IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 15 June 2024, accepted 17 July 2024, date of publication 22 July 2024, date of current version 1 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3432323

== RESEARCH ARTICLE

CODE-SMASH: Source-Code Vulnerability
Detection Using Siamese and

Multi-Level Neural

Architecture

SUNGMIN HAN"'!, HYUNKYUNG NAM 1, JAESIK KANG 2, KWANGSOO KIM"2,
SEUNGJAE CHO"“2, AND SANGKYUN LEE '

I'School of Cybersecurity, Korea University, Seoul 02841, Republic of Korea
2Cyber Warfare Research and Development Laboratory, LIG Nex1, Seongnam-si 13488, Republic of Korea

Corresponding author: Sangkyun Lee (sangkyun@korea.ac.kr)

This work was supported in part by Korea University Grant and in part by LIG Nex1.

ABSTRACT The rapid evolution of software development, propelled by competitive demands and the
continuous integration of new features, frequently leads to inadvertent security oversights. Traditional
security practices, often reactive in nature, primarily focus on identifying known vulnerabilities, creating
a significant shortfall in detecting emergent, zero-day threats. This paper introduces CODE-SMASH,
a novel deep learning-based source code vulnerability detector that utilizes a Siamese neural network
with a hierarchical architecture integrating BiGRU and attention mechanisms. Our experiments using real-
world datasets, specifically the Chromium and Debian datasets, demonstrate CODE-SMASH’s superiority
over existing methods. It achieves significant improvements in detection performance across all key
metrics, including accuracy, precision, recall, and F1-score, with average improvements of approximately
8.3%, 11.6%, 27.75%, and 17.7%, respectively, compared to the best-performing existing methods in our
experiments. Moreover, CODE-SMASH shows its superior capability in handling complex and lengthy
code sequences, with performance improvements for long-length code (60 to 80 lines) in F1 scores
of 4.53 percentage points on the Chromium dataset and 5.62 percentage points on the Debian dataset
compared to the second-best model’s performance. We believe our research makes a significant contribution
to the field of automated vulnerability detection by providing a high-precision solution to the growing
challenges in software security. Furthermore, based on our findings, we anticipate that future research could
enhance CODE-SMASH by expanding its generalizability to various programming languages and reducing
computational demands to improve efficiency.

INDEX TERMS Code similarity, hierarchical attention network, Siamese neural network, source code
vulnerability detection.

I. INTRODUCTION developments have broadened the attack surface for cyber-

Detecting potential software vulnerabilities is becoming
increasingly crucial in safeguarding against cyber attacks,
especially with the surge in software usage and the expansion
of the Internet of Things (IoT) ecosystem [1], [2]. These

The associate editor coordinating the review of this manuscript and

approving it for publication was Ganesh Naik

criminals, creating more avenues to exploit vulnerabilities.
In particular, source code vulnerabilities, which are flaws or
security weaknesses in the source code underlying software
that can be exploited by malicious attackers, are significant
because they can lead to severe security breaches.

The 2017 Equifax data breach, one of the most significant
cybersecurity incidents, illustrates the dangers of software

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

102492

For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 12, 2024

https://orcid.org/0000-0002-8227-9548
https://orcid.org/0009-0001-2693-5184
https://orcid.org/0009-0007-8646-3186
https://orcid.org/0000-0003-0112-1464
https://orcid.org/0009-0004-8348-6508
https://orcid.org/0000-0001-8415-6368
https://orcid.org/0000-0003-1790-9838

S. Han et al.: CODE-SMASH: Source-Code Vulnerability Detection

IEEE Access

vulnerabilities. This breach, which exposed the personal
information of more than 143 million people, was the result of
source code vulnerabilities in the company’s web application
software. The impact of this breach was substantial, causing
financial losses and damaging trust [3].

To help prevent software vulnerabilities and track them
in advance, cybersecurity experts often rely on the Common
Vulnerabilities and Exposures (CVE) database [4]. However,
the CVE database only lists vulnerabilities that have already
been identified, leaving out so-called zero-day attacks, which
exploit vulnerabilities that have not yet been discovered. This
limitation creates a critical security gap in defending against
zero-day attacks [5], [6], [7].

Vulnerability detection in source code primarily employs
dynamic and static analysis. Dynamic analysis, performed
while the source code is running, can detect vulnerabilities
in actual execution environments. However, it demands a
complex setup and is resource-intensive. Static analysis,
conversely, involves examining the source code without exe-
cution. This analysis is effective in early development stages
and crucial for ensuring software security and integrity by
allowing early detection and remediation of vulnerabilities.
In this paper, we focus on static analysis scenarios.

Traditional methods for static code analysis include rule-
based techniques, often relying on manual code reviews [8].
These methods, while useful, struggle with the complexity
and dynamism of modern software vulnerabilities [9]. There-
fore, more sophisticated methods, including deep learning-
based approaches, have recently been proposed and shown
their effectiveness [10], [11].

However, we find that existing deep learning-based
approaches are also insufficient for detecting vulnerabilities
in modern software’s source codes. Due to the increasing
complexity and diversity of modern software, its source
codes are often lengthy and intricate. Therefore, it is crucial
to handle such code accurately to identify vulnerabilities
without generating false positives and false negatives,
making it a practical detection tool for modern software
vulnerabilities. Existing methods, however, struggle with this
variability.

To overcome the limitations of existing deep learning
methods in vulnerability detection, we propose CODE-
SMASH, a similarity-based vulnerability detection model
that identifies vulnerabilities by comparing the similarity of
information extracted from the hierarchical structure of two
source codes. Our model utilizes the architecture of a Siamese
neural network (SNN), designed to compare the similarity
between two inputs using twin sub-networks [12], [13], and
incorporates a hierarchical structure with bidirectional gated
recurrent unit (BiGRU) and attention mechanisms [14] as the
sub-networks of the Siamese architecture to transform source
codes into dense vectors that represent their hierarchical
information. By transforming source codes into dense vectors
that represent their hierarchical information and comparing
them, our model can derive similarity scores between a new
code and an archived code with known vulnerabilities.

VOLUME 12, 2024

Our contributions are as follows:

o« We introduce a hierarchical neural architecture for
code vulnerability detection, leveraging both token- and
statement-level information of source code.

e Our approach, effective for long-length code data,
addresses complexities in extensive code bases, outper-
forming existing methods by 34.4% on average in terms
of F1-score for detecting vulnerabilities.

o The employment of a Siamese neural network enhances
the model’s performance, demonstrating its efficiency
and adaptability in various data environments.

Il. RELATED WORK

This section briefly reviews foundational research and
recent advancements in source code vulnerability detection,
focusing on static analysis scenarios. In addition, we explain
methods for vector representation of source code and Siamese
neural networks to facilitate understanding of our proposed
method.

A. SOURCE CODE VULNERABILITY DETECTION

Source code vulnerability detection aims to identify security
flaws within source codes that could be exploited by
malicious actors. The methods for detecting source code
vulnerabilities can be categorized into rule-based, classifier-
based, and similarity-based approaches.

1) RULE-BASED METHODS
Rule-based vulnerability detection is a traditional approach
that relies on identifying specific patterns or signatures
associated with known vulnerabilities, which refer to vulnera-
bilities already reported and documented, such as those in the
Common Vulnerabilities and Exposures (CVE) database [4].
Rule-based methods use predefined patterns created by
domain experts to detect vulnerabilities in codebases.
Examples include Flawfinder [15], RATS [16], and Check-
marx [17]. While these methods are effective at identifying
known vulnerabilities, they require significant manual effort
for pattern creation and maintenance, and they often produce
high rates of false positives and false negatives for vulnera-
bilities that do not match their predefined patterns. Practical
applications, such as Fortify SCA [18] and SonarQube [19],
which employ rule-based methods, also struggle with new
and emerging threats that are not yet included in their pattern
databases.

2) CLASSIFIER-BASED METHODS

To address the limitations of rule-based methods, deep
learning-based approaches have been proposed in recent
years. By leveraging deep learning models that can auto-
matically learn and extract vulnerability patterns from large
datasets, deep learning-based source code vulnerability
classifiers have demonstrated superior detection performance
compared to traditional rule-based methods [20], [21], [22],
[23], [24], [25], [26].

102493

IEEE Access

S. Han et al.: CODE-SMASH: Source-Code Vulnerability Detection

For instance, Li et al. proposed SySeVR [20], a deep
learning-based framework for detecting software vulnerabil-
ities in C/C++ programs. To capture vulnerability patterns
reflecting source code’s syntax and semantic meanings, they
proposed a bidirectional recurrent neural network (BiRNN)
based classification model. They demonstrated that the
model could successfully detect vulnerabilities in real-world
software products such as Libav, Seamonkey, Thunderbird,
and Xen, uncovering previously unknown vulnerabilities.
Russell et al. [21] introduced a convolutional neural network
(CNN)-based method for vulnerability detection, which
captures vulnerability patterns by directly applying the
model to lexed source code. Through their evaluation
conducted using source codes from both real software
packages and the NIST SATE IV dataset [27], [28], they
validated the superiority of their model. Unlike methods
that utilize only CNN or RNN networks, Wu et al. [22]
developed a hybrid model combining convolutional neural
networks (CNNs) and long short-term memory (LSTM)
networks to capture both local patterns and long-range
dependencies.

Gu et al. [25] introduced a hierarchical classification model
consisting of two-level bidirectional gated recurrent unit
(BiGRU) layers with attention mechanisms [29] to extract
vulnerability patterns from the source code’s statement and
token-level attributes. They used abstract syntax tree (AST)
processing and token embedding for feature extraction,
primarily relying on statement-level attributes for final
decision-making. Other notable deep learning approaches
include the work by Kalra et al. [26] who proposed Zeus,
a deep learning framework that utilizes an ensemble of
neural networks to detect vulnerabilities in smart contracts,
showcasing the versatility of deep learning in various coding
environments.

Despite advances in classifier-based source code vulner-
ability detection methods, approaches designed to handle
lengthy and complex source code, which are essential for
effectively detecting vulnerabilities in modern software, are
still lacking.

3) SIMILARITY-BASED METHODS

Code duplication, or copying code, increases maintenance
efforts and the risk of vulnerabilities. Studies indicate that
5% to 20% of software components may consist of duplicated
code [30], [31], [32], [33], [34], implying a higher likelihood
of additional vulnerabilities if a defect is found in one
segment.

Similarity-based vulnerability detection methods focus on
finding vulnerabilities by comparing the semantic similarity
between analyzed code and known vulnerable code. Unlike
classifier-based methods, this approach emphasizes analyz-
ing code attributes and is adaptable to new and unidentified
vulnerabilities [6], [7], [35]. These methods are particularly
effective at identifying vulnerabilities with behaviors or
structures similar to those previously detected.

102494

For example, Lietal. [36] proposed VulPecker, which
quantifies the similarity between two source codes using
machine learning techniques such as support vector machines
(SVM), while Lietal. [37] introduced a graph-matching
network model to compute similarity scores through a cross-
graph attention-based matching mechanism, demonstrating
effectiveness in control-flow graph-based function similarity
search. More recently, Sun et al. [38] proposed VDSimilar,
a Siamese neural network [12] with bidirectional long
short-term memory (BiLSTM) networks and attention mech-
anisms [29], which compares token-level attributes between
two source codes to detect vulnerabilities. They showed
that with a relatively small dataset, their similarity-based
detection model can outperform classifier-based approaches.

Although these similarity-based methods have shown
remarkable detection performance, they do not fully utilize
information from the hierarchical structure of source code,
including token statement, and function-level attributes, all
of which are important for analyzing vulnerability patterns.

B. VECTOR REPRESENTATION OF CODE

Transforming source code into vector representations is
essential for applying deep learning techniques to software
analysis. Traditional approaches involved tokenizing code
into a bag-of-words model, but this often failed to capture the
semantic and structural nuances of programming languages.

More advanced techniques use embeddings, where code
snippets are represented as vectors in high-dimensional
space. Methods like word2vec [39] train neural networks on
large codebases to generate vector representations that reflect
the semantic information of source code, while graph-based
embedding methods preserve more structural information.
To preserve structural information, graph-based embedding
methods process graph structures of source code, such as
abstract syntax trees (ASTs), using graph neural networks
and capture relationships and dependencies between code
parts [23]. This method is advantageous in that it can utilize
the structural information of source codes, but it has the
drawback of requiring a lot of preprocessing effort. Recent
studies by Alon et al. [40] on code2vec and Pradel and Sen
[41] on DeepBugs highlight the effectiveness of using vector
representations for code understanding and bug detection.

In our framework, we avoided using graph structures,
such as ASTs or other tree-structured static analysis infor-
mation, due to their extended preprocessing burden. Instead,
we directly capture the hierarchical structure of source
code, aligning with our goal of efficient processing while
maintaining a deep understanding of code semantics.

C. SIAMESE NEURAL NETWORK

Siamese neural networks (SNNs) [12], [13] are powerful
tools for similarity detection in natural text [42] and code
analysis [14], [43], [44]. SNNs consist of two identical
sub-networks with the same configuration, parameters, and
weights. These sub-networks process input in parallel, and

VOLUME 12, 2024

S. Han et al.: CODE-SMASH: Source-Code Vulnerability Detection

IEEE Access

TABLE 1. Comparison of vulnerability detection methods.

Model [TokenCNN [21] [CNN+LSTM [22] [VDSimilar [38] [HAN [25] [CODE-SMASH
No need for compilation v v
Handles long-length code well v v v
Works with small training data v v v
Types of source code features tokens tokens tokens tokens, statements | tokens, statements, functions

the outputs are combined to compute a similarity metric, such
as cosine similarity. The key idea behind SNNss is to learn a
similarity function that can compare two inputs and determine
whether they are similar or not [12].

To train SNNs, the network is provided with pairs of
inputs labeled as similar or dissimilar. During training, the
network adjusts its parameters to minimize the difference
between the outputs of similar pairs and maximize the
difference between the outputs of dissimilar pairs [12], [13].
In vulnerability detection, SNNs compare a given piece of
code against known examples of vulnerabilities, learning
complex patterns and anomalies that signify potential security
risks [38], [43], [44].

Table 1 compares our model, CODE-SMASH, against
state-of-the-art models in source code-based vulnerability
detection. Unlike models considering only tokens or a
combination of tokens and statements, CODE-SMASH
extends to function-level analysis, offering a more nuanced
examination of the source code. This granularity enhances the
model’s performance with smaller datasets and longer code
lengths, showcasing its superior capability in vulnerability
detection compared to other baseline methods.

lil. METHODOLOGY

In this section, we describe our framework for detecting
source code vulnerabilities. This framework involves con-
structing pairs of source codes and analyzing them with
a similarity-based neural detector named CODE-SMASH
that leverages information extracted from a hierarchical code
structure, including tokens and statements.

Our framework can serve as a valuable tool for soft-
ware developers, empowering them to identify source code
vulnerabilities during their development process and take
proactive measures to address potential security flaws.
Additionally, it can be deployed to identify vulnerabilities
within open-source projects. For example, through the
analysis of historical data from web server software like
Apache, it can identify recurring patterns and similarities
in code modifications that have previously led to security
breaches.

A. CONSTRUCTING SOURCE CODE PAIRS

We detail a strategy for pairing source codes within
our detection framework, focusing on source code pre-
processing. This strategy involves removing comments
and applying tokenization and vectorization to the codes
to help our detector identify source code vulnerabilities
effectively.

VOLUME 12, 2024

1) REMOVE COMMENTS
Given the nature of deep learning-based models, which rely
on data to learn and understand aspects relevant to their
specific tasks, their performance depends on the quality of
data. Therefore, refining the data by removing irrelevant
information is crucial for enabling the model to focus on task-
specific information, thus ensuring effective performance.
In the context of source code vulnerability detection, which
focuses on the executable parts of source code where potential
vulnerabilities might exist, comments within the source
code—intended to explain functionality without affecting
execution—can be considered irrelevant to vulnerability
detection and may act as noise hindering the accurate identi-
fication of vulnerabilities. Therefore, we eliminate comments
from a source code to retain solely the executable segments
of the code. Especially since comments in programming
languages adhere to specific patterns (e.g., //, /*...*/), we use
regular expressions to identify and remove these patterns,
effectively purging comments from the code.

2) SOURCE CODE TOKENIZATION
Tokens are the smallest units used to represent source code or
text, and deep learning-based models analyze the full context
of source code or text starting from these token-level units.
Thus, employing suitable tokenization methods for source
code can enhance the model’s ability to interpret and process
the underlying structure and semantics of source code.
Unlike traditional tokenization methods in natural lan-
guage processing, which identify tokens as words sepa-
rated by spaces, our approach for tokenizing source code
extends this simple identification of spaces. We incorporate
CamelCase naming convention [45], common in software
development, as essential in defining the smallest units.
This tokenization ensures that semantically related characters
are grouped as one token, preserving the integral meaning
within the code’s syntax. It enables a more in-depth
source code analysis, leading to the precise identification of
patterns and potential vulnerabilities, as evidenced in [46]
and [47]. Through our source code tokenization process,
we convert source code, with comments removed, into a set of
tokens.

3) SOURCE CODE VECTORIZATION

As deep learning models operate on numerical data, tok-
enized source codes need to be transformed into a numerical
format (vectors). Therefore, we convert the tokenized codes
into their corresponding vectorized forms.

102495

IEEE Access

S. Han et al.: CODE-SMASH: Source-Code Vulnerability Detection

For this purpose, we use Word2Vec [39], [48], a popular
vectorization technique in natural language processing. The
fundamental formulation of Word2Vec defines p(w;jlw;)
utilizing the softmax function to maximize the following
expression:

x0T)
pwolw) = —
Zw—] exp(v/ Vw1)

where wo and wy represent the center word and surrounding
word, respectively. The matrices v, and V', serve as
embedding matrices employed during input and between
the hidden layer and the output layer to represent the
vectors of w, with W denoting the total number of words
in the vocabulary [48]. Maximizing this expression involves
augmenting the similarity between the word vectors of the
center and surrounding words, thereby enhancing their dot
product. Conversely, decreasing the similarity with words
beyond the context window diminishes their association with
the center word, thereby effectively capturing the semantic
relationships between words. Following Word2Vec, we train
a word vector model for source code vectorization and utilize
the embedding matrix from the trained model to transform
each token into a vector representation.

Finally, we organize the vectorized tokens into a hierarchi-
cal structure that mirrors the inherent structure of the code.
This is achieved by arranging the vectorized tokens according
to the source code’s statements, using newline characters as
delimiters to guide the grouping.

4) CONSTRUCTION OF CODE-PAIRS

Our detection strategy aims to identify vulnerable source code
by assessing the semantic likeness between source codes.
To support this strategy, we construct pairs of source codes,
each comprised of vectorized tokens, similar to the approach
described in [38].

Specifically, for training our detector, we construct a
dataset of code pairs that includes both pairs of vulnerable
codes and combinations of vulnerable and non-vulnerable
codes. We label pairs consisting solely of vulnerable code
segments with a 1 to highlight their similarities. Conversely,
pairs that mix vulnerable and non-vulnerable codes are
labeled with a 0 to emphasize their differences. This approach
not only facilitates the detection of vulnerable codes but also
enables the uncovering of similarities across various versions
of vulnerable code, considering that Common Vulnerabilities
and Exposures (CVEs) can span multiple versions.

B. SIMILARITY-BASED DETECTION MODEL

We propose CODE-SMASH, a Siamese multi-depth

attention-based hierarchical recurrent neural detector designed
for detecting vulnerabilities in source code by analyzing code

similarities. It processes a pair of source codes, denoted as

{c”}l%:1 as input, where each ¢ € R&**™ 5 a collection

of multiple statements, defined by ¢* := {sf}le. Each

statement s’ is comprised of a sequence of vectorized tokens,

102496

represented as s := {t” I 1> with each vectorized token t”J
€ R™. CODE- SMASH evaluates the similarity between these
source codes to identify potential vulnerabilities.

The core of CODE-SMASH is based not only on a Siamese
architecture, known for its effectiveness in comparing the
similarity between two source codes [42], [44], but also on
a hierarchical feature encoder designed to extract features
across various levels of a source code. This core facilitates
a multi-level analysis, enabling the detailed examination
and comparison of two source codes at multiple levels
of abstraction, from the micro-level details of statements
to the macro-level organization of functions. The overall
architecture of CODE-SMASH is shown in Fig. 1.

1) FEATURE ENCODER

Following the Siamese neural network (SNN) framework,
CODE-SMASH utilizes twin sub-networks with identical
architecture and shared weights. Each sub-network consists
of two key components: the statement-level encoder and the
function-level encoder, each engineered to extract features
from a source code at their respective levels of analysis.

a: STATEMENT-LEVEL ENCODER

For any given source code ¢ {s”}l |» the statement-level
encoder processes each statement 57 := {tl”j}]k (forl <i<
£, by aggregating its sequence of vectorized tokens {tl"j}]k
This procedure is aimed at extracting features at the statement
level. To achieve this, the encoder uses a bidirectional Gated
Recurrent Unit (BiGRU) along with an additive self-attention
mechanism [29].

The BiGRU is composed of two GRU units designed
to analyze the token sequence from both forward and
reverse directions, thereby capturing dependencies within the
sequence. The first GRU unit processes the sequence from the
start to the end token in a forward direction, capturing forward
contextual information, while the other unit processes it from
the end to the start token in a backward direction, capturing
backward contextual information. More formally, the forward
GRU generates a sequence of forward hidden states denoted
by h" for each vectorized token t” resulting in the sequence

—)
{hy, ...
sequence of backward hidden states denoted by h". also
for each vectorized token, but in reverse order, y1eld1ng the

sequence {hl 1o f «)- Here, each hidden state h ™. and

E L is a vector in Rd for1 <j <k, witheach correspondlng

to the j-th vectorized token t”j of the i-th statement in the
n-th source code. By using these hidden states, we derive
statement-level source code features.

Since not all hidden states are equally important for source
code comparison, we integrate an additive self-attention
mechanism alongside the BiGRU to reflect the importance
of each hidden state for the comparison process. Specifically,
we generate a concatenated hidden state A ; i by combining
the hidden states from both the forward and backward GRUs:

lk} Similarly, the backward GRU generates a

VOLUME 12, 2024

S. Han et al.: CODE-SMASH: Source-Code Vulnerability Detection I EEEACC@SS

Similarity score between two source codes

Similarity
calculation
l ' \
() §1 5%
~1 1 2 -
c -] (=) Sp 2 Y — Sy

~

Function-level \ f Function-level \
encoder encoder

g \ g \
N — z
= Additive Attention Statement_level Shared Addltlve Attention Statement_level g
% encoder weights encoder (51;
= | | g
1
o)
% (Additive Attention) (Additive Attention) “ (Additive Attention] (Additive Attention] %
(BiGRU] (BiGRU) (BiGRU) (BiGRU)
k o / k o
thy a20 WEEm - maE . ottty e -
1 1 1 1 : ‘
tha tha tiz otttk Cth th tiy e
[Vectorization] [Vectorization]
[char] (source) (=) (SRC_STRING;] [char) (¥ data)(d (fkdataPtr)
Token-1 s f Token-k Token-1 oo f Token-k
void functionl(void * dataVoidPtr) void function2(void * dataVoidPtr)
’ Codel (c!) || Code2 (c?)
char source = SRC_STRING; 1st statement char % data = (xdataPtr) [ststatement
.o £-th statement .o £-th statement
memcpy(data, source, (strlen(source)+1) % sizeof(char)); memcpy (data, source, (strlen(source)+1) * sizeof(char));
} +

FIGURE 1. Vulnerability detection with CODE-SMASH. The term ‘shared weights’ means that two sub-networks share the same configuration and weights.

h’.l. = [h:’/h”], where h’?. e R¥ forj e [1,k]. to get statement-level source code features:

The importance of each representatlon h" is assessed using

an additive self-attention layer that consists of two fully 3 k
connected layers, followed by the softmax function: 5; = Z ajh iz 3
j=1
_ T
= tanh(W h?,j +b), M where 5} € RY represents the extracted statement-level
exp(vaq) source code feature for each i within the range of [1, £] in
qj = Zj exp(vaq)) 2 n-th source code. This aggregation effectively synthesizes the

information across all tokens within a statement, weighted
by their respective attention scores, to capture the essence of
where v; € R2 represents the output of the first fully each statement’s contribution to the overall code semantics.
connected layer, with W e R24%2d gnd p € R™, indicating
the layer’s weights and bias, respectively. The parameter b: FUNCTION-LEVEL ENCODER

g € R* corresponds to the weights of another fully The function-level encoder is designed to extract function-level
connected layer that is used in the calculation of the attention features from statement-level source code features, thereby
score oj € R, which determines the importance of the j-th deepening the analysis of the source code. This process
concatenated hidden state A .. i After calculating the attention aims to provide a nuanced comprehension of function-level
scores, we integrate them with each concatenated hidden state attributes and their connections, improving the detector’s

VOLUME 12, 2024 102497

IEEE Access

S. Han et al.: CODE-SMASH: Source-Code Vulnerability Detection

ability to identify and interpret complex code patterns and
vulnerabilities.

Expanding on the design of the statement-level encoder,
the function-level encoder incorporates an additional BiGRU
layer and an additive self-attention layer. The architecture is
structured hierarchically into two main components: the first
component is tasked with the extraction of statement-level
features, and the second component, positioned above the
first, concentrates on deriving function-level features from
these extracted statement-level features.

Given statement-level source code features &f e R4,
ranging from 1 < i < £ as processed by the statement-level
component of the function-level encoder, the function-level
component further processes these features similar to the
statement-level processing. In the function-level component,
the forward arg)l back(vlard GRU units generate sequences of

hidden states }Az:’ and fz:’ , respectively. Each state corresponds
to the i-th statement-level source code features §7 in the
n-th source code. and these hidden states are vectors
in R9/2, Subsequently, the hidden states from both the
forward and backward GRUs are concate[ged Jo form a

comprehensive hidden representation i = | h; h:li| where

each fz? is a vector in R?. Utilizing an additive self-attention
layer, we calculate function-level attention scores for the
concatenated hidden states A}

b = tanh(WT R + b), “4)
exp(d!)
U= 7
Zj exp(V,' q)

where W € R4 ¢ R4 and g € R? represent the
parameters of the fully connected layer, and the @; € R is
the function-level attention score. Finally, we summarize all
the information of the statement in the function by integrating
each concatenated hidden state with its corresponding
function-level attention scores as follows:

&)

14
o= Z&iiz;?, (6)
i=1

where & € R? represents the function-level source code
features.

2) SIMILARITY CALCULATION

Based on the feature encoder, CODE-SMASH constructs
twin sub-networks, each a feature encoder with identical
architecture and shared weights, to analyze the simi-
larity between features from two distinct source codes.
Unlike typical Siamese-based methods that directly compare
extracted features using a distance metric [38], CODE-
SMASH compares through additional fully connected layers
with an activation function. For this comparative analysis,
CODE-SMASH aggregates all the features extracted by
the statement-level and function-level encoders of each
sub-network. After aggregation, it flattens the aggregated

102498

features, concatenates them, and feeds to fully connected
layers. This approach allows CODE-SMASH to thoroughly
compare the source codes, considering the statement-level
and function-level features of the source codes. Furthermore,
this architecture facilitates end-to-end learning, enabling the
holistic training of the entire detection system tailored to a
specific task. This capability ensures that CODE-SMASH
can be directly applied to various coding challenges, optimiz-
ing its effectiveness and adaptability to different scenarios.
More formally, for a pair of source codes, given
statement-level features El.l, 512 fori € [1, £] and function-level
features ¢! and &2, we construct the final feature vector
x by flattening and concatenating all these features, where
x € RXHD The similarity between the two codes is
computed using two fully connected layers with the ReLU
activation function: o (f "(ReLU (f (x)))) , where f" and f
represent two fully connected layers, and o is the sigmoid
function that produces scores within the range of [0, 1],
indicative of similarity levels. Finally, with a predefined
threshold t > 0, we assess the presence of source code
vulnerabilities. If o (f "(ReLU (f (x)))) > 1, the code is
considered vulnerable; otherwise, it is deemed benign.

IV. EXPERIMENTS

In this section, we compare our CODE-SMASH model
with four baseline methods. Additionally, we conduct an
experiment with a new configuration of CODE-SMASH that
includes only the token-level and statement-level stages.

A. SETTINGS

1) METRICS

We assess the efficacy of the vulnerability detection models
using established classification metrics, notably the receiver
operating characteristic (ROC) curve and the corresponding
area under the curve (AUC). The ROC curve illustrates the
true positive rate (TPR) plotted against the false positive
rate (FPR) across various classification threshold values. Fur-
thermore, we evaluate the performance of our model based
on metrics including accuracy (A), precision (P), recall (R),
and the F1 score (F1). Let TP and FP represent the number
of correctly and incorrectly predicted vulnerabilities, while
TN and FN denote the number of correctly and incorrectly
identified non-vulnerable code segments, respectively. These
metrics are defined as follows:

FP
TPR=—— FPR= —
TP + FN TN + FP
B TP + TN
" TP+ FP + TN +FN’
TP TP
T TP+FP° ~ TP+FN’
2xPxR
Fl=""—
P+R

2) IMPLEMENTATION DETAILS

Our model is implemented using Pytorch. The default
configurations of CODE-SMASH are outlined as follows: We

VOLUME 12, 2024

S. Han et al.: CODE-SMASH: Source-Code Vulnerability Detection

IEEE Access

TABLE 2. Characteristics of the datasets used for experiments.

Dataset [Chromium | Debian
No. of vulnerable functions 200 250
No. of non-vulnerable functions 150 200
No. of similar pairs 19900 31125
No. of dissimilar pairs 30000 50000

employ Word2vec [39] to convert the code into vectors, with
an embedding size set to 64. Dropout regularization is applied
at a rate of 0.5, and the batch size is set to 64. We conduct
training for 100 epochs.

For the BiGRU network, the principal parameters are
specified as follows: The batch size remains at 64, with
training conducted over 100 epochs. Dropout regularization
is applied with a keep rate of 0.2, and the network comprises
256 hidden units across 2 layers. We utilize stochastic
gradient descent as the optimizer, with a learning rate set
to 1073,

3) BASELINE METHODS

For all tasks, we assess the performance of CODE-SMASH
by juxtaposing it against four deep learning models, employ-
ing the Siamese architecture to gauge similarity. The methods
under comparison include:

TokenCNN [21]: This vulnerability detection tool relies
on deep feature representation learning and directly interprets
lexed source code through convolutional neural networks
(CNNs) for feature extraction [49]. Emphasizing the lexical
characteristics of code, TokenCNN aims to exploit the
inherent structure of code snippets.

CNN+LSTM [22]: This method proposes a fusion
of convolutional neural network-long short-term memory
(CNN-LSTM) layers. By utilizing function calls as features to
represent patterns, it endeavors to capture both local features
and long-range dependencies within the code.

VDSimilar [38]: Employing a Siamese network archi-
tecture coupled with bidirectional long short-term memory
(BiLSTM) and attention mechanisms, this model delves into
learning similarities among vulnerability snippets. It places
emphasis on comprehending the intricate relationships
present within the code.

HAN [25]: This approach adopts a two-level attention
network, focusing on both line and token levels within the
code. Leveraging an attention mechanism, HAN determines
the significance of vectors corresponding to code segments in
indicating vulnerabilities.

Each of these models offers distinctive perspectives on
vulnerability detection, harnessing a diverse array of deep
learning techniques.

B. DATASET

Our research methodology is applied and evaluated using
datasets sourced from pivotal domains, namely Chromium
and Debian, which respectively represent web browsers and
operating systems.

VOLUME 12, 2024

TABLE 3. Detection performance of vulnerabilities. The best values are
boldfaced and the second-best are underlined.

\ Model | Accuracy | Precision [Recall | F1
g TokenCNN [21] 0.8134 0.6678 0.8178 0.7352
.2 | CNN+LSTM [22] 0.5946 0.4207 0.7415 0.5368
E VDSimilar [38] 0.8295 0.7766 0.6483 0.7067
5 HAN [25] 0.7450 0.5693 0.8008 0.6655
CODE-SMASH 0.9490 0.9342 0.9025 | 0.9181
TokenCNN [21] 0.8942 0.8565 0.8086 0.8319
S | CNN+LSTM [22] 0.6581 0.4815 0.7269 0.5793
% VDSimilar [38] 0.8043 0.7201 0.6473 0.6818
a HAN [25] 0.7820 0.6357 0.7656 0.6946
CODE-SMASH 0.9143 0.8814 0.9398 | 0.8766

The Chromium dataset comprises vulnerabilities reported
by users and is derived from the Reveal dataset [50]. This
dataset furnishes detailed information associating individual
functions with Common Vulnerabilities and Exposures
(CVEs), thereby facilitating function-level similarity detec-
tion. Likewise, the Debian dataset, also sourced from the
Reveal dataset, encompasses vulnerabilities reported by users
and provides correspondence details between functions and
CVEs, thereby facilitating our analysis of function-level
similarity.

Given the substantial size of the entire Reveal dataset,
containing approximately 180, 000 functions, it is impractical
to consider all possible pairs. Consequently, we adopted
a sampling strategy wherein we selected a subset of
800 functions and generated approximately 130, 000 pairs in
total for experimentation. This scale of data was determined
to be adequate based on our experience for effectively
training and evaluating prediction performance. Each pair is
categorized as similar (labeled as 1) if they share the same
CVE or different (labeled as 0) otherwise. The characteristics
of these datasets are summarized in Table 2.

In adherence to the fixed input size requirements of deep
learning models, our methodology employs 10 tokens for
statement length and 80 tokens for function length per code
snippet. Consequently, data padding or splitting is necessary
to conform to the specified input dimensions. Additionally,
we conduct random partitioning of the pairs dataset into
training, validation, and test sets in each iteration, allocating
proportions of 60%, 20%, and 20%, respectively.

C. EVALUATION

1) VULNERABILITY DETECTION PERFORMANCE

In this section, we evaluate the prediction performance
of CODE-SMASH, a novel vulnerability detection model,
against the second-best methods identified in our experi-
ments. Our evaluation is based on key performance measures
including accuracy, precision, recall, and F1 score, which
are critical metrics for assessing the efficacy of vulnerability
detection systems. The results are summarized in Table 3.

a: CHROMIUM DATASET
We identified VDSimilar as the second-best method in
terms of accuracy and precision, while TokenCNN emerged

102499

IEEE Access

S. Han et al.: CODE-SMASH: Source-Code Vulnerability Detection

1.0 — —
e a e LT -
0.81 e T et
2 semTT
<
0.6
2
:E
[o]
S 0.4
g --- TokenCNN (AUC = 0.90)
—-= CNN+LSTM (AUC = 0.90)
021 — — VDSimilar (AUC = 0.72)
—-- HAN (AUC = 0.78)
0.0 —— CODE-SMASH (AUC = 0.98)
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

FIGURE 2. ROC curves and AUC values of vulnerability detection for the
Chromium dataset.

1.0 e e
‘,---—"‘_;?:’..l' ’,’
- PR ‘
0.8 -~ e -
i o -
Q i el =
©) "J’_r -
< 0.6 LS -
> [s
=} it -
2 ' r
& o P
° 0.4 1] P
¥y -
Z e -—- TokenCNN (AUC = 0.88)
s
G’f’ —-- CNN+LSTM (AUC = 0.79)
021 |¢ - - VDSimilar (AUC = 0.67)
y —-- HAN (AUC = 0.82)
0.0 —— CODE-SMASH (AUC = 0.99)
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

FIGURE 3. ROC curves and AUC values of vulnerability detection for the
Debian dataset.

as the second-best for recall and F1 score. Our findings
reveal that CODE-SMASH outperformed VDSimilar in
accuracy and precision by approximately 14.4% and 20.3%,
respectively. Additionally, CODE-SMASH demonstrated
significant improvements over TokenCNN in terms of recall
and F1 score, exhibiting approximately 39.3% and 30.0%
enhancements, respectively. These results underscore the
superiority of CODE-SMASH in accurately identifying
vulnerabilities within the Chromium dataset.

b: DEBIAN DATASET

The results revealed TokenCNN as the second-best method
across all performance measures. Our evaluation demon-
strated that CODE-SMASH showcased notable enhance-
ments over TokenCNN, with improvements of approximately
2.2%, 2.9%, 16.2%, and 5.4% in accuracy, precision,
recall, and F1 score, respectively. This suggests that
CODE-SMASH offers superior predictive capabilities com-
pared to TokenCNN in detecting vulnerabilities within the
Debian dataset.

Overall, our analysis indicates that CODE-SMASH sig-
nificantly outperforms the second-best methods identified
across both datasets, underscoring its efficacy in vulnerability
detection. The substantial improvements observed in accu-
racy, precision, recall, and F1 score highlight the potential
of CODE-SMASH as a robust solution for identifying

102500

lengths of vulnerable code_chromium

Count

10 20 30 40 50 60 70 80
lengths

lengths of vulnerable code_debian

10 20 30 40 50 60 70
lengths

FIGURE 4. Length histograms of vulnerable functions in the Chromium
and Debian datasets.

‘ = Overall Short (~30 lines) ¥ Medium (30~60 lines) WLong (60~80 lines) ‘

100

90

80

70

F1-measure

60

50

40 :
CODE-SMASH

TokenCNN CNN+LSTM VDSimilar HAN
Method

FIGURE 5. Vulnerability detection F1 scores for different code-length
groups for the Chromium dataset.

vulnerabilities in software systems, considering that the
Debian and Chromium datasets are comprised of a mix of
code versions with varying lengths.

2) PERFORMANCE IN ROC AND AUC

Figures 2 and 3 present the Receiver Operating Characteristic
(ROC) curves and their associated Area Under the Curve
(AUC) values for the vulnerability detection methods,
including our proposed model, CODE-SMASH. The ROC
curve serves as a vital tool in evaluating the trade-offs

VOLUME 12, 2024

S. Han et al.: CODE-SMASH: Source-Code Vulnerability Detection

IEEE Access

Overall Short (~30 lines) Medium (30~60 lines) mLong (60~80 lines)

100

90

70
60
50 I
40

TokenCNN ~ CNN+LSTM VDSimilar HAN CODE-SMASH

F1-measure

Method

FIGURE 6. Vulnerability detection F1 scores for different code-length
groups for the Debian dataset.

TABLE 4. Performance comparisons with CODE-SMASH versions denoted
by letters in parentheses: T is for token-level information only and S is for
statement-level information only (data: Debian, long code inputs with

60 to 80 lines).

Model [Accuracy [Precision [Recall | FI

TokenCNN [21] 0.9087 0.9088 0.7744 | 0.8363
CNN+LSTM [22] 0.6578 0.4870 0.6573 | 0.5415
VDSimilar [38] 0.6370 0.4523 0.7270 | 0.5571
HAN [25] 0.7442 0.5670 0.8023 | 0.6635
CODE-SMASH(T) 0.9428 0.8578 0.9802 | 0.9149
CODE-SMASH(S) 0.9161 0.8237 0.9062 0.8630
CODE-SMASH 0.9517 0.9247 0.9593 | 0.9417

between sensitivity (true positive rate) and specificity
(1 - false positive rate). The AUC values summarize the
ROC curves into scalars ranging from 0 to 1. Essentially,
a larger AUC value signifies a model’s enhanced abil-
ity to distinguish between vulnerable and non-vulnerable
code. Notably, our CODE-SMASH model demonstrates the
largest AUC among the compared methods, indicating its
superior efficacy in vulnerability detection. Quantitatively,
CODE-SMASH surpasses state-of-the-art models, improving
detection performance by approximately 20% in terms of the
AUC score.

A critical observation from CODE-SMASH’s ROC curve
is its exceptional true positive rate, maintained even when
the false positive rate is close to zero. This highlights the
model’s capability to accurately identify vulnerabilities while
minimizing false alarms.

3) PERFORMANCE OVER DIFFERENT CODE LENGTHS

One anticipated advantage of CODE-SMASH’s multi-level
architecture is its proficiency in extracting features from
longer code inputs, which is a challenge for non-hierarchical
architectures. This capability is particularly relevant given the
diverse range of code lengths observed in the two real-world
datasets utilized in our experiments, as depicted in Fig. 4.

VOLUME 12, 2024

TABLE 5. Comparison of inference times for each competing method,
measured in seconds. The table shows the average runtime (denoted as
mean) and its standard deviation (denoted as std) across 1, 000 randomly

selected samples.

[Model | Mean (std) time

£ | TokenCNN[21] [0.0019 (0.0052)
2 | CNN+LSTM [22] | 0.0032 (0.0048)
£ | VDSimilar [38] | 0.0375 (0.0060)
5‘“ HAN [25] 0.0237 (0.0057)
CODE-SMASH | 0.0159 (0.0051)
TokenCNN [21] | 0.0020 (0.0058)

S | CNN+LSTM [22] | 0.0033 (0.0048)
£ | VDSimilar [38] | 0.0385 (0.0064)
A HAN [25] 0.0241 (0.0062)
CODE-SMASH | 0.0154 (0.0059)

To comprehensively assess CODE-SMASH’s effective-
ness across varying code lengths, we categorized the
functions into three distinct length groups: short (fewer
than 30 lines), medium (30 to 60 lines), and long (60 to
80 lines). The performance of CODE-SMASH in vulnerabil-
ity detection for these different length categories is depicted
in Figs 5 and 6, corresponding to the Chromium and Debian
datasets, respectively.

The results in Figs 5 and 6 indicate that CODE-SMASH
consistently outperforms other competing methods across all
code length categories. Notably, CODE-SMASH achieved
significant improvements in F1 scores compared to the
next-best methods for long-length code: it improved by
4.53 percentage points on the Chromium dataset and 5.62 per-
centage points on the Debian dataset, surpassing TokenCNN
in Chromium and HAN in Debian. This improvement
underscores CODE-SMASH’s robustness and its capacity
to effectively handle a wide range of code lengths, further
reinforcing its utility in practical applications of vulnerability
detection.

4) EFFECTIVENESS OF SIAMESE AND HIERARCHICAL
STRUCTURE

To assess the impact of our architectural choices, we con-
ducted an experiment comparing simplified variants of
our CODE-SMASH model: CODE-SMASH(T) and CODE-
SMASH(S) variants that use token and statement information
only from the inputs, respectively.

In this experiment, we used the ‘long’ category (60 to
80 lines) from the Debian dataset for training and testing,
and we reported the mean values of results obtained through
5-fold cross-validation. The results are presented in Table 4.
Our findings indicate that the competing methods employ-
ing solely token-level information, such as TokenCNN,
CNN+LSTM, and VDSimilar, demonstrated comparable yet
inferior performances compared to CODE-SMASH variants.
Specifically, TokenCNN, the best-performing among these
baselines, achieved an F1 score of 0.8363, which is notably
lower than any variant of CODE-SMASH. This difference
underscores the limitations of models reliant on token-level
information alone when handling more complex, longer code
inputs.

102501

IEEE Access

S. Han et al.: CODE-SMASH: Source-Code Vulnerability Detection

The HAN model, which integrates statement-level knowl-
edge, shows improved performance over some of the
token-level methods, with an F1 score of 0.6635. However,
it still falls short when compared to the CODE-SMASH
variants. This outcome suggests that while incorporating
statement-level information is beneficial, it is not sufficient
on its own to handle the intricacies of longer code sequences
effectively.

The CODE-SMASH(T) variant, focusing solely on token-
level information, achieves a significant leap in performance
with an F1 score of 0.9149. Similarly, CODE-SMASH(S),
which utilizes only statement-level information, also shows
strong results with an F1 score of 0.8630. These results indi-
cate that even when focusing on a single hierarchical level, the
Siamese architecture inherent in CODE-SMASH provides a
substantial advantage in processing and understanding code
structures.

The complete CODE-SMASH model, which combines
both token and statement levels, further enhances perfor-
mance, reaching an F1 score of 0.9417. This demonstrates
that the integration of multiple hierarchical levels, combined
with the Siamese architecture, significantly improves the
model’s ability to understand and analyze complex, long code
sequences.

5) COMPUTATION TIME
Detecting vulnerabilities within a reasonable time is impor-
tant for deep learning-based vulnerability detectors to serve
as practical tools for real-world applications. Table 5 shows
the average inference time and its standard deviation for each
competing method across 1, 000 samples from each dataset.
According to the table, CODE-SMASH has an average
inference time of less than 0.0160 seconds. Although
TokenCNN and CNN+LSTM models have faster inference
times than CODE-SMASH, their detection performance is
lower than CODE-SMASH as demonstrated in Tables 3
and 4. Notably, compared to VDSimilar, which is the
second-best detector in terms of detection accuracy on the
Chromium dataset as shown in Table 3, CODE-SMASH has
a much faster inference time, averaging x2.43 faster. These
results indicate that CODE-SMASH detects vulnerabilities
effectively and does so within a reasonable time.

V. CONCLUSION

In this paper, we presented CODE-SMASH, a novel
deep learning-based source code vulnerability detector that
uses a Siamese neural network with hierarchical struc-
tures comprising BiGRU and a self-attention mechanism,
extracting information reflecting the hierarchical structure
of source codes and analyzing their similarity to detect
vulnerabilities. Alongside CODE-SMASH, we introduced
our source code preprocessing steps for effective source
code analysis, including comment removal, tokenization, and
vectorization. Through our experiments, we showed that
CODE-SMASH outperforms existing methods in detection
performance and is more effective in handling lengthy code

102502

sequences, emphasizing its efficiency and potential to be a
key component in software security applications.

However, CODE-SMASH has several remaining chal-
lenges, such as potential dependency on the nature of training
datasets and the model’s high computational demands.
Although it has shown reasonable computation time, there
is still room for improvement to be more effectively used
in real-world applications. To address these challenges, one
approach is to increase the diversity of training datasets by
incorporating a broader range of source code from various
languages, platforms, and domains. Exploring data augmen-
tation techniques for source code can also help diversify the
training data by generating synthetic variations of source
code. In addition, optimizing computational efficiency could
be achieved through model compression methods, such as
pruning or quantization, to reduce computational overhead
while maintaining performance. We suggest exploring these
approaches in future research to enhance the effectiveness of
CODE-SMASH while mitigating the identified challenges.

Despite these identified challenges, given the growing
importance of automated vulnerability detection in modern
software development as software-based systems become
more prevalent and the risk from source code vulnerabilities
increases, our research offers a significant contribution with
the potential for further development to improve software
security. We believe that with the use and further development
of CODE-SMASH, it can serve as an effective tool for
automated vulnerability detection, helping to address the
escalating challenges in software security.

ACKNOWLEDGMENT
(Sungmin Han and Hyunkyung Nam contributed equally to
this work.)

REFERENCES

[1] The OWASP IoT Top 10 Vulnerabilities and How to Mitigate Them.
Accessed: May 17, 2023. [Online]. Available: https://www.sisainfosec.
com/blogs/the-owasp-iot-top-10-vulnerabilities-and-how-to-mitigate-
them/

OWASP Internet of Things. Accessed: May 17, 2023. [Online]. Available:
https://owasp.org/www-project-internet-of-things/

[3] 1. Kabanov and S. Madnick, “Applying the lessons from the equifax
cybersecurity incident to build a better defense,” MIS Quart. Executive,
vol. 20, pp. 109-125, Aug. 2021.

Common Vulnerabilities and Exposures. Accessed: Jul. 7, 2023. [Online].
Available: https://www.cve.org/

Zero-Day Attack. Accessed: Aug. 4, 2023. [Online]. Available:
https://www.sciencedirect.com/topics/computer-science/zero-day-attack/
S. Abdelnabi, K. Krombholz, and M. Fritz, “VisualPhishNet: Zero-day
phishing website detection by visual similarity,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., Oct. 2020, pp. 1681-1698.

[71 N. Ben-Asher and C. Gonzalez, “Training for the unknown: The role
of feedback and similarity in detecting zero-day attacks,” Proc. Manuf.,
vol. 3, pp. 1088-1095, Jul. 2015.

[8] 1. V. Krsul, Software Vulnerability Analysis. West Lafayette, IN, USA:
Purdue University, 1998.

[9] B. Aloraini, M. Nagappan, D. M. German, S. Hayashi, and Y. Higo, “An
empirical study of security warnings from static application security testing
tools,” J. Syst. Softw., vol. 158, Dec. 2019, Art. no. 110427.

[10] S.M. Ghaffarian and H. R. Shahriari, ““Software vulnerability analysis and
discovery using machine-learning and data-mining techniques: A survey,”
ACM Comput. Surveys, vol. 50, no. 4, pp. 1-36, Jul. 2018.

2

—

4

[5

[6

VOLUME 12, 2024

S. Han et al.: CODE-SMASH: Source-Code Vulnerability Detection

IEEE Access

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]
[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

P. Zeng, G. Lin, L. Pan, Y. Tai, and J. Zhang, ““Software vulnerability
analysis and discovery using deep learning techniques: A survey,” IEEE
Access, vol. 8, pp. 197158-197172, 2020.

S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric
discriminatively, with application to face verification,” in Proc. IEEE Com-
put. Soc. Conf. Comput. Vis. Pattern Recognit., Aug. 2005, pp. 539-546.
G. Koch, R. Zemel, and R. Salakhutdinov, ‘“‘Siamese neural networks for
one-shot image recognition,” in Proc. ICML Deep Learning Workshop,
2015, pp. 1-28.

J.-Y. Jiang, M. Zhang, C. Li, M. Bendersky, N. Golbandi, and M. Najork,
“Semantic text matching for long-form documents,” in Proc. World Wide
Web Conf., 2019, pp. 795-806.

O. Ferschke, I. Gurevych, and M. Rittberger, “Flawfinder: A modular
system for predicting quality flaws in wikipedia,” in Proc. CLEF Online
Work. Notes/Labs/Workshop, 2012, pp. 1-10.

Rough Auditing Tool for Security (RATS). Accessed: Nov. 9, 2023.
[Online]. Available: https://code.google.com/archive/p/rough-auditing-
tool-for-security/

(2023). Shift Everywhere With the Leading Cloud-Native Appsec Platform.
[Online]. Available: https://www.checkmarx.com/

(2020). Fortify Software Security Center. [Online]. Available:
https://www.microfocus.com/en-us/solutions/application-security

(2020). Sonarqube. [Online]. Available: https://www.sonarqube.org
Z.Li,D.Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “SySeVR: A framework
for using deep learning to detect software vulnerabilities,” IEEE Trans.
Dependable Secure Comput., vol. 19, no. 4, pp. 2244-2258, Jul. 2022.

R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir,
P. Ellingwood, and M. McConley, ‘“‘Automated vulnerability detection in
source code using deep representation learning,” in Proc. 17th IEEE Int.
Conf. Mach. Learn. Appl., 2018, pp. 757-762.

F. Wu, J. Wang, J. Liu, and W. Wang, ““Vulnerability detection with deep
learning,” in Proc. 3rd IEEE Int. Conf. Comput. Commun. (ICCC), 2017,
pp. 1298-1302.

Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective
vulnerability identification by learning comprehensive program semantics
via graph neural networks,” in Proc. Adv. Neural Inf. Process. Syst.,vol. 32,
2019, pp. 1-28.

X. Cheng, H. Wang, J. Hua, G. Xu, and Y. Sui, “DeepWukong: Statically
detecting software vulnerabilities using deep graph neural network,” ACM
Trans. Softw. Eng. Methodol., vol. 30, no. 3, pp. 1-33, Apr. 2021.

M. Gu, H. Feng, H. Sun, P. Liu, Q. Yue, J. Hu, C. Cao, and Y. Zhang,
“Hierarchical attention network for interpretable and fine-grained vulnera-
bility detection,” in Proc. IEEE Conf. Comput. Commun. Workshops, 2022,
pp. 1-6.

S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “ZEUS: Analyzing safety of
smart contracts,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2018, pp. 1-28.
(2023). SARD. [Online]. Available: https://samate.nist.gov/SARD/
(2023). SySeVR. [Online]. Available: https://github.com/SySeVR/SySeVR
D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” 2014, arXiv:1409.0473.

C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation of
code clone detection techniques and tools: A qualitative approach,” Sci.
Comput. Program., vol. 74, no. 7, pp. 470-495, May 2009.

S. Livieri, Y. Higo, M. Matushita, and K. Inoue, “Very-large scale code
clone analysis and visualization of open source programs using distributed
CCFinder: D-CCFinder,” in Proc. 29th Int. Conf. Softw. Eng. (ICSE),
May 2007, pp. 106-115.

D. Rattan, R. Bhatia, and M. Singh, “Software clone detection: A
systematic review,” Inf. Softw. Technol., vol. 55, no. 7, pp. 1165-1199,
Jul. 2013.

M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning
code fragments for code clone detection,” in Proc. 31st IEEE/ACM Int.
Conf. Automated Softw. Eng. (ASE), Sep. 2016, pp. 87-98.

C. K. Roy and J. R. Cordy, “A survey on software clone detection
research,” Queen’s School Comput. TR, vol. 541, no. 115, pp. 64-68, 2007.
S. Yang, Z. Xu, Y. Xiao, Z. Lang, W. Tang, Y. Liu, Z. Shi, H. Li, and
L. Sun, “Towards practical binary code similarity detection: Vulnerability
verification via patch semantic analysis,” ACM Trans. Softw. Eng.
Methodol., vol. 32, no. 6, pp. 1-29, Nov. 2023.

Z.Li,D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu, ““Vulpecker: An automated
vulnerability detection system based on code similarity analysis,” in Proc.
32nd Annu. Conf. Comput. Secur. Appl., 2016, pp. 201-213.

VOLUME 12, 2024

(37]

(38]

(391

[40]

[41]

[42]

[43]

[44]

(45]

(46]

(47]

(48]

[49]

[50]

Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli, “Graph matching
networks for learning the similarity of graph structured objects,” in Proc.
Int. Conf. Mach. Learn., 2019, pp. 3835-3845.

H. Sun, L. Cui, L. Li, Z. Ding, Z. Hao, J. Cui, and P. Liu, “VDSimilar:
Vulnerability detection based on code similarity of vulnerabilities and
patches,” Comput. Secur., vol. 110, Nov. 2021, Art. no. 102417.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” 2013, arXiv:1301.3781.

U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “Code2vec: Learning
distributed representations of code,” Proc. ACM Program. Lang., vol. 3,
no. POPL, pp. 1-29, Jan. 2019.

M. Pradel and K. Sen, “DeepBugs: A learning approach to name-based bug
detection,” Proc. ACM Program. Lang., vol. 2, no. 1, pp. 1-25, Oct. 2018.
P. Neculoiu, M. Versteegh, and M. Rotaru, “Learning text similarity with
Siamese recurrent networks,” in Proc. 1st Workshop Represent. Learn.
NLP, 2016, pp. 148-157.

W. Chen, R. Guo, G. Wang, L. Zhang, J. Qiu, S. Su, Y. Liu, G. Xu, and
H. Chen, “Smart contract vulnerability detection model based on Siamese
network,” in Proc. Int. Conf. Smart Comput. Commun., 2022, pp. 639-648.
H. Hindy, C. Tachtatzis, R. Atkinson, E. Bayne, and X. Bellekens,
“Developing a Siamese network for intrusion detection systems,” in Proc.
1st Workshop Mach. Learn. Syst., Apr. 2021, pp. 120-126.

D. Binkley, M. Davis, D. Lawrie, and C. Morrell, “To camelcase or
underscore,” in Proc. IEEE 17th Int. Conf. Program Comprehension,
May 2009, pp. 158-167.

W. Uddin Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “A
transformer-based approach for source code summarization,” 2020,
arXiv:2005.00653.

Y. Li, S. Wang, and T. N. Nguyen, ‘““Vulnerability detection with fine-
grained interpretations,” in Proc. 29th ACM Joint Meeting Eur. Softw. Eng.
Conf. Symp. Found. Softw. Eng., Aug. 2021, pp. 292-303.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ““Distributed
representations of words and phrases and their compositionality,” in Proc.
Adv. Neural Inf. Process. Syst., vol. 26, 2013, pp. 1-28.

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, ‘“Learning
deep features for discriminative localization,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2921-2929.

S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning based
vulnerability detection: Are we there yet?” IEEE Trans. Softw. Eng.,
vol. 48, no. 9, pp. 3280-3296, Sep. 2022.

SUNGMIN HAN received the B.S. degree in
computer engineering from Kwangwoon Uni-
versity, Seoul, South Korea, in 2021. He is
currently pursuing the Ph.D. degree with the
School of Cybersecurity, Korea University. His
main research interests include trustworthy Al,
including eXplainable AI, model stealing attack
and defense, adversarial robustness, and backdoor
robustness.

HYUNKYUNG NAM received the B.S. degree in
information and communication engineering from
Inha University, South Korea, in 2018. She is
currently pursuing the M.S. degree with the School
of Cybersecurity, Korea University, South Korea.
She is doing research on vulnerability detection
and cybersecurity risk management.

102503

IEEE Access

S. Han et al.: CODE-SMASH: Source-Code Vulnerability Detection

102504

JAESIK KANG received the B.S. and master’s
degrees in computer engineering from Chungnam
National University, South Korea, in 2015 and
2020, respectively. Since July 2022, he has been
affiliated with LIG Nexl, a leading defense
industry in South Korea, as a Researcher for cyber
security. His research interests include Al, cyber
security, and software engineering.

KWANGSOO KIM received the B.S. degree in
information and computer engineering and the
Ph.D. degree in computer engineering from Ajou
University, Republic of Korea, in 2009 and 2017,
respectively. Since January 2017, he has been affil-
iated with LIG Nexl, a leading defense industry
in South Korea, as a Researcher for cyber security.
His research interests include network security and
cyber warfare, especially cyber training systems.

SEUNGJAE CHO received the M.S. degree
in modeling and simulation engineering from
Hannam University, Republic of Korea, in 2011.
Since May 2001, he has been affiliated with LIG
Nexl, a leading defense industry in South Korea,
as a Researcher for cyber security. His research
interests include network security and system
engineering.

SANGKYUN LEE received the B.S. and M.S.
degrees in computer science from Seoul National
University, Seoul, South Korea, in 2003 and
2005, respectively, and the M.S. and Ph.D.
degrees in computer science from the University
of Wisconsin-Madison, Madison, WI, USA, in
2008 and 2011, respectively.

From 2011 to 2014, he was a Postdoctoral
Fellow with the Collaborative Research Center
SFB876, TU Dortmund University, Germany, and
from 2015 to 2016, he was the Project Leader of the Collaborative
Research Center SFB876, leading the C1 Division. From 2017 to 2019,
he was an Assistant Professor with the Division of Computer Science,
College of Computing, Hanyang University ERICA, Ansan-si, South Korea.
From 2020 to 2021, he was an Assistant Professor with the School of
Cybersecurity, Korea University, Seoul, and since 2022, he has been affiliated
as an Associate Professor with Korea University. His main research interests
include trustworthy A, model compression, and Al for security.

VOLUME 12, 2024

