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ABSTRACT We propose a framework for contact-rich path following with reinforcement learning based on
a mixture of visual and tactile feedback to achieve path following on unknown environments. We employ
a curriculum-based domain randomisation approach with a time-varying sampling distribution, rendering
our approach is robust to parametric uncertainties in the robot-environment system. Based on evaluation in
simulation for compliant path-following case studies with a random uncertain environment, and comparison
with LBMPC and FDM methods, the robustness of the obtained policy over a stiffness range 104–109 N/m
and friction range 0.1–1.2 is demonstrated. We extend this concept to unknown surfaces with various surface
curvatures to enhance the robustness of the trained policy in terms of changes in surfaces. We demonstrate∼

15× improvement in trajectory accuracy compared to the previous LBMPCmethod and∼ 18× improvement
compared to using the FDM approach.We suggest the applications of the proposed method for learning more
challenging tasks such as milling, which are difficult to model and dependent on a wide range of process
variables.

INDEX TERMS Model predictive control, contact-rich task, reinforcement learning, domain randomization.

NOMENCLATURE
RL Reinforcement learning.
MPC Model predictive control.
LBMPC Learning-based MPC.
FDM Virtual forward dynamics model.
FDM-L Low-gain FDM.
FDM-H High-gain FDM.
DR Domain randomization.
DDPG Deep deterministic policy gradient.
TD3 Twin delayed DDPG.
TCP Tool center point.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ton Duc Do .

RGBD Red blue green and depth information.
LSTM long short-term memory network.
RMSE Root mean square error.
ReLU Rectified linear unit.

I. INTRODUCTION
In recent years, modern robots equipped with advanced sen-
sor arrays have emerged as versatile platforms for automating
a wide range of manual and repetitive tasks through their
ability to interact with their surroundings. These tasks
often involve intricate interactions with physical objects and
surfaces, collectively falling under the umbrella of ‘‘contact-
rich’’ tasks. Contact-rich path following forms a subset of
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contact-rich tasks, where the aim is to follow a desired
path in contact with a surface, typically while modulating
contact forces. Examples of such tasks include robotic
grinding, polishing, and cutting through various materials
with precision, akin to skilled artisans using handheld
tools to meticulously carve intricate designs into wood or
stone. These tasks demand continuous contact and precise
movement to achieve desired outcomes. Uncertainty, whether
in the form of imprecise environmental models or variations
in the properties of the objects being manipulated, presents a
challenge in the realm of disassembly and decommissioning.
For instance, in the disassembly of electric vehicle (EV)
batteries, a robotic arm equipped with a cutting tool faces
the challenge of accurately navigating deformable surfaces
while modulating contact forces, amidst uncertainties such as
variations in material properties and surface conditions. Such
uncertainties can lead to deviations from planned trajectories
due to imprecise environmental models or unexpected
variations in object properties. Addressing these challenges
requires to develop a robust control algorithm capable of
modelling and adapting to unknown contact dynamics and
environment changes.

As an overview, traditional control approaches such as
hybrid position-force control encounter limitations due to
the requirement for task specification, or decoupling the
motion and force controlled directions into orthogonal and
independently controlled subspaces. Similarly, approaches
such as impedance control aim to decouple the problem
of path following into individual problems of trajectory
planning and imposing a desired closed-loop dynamic
behaviour of the robot. It is necessary to specify or adapt
the desired trajectory; that is, it is necessary not only to
specify the desired path, but also velocities, for example,
the speed of a polishing task, or the feed rate of a milling
tool. To this end, many control issues may be formulated as
optimal control problems with discrete-time dynamics and
cumulative costs across time. One well-known technique to
solve such optimal control problems is MPC which predicts
the behaviour of a system based on its model. MPC employs
an online optimization method to determine the best control
action to converge the expected output to some desired
reference trajectory [1]. However, MPC suffers from sev-
eral well-known disadvantages, chiefly, high computational
complexity, which impedes its real-time deployment [2].
Furthermore, MPC approaches demand substantial domain
expertise or – in the case of LBMPC – extensive offline
labeled training data, necessitating comprehensive coverage
of the state and action space to ensure model accuracy.
Moreover, the accuracy of the predictive model employed
significantly impacts controller performance [3].

Reinforcement learning approaches show promise for
addressing such issues since they allow agents to acquire
behaviours through interaction with their surroundings
and adapt to novel, previously unencountered scenar-
ios [4]. In this paper, we focus on a specific contact-rich
application – robotic cutting – as a representative example,

TABLE 1. Key features comparison of selected methods in this study.

in the context of disassembly of electric vehicle (EV)
batteries. An illustrative example is the disassembly of a
battery module, where the robot must precisely cut through a
deformable surfacewhile simultaneouslymaintaining contact
and regulating contact forces, even when the properties of
such environments are uncertain. However, this challenge
extends beyond cutting and is a fundamental characteristic of
various contact-rich tasks. We investigate the use of vision-
guided RL for contact-rich path following with parametric
uncertainties. In Figure 1, we provide a graphical overview
of the training steps for the proposed MPC and RL methods.

Our main contributions include a thorough comparison
of vision-guided RL, MPC, high-gain FDM, and low-gain
FDM controllers in terms of speed, and tracking accuracy.
Additionally, we propose a new vision-guided RL algorithm
that takes into account various surfaces and achieves
satisfactory performance. Table 1 provides a comparison of
the key features of each selected method in this study.

Overall, our study demonstrates the potential of vision-
guided RL for addressing the challenges of contact-rich tasks
with parametric uncertainties.

II. RELATED WORKS
Several approaches exist for tackling the challenges presented
by high sample complexity and the suitability of RL to real-
world deployment, particularly concerning contact-rich tasks.
One such approach is based on noting the complementary
advantages and shortcomings of MPC and RL, using the
former to act as an expert policy to assist the latter. This has
been applied in [5] and [6]. In the latter, a combination of
MPC with RL providing worst-case performance guarantees
was proposed, enabling online deployment with improved
learning stability. However, the baseline model used neglects
the parametric uncertainty in the environment. This is typical
of most explicit MPC approaches, which require consider-
able domain expertise and prior knowledge, necessitating
approaches with higher computational complexity. LBMPC
is one such approach that has been used to address the
problem of uncertain environments in robotic manipulation
tasks [7], [8]. In LBMPC, a model of the system is
learned through interaction with the environment, and this
model is then used to predict future system behaviour
and generate control actions. For example, an LBMPC
approach for contact-rich path followingwith reduced sample
complexity was considered in [9], exploring the capability
of memory-augmented neural networks as a system model in
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FIGURE 1. Graphical overview of the proposed MPC and RL methods for path following in contact-rich cutting task.

an MPC framework incorporating visual feedback. However,
the high computational complexity of recurrent network
architectures - particularly of memory-augmented neural
networks such as the differentiable neural computer - limits
the applicability for online deployment.

In a similar vein, recent works have emphasised the
selection of suitable action spaces to facilitate learning of
tasks in the real world. In [10], a task-frame formalism was
employed to directly train a real-world policy for the task of
vegetable cutting by exploiting the task-specific action-space
constraints, however this approach is naturally dependent
on accurate prior-knowledge of the task specification.
In [11] and [12], the selection of suitable action spaces
for contact-rich manipulation tasks is explored, with related
approaches presented based on a variable impedance control
system in which the controller gains constitute the policy
action space. Methods based on this approach separate the
task of compliant path following, which is essential for many
interaction tasks, into the distinct problems of trajectory
generation and trajectory tracking. Accurate task planning is
not always possible to obtain and may not be desired in many
applications as explored in [13]. Besides [13], task planning
has been explored extensively in the context of MPC [14],
[15], though demonstrably remains an issue for RL.

Many RL-based methods are developed in simulation,
owing to the difficulty of transferring learned behaviours to
the real world, particularly for destructive tasks. To address
this, alternative approaches based on RL have been explored
to narrow the sim-to-real transfer gap. The domain randomi-
sation approach aims to close the reality gap by exposing the
agent to a large number of scenarios that may not individually
reflect the real-world system. However, it results in a policy
representation that is robust to system uncertainties such that
it may adapt to the real-world case. Examples of this approach
include [16] for path following using an industrial robot.
Curriculum-based, or automatic DR has been employed with
success in dexterous manipulation tasks as demonstrated
by OpenAI in [17] and [18], reducing the trial and error
procedure of defining an environment with suitable variation

to ensure a robust policy, while improving the capability to
learn challenging tasks from scratch.

Our proposed approach builds upon some of these existing
methods by combining TD3 with curriculum-based DR
to learn contact-rich path following in a coupled robot
environment system. We demonstrate the robustness and
effectiveness of the learned policy representation to unknown
environments, as validated through six random case studies in
simulation, and comparing it with the virtual FDM controller
and our earlier method in [9] that used LBMPC. We have
also extended our work by randomizing height-field surfaces
alongside randomizing stiffness and friction in our online
training, which allowed us to generalize the trained policy for
various types of surfaces beyond just planar surfaces.

Our work contributes to the growing body of research on
using Deep RL for robotic manipulation tasks in uncertain
environments and offers an approach for addressing the
challenge of obtaining a robust policy representation with DR
in complex tasks such as contact-rich manipulation tasks.

III. MATERIALS AND METHODS
We consider a RL-based approach to the case of learning
contact-rich path following for position-controlled manipula-
tors in simulation based on the TD3 algorithm. For this work,
we demonstrate this on the KUKA LBR iiwa R820 collab-
orative robot with an external force-torque sensor, without
precluding the generality of the method to any position-
controlled robot. The robot is equipped with an RGBD vision
sensor mounted at the wrist and a contact cutting tool. For
path following in contact with an environment, the desired
behaviour is for the robot to track as closely as possible
the desired path on the surface of an elastically compliant
object with (potentially) unknown stiffness, while regulating
or limiting the contact forces according to task requirements,
and to avoid tool or workpiece damage.

Based on this specification, we consider the relevant raw
measurements available as the TCP pose, P comprising
position p and ZYX Euler angle orientation R, and the
external measured wrench fe. Let r(h) be the position vector
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of a path parameterized by arc length h. Then, the path
direction at any point on the path can be calculated as:

ĉ(h) =
r′(h)

∥r′(h)∥
(1)

where r′(h) is the first derivative of the position vector with
respect to arc length, and ∥r′(h)∥ is its magnitude. The path
direction vector ĉ is a unit vector that points in the direction
of the tangent to the path at the point r(h). For simplicity, and
due to the natural constraints imposed by the geometry of the
tool, we consider the case of a linear reference path that will
be modified to match the geometry of the surface. The path
is defined by a start- and end-point with position pstart, pend
respectively. The path direction ĉ is then defined as

ĉ =
pstart − pend∣∣∣∣pstart − pend

∣∣∣∣ (2)

Although the TCP position is known directly, it is desirable
to not expose its measurement directly to the agent to avoid
over-fitting to specific tasks. Instead, the position is converted
into a pair of task-specific features as the scalar distance (s)
from the end point of the path:

s =
(
p− pend

)
· ĉ, (3)

and deviation from path d

d2 =
∣∣∣∣p− ps

∣∣∣∣2 (4)

The surface position estimate ps was computed as a
Gaussian weighted average of the sampled points in the depth
image about the closest point on the desired path to the current
TCP position [9].

IV. TASK 1: COMPARISON OF RL APPROACH WITH MPC
AND FDM METHODS
The principle of the LBMPC approach [9] is to learn a model
of the contact dynamics, given states, actions x, u as:

xk+1 = f (xk ,uk ) (5)

formulating the trajectory optimization as a constrained
nonlinear optimization problem of some metric of cost,
specified by L:

minimize J(U) =

N−1∑
i=0

L (xk+i,uk+i)

s.t. xk+i+1 = f (xk+i,uk+i)
||uk+i||1 ≤ umax

i = 0, 1 . . .N − 1 (6)

where ||·||1 denotes the ℓ1 norm. In the LBMPC approach, the
function f (xk ,uk ) is represented as an LSTM neural network
which is trained from trajectories collected offline.

To include an additional comparison method, we have
adopted the use of an FDM for contact-rich Cartesian robot
control, as detailed in the reference [19]:

q̈ = H−1JT f (7)

whereH corresponds to the mass matrix of the robot, J is the
Jacobian matrix, q̈ represents the joint accelerations, and f is
external force:

f = Kpe+ Kded (8)

while e is the distance error between the target and the
current end-effector positions, ed denotes the derivative of
the distance error, Kp and Kd are positive definite diagonal
stiffness and damping gains. The authors demonstrated that
the FDM approach is not only free from delays and noise
but also inherently more stable in contact-rich applications
compared to traditional Admittance controllers [19].

We explored two distinct sets of gain values, high-gain
(FDM-H) and low-gain (FDM-L). We definedKp as follows:

FDM-H: Kp = diag([100, 100, 1000, 10, 10, 10])

FDM-L: Kp = diag([10, 10, 200, 1, 1, 1])

In both methods, we used the following value for damping
gains: Kd = diag([1, 1, 1, 0.1, 0.1, 0.1])

TD3 is an off-policy actor-critic learning algorithm. Its
principle of operation is related to the DDPG with key
improvements in the introduction of twin critics, policy
smoothing, Q-value clipping, and delayed actor updates [20].
It assumes the control problem can be modelled as a Markov
decision process, in which the objective is to determine a
policy that maximises an expected sum of rewards over time,
weighted temporally by a discount factor. To ensure a fair
comparison between the two methods, we design the reward
function for the RL algorithm to be identical to the negated
cost function used in the MPC approach. Hence:

L(x,u) = −r(x,u) (9)

For path following, based on the objectives defined in Section
III, we hence define the reward function r :

r (x,u) = −wdd2 − ws
|s|
||c||

− wuu2 (10)

where wd , ws, and wu are manually tuned weighting terms.
The deviation term, represented by the expression wdd2,
is a scaling penalty that discourages excessive deviations
from the desired path. The ws

|s|
||c|| term, referred to as the

slicing term, encourages the agent to progress along the
path. The normalisation by ||c|| ensures the reward for
path progression is independent of the path length. This
reward also encodes desirable traits like productivity; as the
cumulative path progress penalty is minimised by agents that
rapidly reach the path endpoint. wuu2 is a small effort penalty
to discourage extreme motions, labelled the effort term. For
both approaches (MPC and RL), weighting contributions of
wd = 1000, ws = 10, and wu = 0.000001 were selected for
each reward, which were selected to be equivalent to the setup
in our previous work [9]. Through manual adjustment of
these weights, we ensured they provide an optimal trade-off
between the different objectives. As explained the deviation
term penalizes deviations from the desired path. A higher
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TABLE 2. The reinforcement learning hyperparameters and noise options
used in training the TD3 policy.

weight on this term means the agent focuses more on
minimizing path error, which can lead to the agent staying
very close to the path but progressing slowly. On the other
hand, if the slicing term has a lower weight, the agent
may prioritize minimizing deviation over progressing along
the path, resulting in inefficient movement along the path.
Moreover, the effort term introduces a small penalty for
extreme motions, promoting smoother and more controlled
actions. This term has a very small weight to ensure it
does not dominate the reward function but still discourages
unnecessary movements.

A. REINFORCEMENT LEARNING
Based on the available observations x = (d, s, 1p, f e) we
aim to learn a policy mapping x to actions in Cartesian
velocity space u. Each observation x was scaled to the
approximate range 0–1. For TD3, we employ a set of deep
feed-forward neural networks serving as the actor and dual
critics respectively. The critic networks each comprise two
input pathways: two hidden layers of 400 and 300 units for
observations, and one of 300 units for actions, followed by
a common output layer. For the critic network, a learning
rate of 5 × 10−4 was chosen to control how quickly the
model updates its parameters based on the error at each
step. Not to mention that a high learning rate would lead to
instability, while a low rate would slow down learning. An L2
regularisation penalty of 2 × 10−4 was selected to prevent
overfitting, which helps the model work well on new data.

The actor network comprises 2 hidden layers of 400 and
300 units respectively. An initial learning rate of 5×10−4, L2
regularisation penalty of 1 × 10−5, ReLU hidden activation
and tanh output activation were chosen as the network
hyperparameters. The choice of ReLU helps the model to
learn complex patterns (converting linear inputs into non-
linear outputs) and tanh activation bounds the velocities by
saturating the policy outputs. We used a batch size of 512,
meaning the model updates its learning using 512 examples
at a time. Larger batch sizes may stabilize learning but require
more memory. We have also used a discount factor of 0.99 to
value long-term rewards as much as immediate rewards. This
encourages the model to make decisions that are beneficial
in the long run. A sample time of 0.02 was selected to
determine the frequency at which actions are sampled and
executed, balancing the trade-off between computational load
and control precision. The remaining hyperparameters for
the learning algorithm were chosen according to Table 2.
Most of these hyperparameters were initially chosen based
on default and recommended values from the literature.

TABLE 3. Sample space used for domain randomisation of the simulated
workpiece parameters.

From this baseline, we adjusted them through trial-and-error
(manual search) to better fit our specific problem. Training
was carried out up to a threshold of 3000 episodes. This
threshold is established from initial experiments conducted in
a simulation environment described in Section IV-B. Based
on the actions u and sample time Ts, we convert the policy
outputs into joint position commands q as:

q = Ts · J+u (11)

where J+ is the Moore-Penrose pseudo-inverse of the
manipulator Jacobian.

B. DOMAIN RANDOMISATION ENVIRONMENT
To learn a policy representation that is robust to an unknown
environment, we establish the environment based on a
curriculum-based domain randomisation method. During
training, at the beginning of each episode, the properties of
the object surface were sampled according to the distributions
in Table 3. In the traditional DR, the distribution parameters
are held constant from the first episode as the range
specified in Table 3, denoted as l+, l− for the maximum
and minimum value of a variable l. However, the extreme
and immediate variation in the environment can greatly
increase the difficulty of learning the task, and in some cases
reaching the optimal reward is not possible as the learning
algorithm converges to a local minimum. To combat this,
we introduce the concept of curriculum-based DR. Under
this approach, the full random distribution range is not
immediately introduced, but varied according to each episode
as FN :

FN = F0 + (1 − F0)g(N ) (12)

where F0 is the fraction of the limits at episode zero. The
maximum and minimum limits for episode N , lN+, lN−, are
computed as

lN± = l− + (1 ± FN )
l+ − l−

2
(13)

g(N ) is an envelope function that specifies the evolution of the
randomisation distribution over the training process. In this
study we select g(N ) as a linear function of N as:

g(N ) =
N

Nmax
(14)

C. EXPERIMENTS
We evaluate the trained agents in the simulation environment
discussed in Section IV-B, for the task of compliant path
following along the surface of a given workpiece. Training
for the TD3 agent with the curriculum DR approach was
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FIGURE 2. The training graph of the TD3 agent for the compliant path
following task on a near-planar surface with unknown surface properties..

carried out over 4.05 × 105 seconds for 3000 total episodes.
The DR hyperparameter F0 was chosen as 0.05 to allow
some early variation in the material parameters to mitigate
embedding of behaviours early in the training process that
are overly dependent on a single material, while Nmax was
chosen as 2500 based on the number of training episodes,
allowing 500 episodes of training with the full randomisation
range. The processor of the computer used for simulation
and training was an Intel(R) Core(TM) i7-8086K 8-core
processor with 4 GHz base clock and 32 GB RAM. The
training graph is shown in Figure 2. The agent rapidly
converges to an average reward of approximately −2500 and
remains close to this value which illustrates that the desired
task behaviour was successfully learned.

Based on the learned policy representation from the
curriculum DR method, we evaluate the performance of the
agent over six path following case studies with randomly
chosen surface properties, shown in Table 4. For comparison,
we employ a method based on LBMPC described in our
previous work [9], with data collected using a series of
manually designed admittance controllers to train a predictive
model of the surface contact dynamics. Due to the difficulty
of solving for the optimal trajectoryU directly, we employ the
forward shooting method using sample-based optimisation
to approximate the solution of (6). For LBMPC a dataset
of 101120 samples was collected, which is comparable
to the number of observations exposed to the agent after
∼200 episodes of training. The average reward displayed
in Figure 2 demonstrates that the agent experiences the
majority of its performance improvement before completing
200 episodes of training. This is notable because the dataset
size used for LBMPC consists of roughly the same number of
observations as those encountered by the agent in this early
phase of training, indicating that the dataset is a reasonable
size for comparison of LBMPC and RL methods. This
establishes a benchmark that is less sample intensive than
the exploration required for RL but has greater computational
overhead. The choice of case studies 3 to 6 is to study
the behaviour of the RL and MPC when encountering

TABLE 4. The stiffness and friction coefficients used in different case
studies. Bold data are defined outside the training range for domain
randomization.

stiffness and friction values outside of the defined ranges
in the DR. The point is to evaluate how well RL and MPC
generalize to situations they have not specifically been trained
on.

The magnitude of tracking error and cutting path
for LBMPC, TD3 with curriculum DR, FDM-H, and
FDM-L during each example case study are presented in
Figure 3–8. Figures 3a–8a illustrate the magnitude of
trajectory errors, represented as the norm of the error vector
in the x, y, and z coordinates, which captures the difference
between the current and desired tool TCP positions.

In Figure 3a, for case study 1, the task was completed
in approximately 25 seconds using MPC, 10 seconds with
the trained RL agent, 15 seconds with the FDM-L method,
and 6 seconds with the FDM-H method. This comparison
highlights that RL achieves faster task execution compared to
both MPC and the FDM-L approach. However, the trajectory
error of the RL method is significantly lower than that of
the other three methods. This suggests that the RL agent
is more effective at completing the task compared to the
MPC and FDM methods. Figure 3b displays the 3D path
of the tool-tip for case study 1, comparing the performance
of the RL method with others. Although all methods exhibit
attempts to correct any deviation from the path, the deviation
is less noticeable for the RL method. This observation is
supported by the RMSE between the end-effector position
and the desired path. The RMSEwas 7.2mm forMPC, 9.6mm
for FDM-L, and 9.0mm for FDM-H, greatly exceeding the
corresponding RL value of 0.56mm.

The results for case study 2 are depicted in Figure 4,
where it can be observed that the tool requires approximately
23 seconds to reach the endpoint when using MPC, 15
seconds with FDM-L, approximately 9 seconds with FDM-H
and the TD3 agent completes the task in 10 seconds. The
performance of the RL agent for case study 2 can similarly
be compared by analyzing the 3D TCP path, as shown in
Figure 4b. Despite all approaches attempting to correct any
deviation from the desired path, the deviation is again less
prominent in the RLmethod. This finding is further supported
by the RMSE tracking error, where the FDM-L method
exhibits the highest RMSE value of 11.1mm, followed by
MPC with an RMSE of 10.4mm. In contrast, the FDM-H
method achieves a lower RMSE of 4.5mm, while the RL
method stands out with a notably lower RMSE value of
0.84mm.
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FIGURE 3. Case study 1: material stiffness kp = 9.22116 × 107(N/m), friction coefficient µ = 0.95413.

FIGURE 4. Case study 2: material stiffness kp = 2.19674 × 106(N/m), friction coefficient of µ = 0.797441.

Figure 5 presents the outcomes of case study 3, with the
endpoint again reached in roughly 23 seconds when using
MPC, 15 seconds using FDM-L method, roughly 12 seconds
when using FDM-H and 10 seconds when using the trained
RL agent. From Figure 5a it is also evident that the magnitude
of the trajectory error with the trained RL agent is lower
than that of the others during path following. The 3D path
of the tool-tip in Figure 5b provides a basis for comparing
the performance of the RL agent with other methods in case
study 3. All methods make an effort to correct any deviations
from the intended path, but the deviations are less in the
RL method. This observation is consistent with the RMSE
values, which were significantly lower for RL (0.34mm)
compared to the MPC (9.6mm), FDM-L (10.8mm), and
FDM-H (9.7mm). Comparing trajectory errors in Figure 6,
the RL agent performed 33% faster (10 seconds) than MPC
and FDM-L methods (15 seconds). Notably, the RL method
was only 1 second slower than the FDM-H method, which
completed the task in 9 seconds. It is also illustrated from
Figure 6 that the error magnitude during path following using
the trained TD3 agent is lower than that of the other methods.
Figure 6b similarly demonstrates the desired path is tracked
more closely with RL, with a lower RMSE tracking error
(0.11mm) compared to MPC (7.6mm), FDM-L (9.8mm), and
FDM-H (7.9mm).

TABLE 5. Comparing the average parameters for various case studies
across different methods.

In the case study 5, Figure 7b, the desired path is tracked
more accurately with RL once again, with a lower RMSE
tracking error (0.67mm) compared to MPC (10.83mm),
FDM-L (8.41mm), and FDM-H (6.89mm). Finally, in case
study 6 (Figure 8b), MPC fails to complete the task,
RL exhibits the lowest RMSE (0.42mm), followed by FDM-
L (6.53mm) and FDM-H (12.26mm). The completion times
and error magnitudes are also illustrated in Figures 7 and 8
for case studies 5 and 6, respectively.

Table 5 provides a summary of results obtained from
different approaches to evaluate the average of computational
complexity, task completion time, and RMSE between the
travelled and desired path. The computational complexity
represents the average amount of time it takes for each
method to take the observations and return the action for
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FIGURE 5. Case study 3: material stiffness kp = 5.06996 × 105(N/m), friction coefficient µ = 1.32379.

FIGURE 6. Case study 4: material stiffness kp = 9.79874 × 108(N/m), friction coefficient of µ = 1.40105.

FIGURE 7. Case study 5: material stiffness kp = 5 × 103(N/m), friction coefficient of µ = 0.66567.

one time step. From this Table, it is obvious that RL shows
the lowest average computational complexity, followed by
FDM-H, FDM-L, and finally MPC. RL and FDM-H show
the shortest average task completion times, and MPC takes
the longest time to complete the task. In terms of accuracy,
RL performs the best, with the lowest average RMSE,
meaning it stays closest to the desired path. However, FDM-L
and MPC have higher values and they deviate more from the

desired path. Not to mention that MPC failed to follow the
desired path in case study 6.

In summary, the results of the six case studies in Figure 3–
7, demonstrate that although all methods are capable of
accomplishing the task without prior knowledge of the sur-
face properties, the RL agent outperforms other methods in
terms of both speed and effectiveness. This provides evidence
for the superiority of the RL agent over MPC and FDM,
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FIGURE 8. Case study 6: material stiffness kp = 2 × 1010(N/m), friction coefficient of µ = 0.41343.

indicating that the use of RL in completing similar tasks may
lead to significant improvements in performance. Moreover,
a primary issue with the MPC-based framework is the high
computational complexity of the LBMPC method, and hence
only approximate solutions for the optimal trajectory may
be found at each time step. The degree of variability this
introduces leads to the controller exploring areas of the action
space for which there is lower confidence in the model
predictions, as noted in [6], as they are conditioned on the
training data obtained by pre-defined interactions with the
system, which are collected offline. Furthermore, LBMPC
performance is degraded when extrapolating to newmaterials
outside of the training data. We posit this is due to the
accumulation of model prediction error during the inference
process of LBMPC, resulting in states diverging from the
training dataset, resulting in suboptimal actions being taken.
This is most apparent for the high stiffness material in case
study 6. In addition, the FDM approach is susceptible to
difficulties when generalising to different materials related to
choosing suitable stiffness and damping gains, and exhibits a
high sensitivity to these parameter values.

V. TASK 2: EXTENSION TO UNKNOWN, NON-PLANAR
SURFACES
We extend the first presented task, considered for the
case of unknown material properties with known surface
geometry to the more general case where material properties
and surface position are both unknown. We procedurally
generate heightfield surfaces alongside randomizing stiffness
and friction, while modulating the contact force to avoid
damage to the tool or workpiece. In doing so, we establish
the capability of the trained policy to generalize to various
types of surfaces besides the presented planar surface case
studies. While in the first instance, the TCP orientation
R was excluded, for the case of an unknown, non-planar
environment, the rotation encodes useful information about
the point of contact and external torques acting on the
tool, particularly in the case of loss of visual feedback or
occlusion of the surface geometry. We therefore extend the

FIGURE 9. Training graph of TD3 agent for compliant surface path
following for the case of unknown surface properties and unknown
(heightmap) surface geometry.

observations from Task 1 to include the TCP orientation R,
as x = (d, s, 1p, f e,R) where the sine and cosine of each
Euler angle component was taken as the scaled orientation
inputs. Training for the TD3 agent with the curriculum DR
and randomized heightmaps was carried out over 2.81 ×

105 seconds for 2000 total episodes. Similarly to Section IV,
the hyperparameters for TD3 were established by trial and
error. The TD3 hyperparameters and noise information are
summarized in Table 7.

The problem of reward function selection is a further
necessary and challenging part of task specification. Based
on observations in equations (2), (3), and (4), we extend the
definition for the agent reward function r as:

r = −wdd2 − ws
|s|
||c||

− wuu2 + wcC

− wf
(
max

(
fmax , ||f e||

)
− fmax

)
(15)

where wd , ws, wc and wf are manually tuned weighting
terms. wdd2 and ws

|s|
||c|| are deviation and slicing terms

explained in (10). While these reward contributions alone
may be sufficient for unconstrained path following, in the
presence of path planning errors presented by an unknown
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FIGURE 10. 3D perspective view of the cutter TCP path with the curriculum DR trained TD3 agent for
different generated height maps.

TABLE 6. Reward weighting contributions for the reward function
defined in (15).

or approximately known surface geometry, it is necessary
to ensure the robot does not apply excessive force to the
environment to avoid tool breakage or fail to accomplish
the desired tasks by avoiding the surface entirely. This is
accomplished by the latter 3 terms. wuu2 is a small effort
penalty to discourage extreme motions.C is a discrete reward
contribution encouraging the agent to establish contact with
the environment, defined as:

C =

{
1 if fz > fmin
0 otherwise

(16)

We introduce a ramping force penalty that penalises
forces (wf (max (fmax , ||f ||) − fmax)) in excess of a target
threshold fmax . Finally, for training, an additional terminal
penalty is applied, defined as rterm in the case of early

TABLE 7. The reinforcement learning hyperparameters and noise options
used in training the TD3 policy.

episode termination, and 0 otherwise. Without this penalty,
the cumulative reward may converge to a local minimum
corresponding to the agent immediately pursuing the episode
termination criteria, versus the case of a prolonged episode,
where the cumulative penalties due to path deviation or
excessive force may be higher. The terminal penalty was
chosen to be sufficient to surmount any negative cumulative
reward expected during the prolonged episode. The chosen
weighting contributions and termination penalty for each
reward are shown in Table 6.Weights were adopted as the pre-
vious task, and further tuned during preliminary experiments.
Notably, the progression term was reduced and effort term
increased to discourage saturation of the output velocities
and increase the influence of the force and contact penalties.
Due to uncertainty in the surface geometry, we found
these were comparatively more important to fulfil the task
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objectives while maintaining surface contact. The values of
fmax and the contact term were tuned relative to the force
limiting term such that a ‘‘dead-zone’’ of force exists during
contact. This has the twofold benefit of minimising loss of
contact, while also encouraging learning discrimination of
contact and non-contact states from observed forces, which
improves robustness to uncertainty in the estimated surface
positions, or loss of visual feedback entirely. For training,
the movements of the tool were furthermore bounded via
workspace limitations about the desired path, which we
employ in both task space and joint space.

The training was halted when the agent reached the
threshold of 2000 episodes, and the training progress graph
is shown in Figure 9. Similarly to the training on the planar
surface in Section, the performance rapidly converges within
the first ∼ 250 episodes. For the remainder of training, the
reward remains approximately constant, with a progressive
degradation of performance from 500–1250 episodes as the
range of surface properties is introduced by the curriculum
schedule. Finally, the performance recovers for the remaining
episodes, indicating successful learning of the task. Figure 10
illustrates the trajectory of the cutter TCP with the trained
RL algorithm on different heightmaps. In the case of path
planning errors or loss of visual feedback, the reference
path may be defined slightly below the object surface.
Hence, perfect tracking of the path cannot be achieved
without violating the force limiting objectives defined in (15).
However, the trajectories of the tool TCP in Figure 10
demonstrate the proposed method results in a learned policy
that is robust to an uncertain environment for a variety of
surface types.

Due to the robustness of the proposed method to a variety
of surface geometries, extension to further applications, for
example, path following on deformable objects, such as
polishing of flexible surfaces, or cutting of thin, deformable
objects remains a compelling avenue for further research.
We posit that besides the application presented in this work,
practical implementation on a physical robot setup could
be carried out with either onboard or wrist-mounted force
sensors, in combination with wrist- or externally mounted
RGBD cameras. Alternatively, other means of surface
position estimation, such as laser distancemeasurement could
be used. However, while the proposed method considers i.i.d
depth noise and is robust to loss of visual feedback, other
sources of error, such as camera calibration, particularly for
the static mounting case could be considered. Furthermore,
sensor limitations such as noise, or model mismatch between
simulated and real world tasks (for example, extension to
surfaces with non-linear stiffness characteristics) remain
problematic for real world deployment. Due to the offline
nature of data collection, LBMPC remains more readily
adaptable to different domains as data can be directly sampled
from the target domain. Hence, future work will explore
modelling of simulated and real world observations with
potentially differing task and sensor dynamics, to enable the
proposed method to be adapted across various domains.

VI. CONCLUSION
In this work, we proposed a TD3 agent with curriculum-based
DR to learn contact-rich path following with parametric
uncertainties in the interaction contact dynamics. We specif-
ically considered the case of robotic path following along
a workpiece with unknown stiffness and isotropic friction
over a range of values. By validating our approach with
six random case studies in simulation, we demonstrated the
robustness of the learned policy representation to unknown
environments. Comparison with an earlier approach using
LBMPC and a virtual forward dynamic model (FDM),
illustrates RL superior task performance with improvement
in tracking error; the LBMPC approach suffering due to
computational complexity and the problem of adequate
domain coverage in the training dataset when employing
established expert policies for data collection. Furthermore,
the FDM approach is vulnerable to challenges associated
with selecting appropriate stiffness and damping gains and
is highly sensitive to these parameter values. We extend
this concept by procedurally generating heightfield surfaces
alongside randomizing stiffness and friction, during the
online training, which allowed us to generalize the trained
policy for various types of surfaces beyond planar surfaces
to environments with unknown surface geometries and path-
planning errors.

A notable limitation of the current work is sensor limita-
tions, particularly with loss of visual / depth feedback with
reflective or occluded surfaces, or close to the target surface.
Although the method compensates for vision feedback loss
by incorporating both visual and tactile modalities for path
following, the so-called ‘‘reality gap’’ between simulation
remains a challenge. To directly bridge this gap, RL methods
rely on exploration of the target environment, which is
costive on a real setup. Therefore, future work will focus on
addressing domain adaptation of the proposed method to a
range of target domains, including real world applications.
Future endeavours could also benefit from integrating
systematic hyperparameter optimization techniques such as
Bayesian optimization or Genetic algorithms, instead of the
trial-and-error approach used in this paper.
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