tissue and muscle.
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However, all three models—U-Net, DeepLab V34, and Mask
R-CNN—occasionally mislabel atypical positions.

To rectify this issue, we intend to incorporate data aug-
mentation. This strategy will enable our model to discern
more specific shoulder features and mitigate overfitting.
Table 1 illustrates the finalized model, encapsulating our
ultimate results. The mAP calculation was conducted based
on the VOC2007 11-point interpolated average. VOC2007,
or Visual Object Classes Challenge 2007, is a standard bench-
mark for evaluating object detection algorithms. The 11-point
interpolated average refers to the method of calculating the
AP (average precision) by interpolating the precision-recall
curve at 11 equally spaced recall levels [0, 0.1,..., 1]. Figure 8
depicts a standard precision-recall curve. The blue dots rep-
resent the original precision-recall points, showing a zig-zag
pattern due to variability in the model’s predictions at differ-
ent recall levels. Beyond a recall of 0.5, all precision values
drop to zero, indicating a large number of false positives.
Despite these variations, the interpolated precision, repre-
sented by the purple line, provides a robust measure of the
model’s performance by considering the maximum precision
value from each recall level onward.

As delineated in Table 1, the Precision and Recall for the
U-Net model were 0.91 £ 0.02 and 0.94 £ 0.03 for the
training set, 0.80 £ 0.09 and 0.93 £ 0.02 for the validation
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TABLE 1. The mAP, precision, recall and mloU results including intra- and inter-subject.

All Intra-subject Inter-subject
mAP Precision Recall mioU mAP Precision Recall mloU
Train  0.815 0.917 0937 0.867 0.813 0.915 0.943  0.870
U-Net Val 0.809 0.911 0932 0.857 0.795 0.896 0.928 0.842
Test 0.785 0.883 0913 0.816 0.781 0.878 0.917 0.815
Train  0.999 0.777 0.611 0.941 0.999 0.777 0.611  0.958
Mask R-CNN Val 0.959 0.767 0.600 0.912 0.910 0.767 0.604  0.885
Test 0.718 0.703 0.565 0.795 0.761 0.703 0.561  0.756
Train  0.804 0.885 0.946 0.841 0.790 0.888 0.944 0.846
Deeplab V3+ Val 0.806 0.887 0.948 0.847 0.813 0.894 0.953 0.858
Test 0.745 0.860 0912 0.797 0.770 0.867 0.905 0.797

* The bold font indicates the best performance of a test.

TABLE 2. The efficiency results include intra- and inter-subject.

All-Efficiency ;| Intra-subject | Inter-subject Mean Standard
error Deviation
U-Net 23765 23785 Ground Subcutaneous | ) 255,06 04915723
Truth Tissue
. Muscle 1.9154454 1.7933404
Mask R-CNN 3530 4025 Vs
s s s U-Net Tendon 0.9074322 0.9817266
DeepLab V3+ 7411s 73865 Ground Subcutaneous 3.0711954 1.8240170
Truth Tissue
. . Muscl 1.5148649 1.5153958
* Bold font indicates the best performance of the test. Mavssk R- wee
Tendon 1.1889035 1.2144774
CNN
Ground Subcutaneous
Truth Tissue 0.6856416 0.3871392
set, and 0.88 #+ 0.03 and 0.91 % 0.01 for the test set. For the Deasiab Muscle 22739612 20922081
DeepLab V34 model, the corresponding values were 0.88 + VI3)+ Tendon 0.7104078 0.7059169

0.01 and 0.94 £ 0.01 for the training set, 0.88 £ 0.01 and
0.95 £ 0.03 for the validation set, and 0.86 & 0.01 and
0.91 £ 0.01 for the test set. Lastly, the Mask R-CNN model
yielded 0.77 £ 0.01 and 0.61 £ 0.01 for the training set,
0.76 £+ 0.01 and 0.60 £+ 0.01 for the validation set, and
0.70 £ 0.01 and 0.56 £ 0.01 for the test set.

Table 2 illustrates the training time efficiency of each
model, measured in seconds, for both Intra and Inter datasets.
For the U-Net model, the training time was 2376 seconds
for the Intra dataset and 2378 seconds for the Inter dataset.
DeepLab V34 took 7411 seconds for the Intra dataset and
7386 seconds for the Inter dataset, reflecting its computa-
tional complexity. Mask R-CNN recorded training times of
3164 seconds for the Intra dataset and 3276 seconds for
the Inter dataset. These timings provide a nuanced insight
into the computational efficiency of the models, reflecting
the specific demands of different datasets and the inherent
trade-offs between accuracy and computational cost [46].
The entire process was calculated from the initiation of the

VOLUME 12, 2024

TABLE 3. The mean error and standard deviation results.

first code to the completion of the training stage, aligned
with best practices in reproducible research [47], and offer-
ing a comprehensive view of the time efficiency for each
model.

Table 3 presents the mean pixel values and the standard
deviations of the delta values, comparing the ground truth
with predictions from each of the models: U-Net, Mask R-
CNN, and DeepLab V3+-. For subcutaneous tissue, U-Net
and DeepLab V3+ yield average results within the range of
0.6 to 0.7, while Mask R-CNN lags behind with a value of
approximately 3. In muscle areas, the models register values
between 1.5 and 2.2, and between 0.7 and 1.1 across all
models. As for the standard deviation in subcutaneous tissue,
U-Net and DeepLab V34 perform within a range of 0.3 to
0.5, while Mask R-CNN shows a higher deviation of about
1.8. In both muscle and tendon areas, the standard deviations
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TABLE 4. The loU scores for each class include intra- and inter-subject.

Intra- Inter-
IoU Score subject subject
SubCl‘ltaneous 0.84 0.85
Tissue
U-Net Muscle 0.81 0.80
Tendon 0.71 0.70
Subcn‘ltaneous 0.89 0.88
Tissue
Mask R-
CNN Muscle 0.80 0.79
Tendon 0.79 0.78
Subcu‘ltaneous 0.84 0.82
Tissue
DeepLab
e:][;_:\ Muscle 0.77 0.78
Tendon 0.67 0.68

* Bold font indicates the best performance of the test.

vary from 1.5 to 2.1 and 0.7 to 1.2, respectively. Figure 9,
on the other hand, displays the results for the Ground-Truth
and the three models. The ground true images are A, E, I and
M, U-Net images are B, F, J and N, Mask R-CNN images
are C, G, K, and O, and DeepLab V3+ images are D, H, L,
and P.

Table 4 presents the IoU scores for three anatomical
areas—subcutaneous tissue, muscle, and tendon—across
three deep learning models: U-Net, Mask R-CNN, and
DeepLab V3+. The results indicate that subcutaneous tissue
consistently achieved the highest IoU scores, ranging from
0.82 to 0.89, across all models. Muscle segmentation also
yielded strong performance, with IoU scores ranging from
0.77 to 0.81. In contrast, tendon segmentation presented a
more challenging task, as evidenced by its lower IoU scores,
which ranged from 0.67 to 0.79. Notably, the differences in
IoU scores between the Intra-subject and Inter-subject data
partitions were minimal, suggesting that both partitioning
strategies yielded comparable performance. This observation
will be further discussed in the context of the challenges
associated with tendon segmentation.

IV. DISCUSSIONS

A. COMPARATIVE ANALYSIS OF FINDINGS

In this study, we conducted a comparative analysis of three
distinct deep learning models—U-Net, Mask R-CNN, and
DeepLab V3+4—in the medical imaging domain. This marks
a significant step in evaluating these specific models for
medical applications, particularly for the segmentation of
shoulder muscles from ultrasound images. We noted the
work of Lee et al. [48] and Wang et al. [49], which used
different methodologies for diagnosing rotator cuff tears and
segmenting supraspinatus from ultrasound images, respec-
tively. Our study broadens the perspective by comparing
the performance of these well-established models, providing
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FIGURE 9. Comparison of the ground truth and predictions made by our
model.

insights into their strengths and weaknesses in ultrasound
image segmentation. The results underscore the potential of
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deep learning in aiding accurate diagnoses and streamlin-
ing workflow in medical practice, especially in the context
of shoulder muscle segmentation. The disparities in perfor-
mance metrics among the models emphasize the importance
of model selection and fine-tuning, tailored to the dataset’s
unique characteristics. These insights, along with the work of
Lee et al. [48] and Wang et al. [49], contribute to the ongo-
ing development of deep learning techniques for ultrasound
image analysis.

Following our comparative analysis, a consistent trend
emerged across all models, muscle segmentation consis-
tently achieved higher accuracy than tendon segmentation,
as evidenced by the IoU scores presented in Table 4. This
observation is supported by the findings of Kim et al. [50],
which highlighted the inherent challenges of tendon segmen-
tation due to ambiguous boundaries between tendons and
muscles. Delving deeper into traditional imaging techniques,
the study by Edmunds et al. provides valuable insights [51].
Their research emphasized the use of QCT (Quantitative
Computed Tomography) and advanced image analysis tools
to characterize muscles in 2D and 3D, underscoring the
intrinsic differences between muscle and tendon. Such tradi-
tional imaging techniques, combined with our deep learning
findings from Table 4, suggest that while models like U-Net
are good at handling muscle tissue complexity, tendons
present challenges that need further exploration and model
fine-tuning.

B. COMPARATIVE ANALYSIS OF DEEP LEARNING MODELS
In our study, we evaluated three models: U-Net, DeepLab
V34, and Mask R-CNN. U-Net emerged as the supe-
rior model in terms of both accuracy and computa-
tional efficiency. This can be attributed to its symmetric
encoder-decoder structure and the use of skip connec-
tions [23], which excel in precise localization of features,
a crucial aspect in medical imaging tasks. In a study [52]
focused on extracting water bodies from GaoFen-1 remote
sensing images demonstrated U-Net’s ability to extract
detailed information, albeit with occasional confusion with
objects having similar spectral characteristics. However,
it may occasionally confuse objects with similar spectral
characteristics. DeepLab V34, while robust for general seg-
mentation tasks due to its complex architecture and the
integration of Trous separable convolution in both the ASPP
(Atrous Spatial Pyramid Pooling) [25] and decoder modules,
could risk overfitting when applied to limited datasets. It also
showed certain limitations, such as missing parts of rivers
and lakes and not effectively removing building shadows,
suggesting potential overfitting. Mask R-CNN, despite its
versatility with its mask prediction phase and the use of an
RPN (Region Proposal Network) [24] for object classification
and mask prediction, introduces computational challenges
and potential error sources, especially when handling limited
datasets. This could render it less apt for real-time applica-
tions and could hinder its efficacy in niche tasks. Despite
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these, DeepLab V3+ exhibited marked superiority in accu-
racy over Mask R-CNN, thanks to its specialized design
that facilitates robust multi-scale feature extraction. However,
U-Net’s superior performance underscores the importance
of considering structural differences and domain-specific
requirements when selecting and applying these models. Our
study aims to bridge the gap in the literature comparing
these models in the realm of medical imaging and serve as
a foundational reference.

C. OVERALL FINDINGS

In the evolving landscape of medical imaging, Al (Artificial
Intelligence) models have shown considerable promise in
enhancing the precision of anatomical segmentation. While
our primary focus is not on elasticity imaging itself, the
clinical relevance of such imaging techniques serves as a
compelling example of how our models could be applied in
real-world settings. Taljanovic et al. highlighted the use of
shear-wave elastography (SWE) in assessing various mus-
culoskeletal tissues, including tendons, muscles, nerves, and
ligaments [53]. This technique is particularly noteworthy for
its objectivity, quantifiable characteristics, and repeatability,
making it an invaluable tool in determining the severity
of musculoskeletal diseases and monitoring treatment out-
comes. Their study also utilized ultrasound as the data
acquisition method, which aligns with our own methodology.
Therefore, the integration of Al models for anatomical seg-
mentation could potentially complement elasticity imaging
techniques, thereby reinforcing their clinical significance and
paving the way for more comprehensive and personalized
healthcare solutions.

Our exploration of the U-Net architecture revealed that
its auto-crop functionality outperformed other models in iso-
lating regions of interest. This automated feature is pivotal
in enhancing the efficiency of image analysis, especially
when dealing with vast datasets. Even though our elastog-
raphy auto-crop pipeline testing encompassed only three
subjects, the findings are indicative of its broader applica-
bility and potential. In clinical scenarios, where time is of
essence and precision is paramount, U-Net’s auto-crop can
streamline workflows. By automating the segmentation pro-
cess, it ensures consistent and accurate isolation of regions
across different scans and patients. As elasticity imaging
techniques like SWE gain traction in the medical community,
the integration of Al tools, such as U-Net’s auto-crop, can
further improve their accuracy and reliability. This leads to
better patient care and more tailored treatment approaches.

D. CHALLENGES AND FUTURE DIRECTIONS

There are several clinical applications of this study. First,
we proposed a method based on the anatomical standard
plane and deep learning methods to segment various soft
tissues of the shoulder. The use of standard planes is widely
used in clinical practice of ultrasound on assessing fetus
and internal organs [54]; however, the standard planes are
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not used in musculoskeletal ultrasound [55]. The use of
the anatomical standard plane can significantly reduce the
need for a large dataset for the deep learning model. Our
study is based on both the standard planes and deep learning
methods and the results have demonstrated it is potential in
establishing various deep learning models for the segmen-
tation of muscles, subcutaneous tissues and bone. Second,
although machine learning approaches have been used in
musculoskeletal ultrasound, these studies focus on the seg-
mentation of muscle tear within a muscle [6]. Our study
explored the use of deep learning on the segmentation of
various soft tissues. Third, our method can be used to seg-
ment soft tissues from elastographic ultrasound images. For
elastographic ultrasound image analysis, a rectangular region
of interest is usually selected to assess stiffness changes [33],
[56]. Our method can facilitate the assessment of changes in
specific soft tissues after rehabilitation and sports training [9].
Fourth, our method can also facilitate the assessment of soft
tissues around a joint [57]. Although machine learning has
demonstrated the potential on assessing muscle tear from a
muscle, there remains many unsolved research problems such
as using a machine learning approach to classify and seg-
ment multiple muscles consisting of vary distinct structural
and biomechanical properties (eg. supraspinatus vs posterior
deltoid of the shoulder joint), tendons and ligament at the
same time. Our results further support the use of machine
learning for the segmentation of mixed soft tissues. There
remains a strong need for using machine learning approaches
to improve clinical practice on using ultrasound to assess
the effectiveness of rehabilitation interventions and sports
training.

However, our study encountered several challenges that
warrant attention for future work. The accurate recognition
of tendons emerged as a particularly intricate task, even for
seasoned human observers, underscoring the inherent com-
plexities in shoulder muscle segmentation. This calls for the
development of more refined labeling techniques or special-
ized models tailored for tendon recognition. We also noted
boundary artifacts in our predicted images, a common issue in
CNN-based segmentation models, which contrasted sharply
with the more defined ground truth. The limited size of our
dataset further exacerbated these challenges, falling short of
the optimal requirements for robust model performance [58].
We aim to address these limitations in future research by
exploring advanced labeling techniques and expanding our
dataset.

V. CONCLUSION

Our research demonstrates the feasibility of using deep learn-
ing models of artificial intelligence in aiding clinicians to
interpret the structures from shoulder ultrasound images.
The results indicate that the U-Net model outperformed the
Mask R-CNN and DeepLab V34 models, exhibiting superior
metrics in terms of mAP, Precision, Recall, and mloU for
the segmentation of soft tissue from the shoulder ultrasound
images. This study provides the foundation to develop a
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robust and reliable tool to improve the classification and
diagnosis of injured area from shoulder ultrasound images.
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