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ABSTRACT Implementing information technology in production has triggered an increase in Industry 4.0.
Owing to this technological advancement, manufacturing tools that can communicate with each other
through the Internet of Things are now able to collect real-time data. Under dynamic production condi-
tions, real-time information can enhance production control and supply chain efficiency. To optimize the
production process, the food industry must utilize new technologies and the Internet of Things (IoT) to
reduce costs, increase productivity, and eliminate waste. This is particularly true with the growing trend
in this area. The study created and implemented a manufacturing production planning system that utilized
Internet of Things technology, with specialized equipment used in dairy factory operations as the case study.
This system collects information on the dairy production process, including material and product inventory,
in real-time on Internet of Things devices, then analyzes it with the help of a neural network, and predicts the
demand for the next 3 days. The dynamic schedule optimization, optimal timing of milk production, product
quantity, and raw materials are determined using two heuristic algorithm methods. Additionally, there are
multiple algorithms available for further processing. The optimization results indicate that implementing
dynamic scheduling via the Internet of Things can mitigate uncertainty and boost income by 10 to 15%,
profit by 13 to 18%, and job shop-level productivity by 13%.

INDEX TERMS Food supply chain, Internet of Things, dynamic scheduling, heuristic algorithms, dairy
products, uncertainty.

I. INTRODUCTION
The increasing demand and complexity of expectations along
with changes in the competitive environment of the market
have led organizations to optimize the supply chain to survive
in the market, gain a greater share of product sales in global
markets, and respond quickly to the needs of consumers in the
shortest time, with the lowest cost and high quality [1]. There-
fore, the supply chain must be closely monitored, planned,
and managed across all levels, from raw material suppliers
to customer distribution. The management of supply chains
involves the planning, implementation, and monitoring of all
operations related to production storage and distribution to
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customers [2]. The supply chain is primarily concerned with
the integration of operations and information/material flows
across all supply chains to provide an organization with a
long-term competitive advantage [3].
In the 1970s, supply chain management, and production

planning methods became prevalent for food chain integra-
tion. This was largely due to changes in how supply chains
are managed, which affect demand at each end of the supply
chain. Companies such as Walmart and McDonald’s have
improved the efficiency and reduced costs of their supply
chain by using production scheduling optimization meth-
ods [4], [5].

Chen et al. [6] applied the IOT to improve transportation
and network security. Alfian et al. [7] aimed to improve the
efficiency of a perishable food tracking system. Lee et al. [8]
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improved the ability of farmers, researchers, and government
officials to analyze current conditions and predict future
yields and the correlation of agricultural statistical data in
their study of IoT-based production systems. Zhang et al. [9]
introduced integrated production planning and warehousing
using Internet of Things technology. Tangour et al. [10] pro-
posed the use of IoT for future research after agricultural food
planning. Research by Liu [11] applied the Internet of Things
to predict the failure rate.

Several investigations have been carried out to decrease the
exclusion of food resources, such as Hong et al. [12] Seoul
researchers presented a food management system with Inter-
net of Things technology, resulting in improved efficiency
and effectiveness. The supply chain’s management chal-
lenges are particularly challenging when dealing with food
that contains perishable and short-lived products. Perishable
goods must be traceable due to the challenges of temperature
control, storage conditions, production methods, and raw
materials. Therefore, effective supply chain management of
short-lived products, especially food, is vital [13], [14].
This study aimed to make the simulation more realistic

by incorporating dynamic timing instead of regular tim-
ing. It reduces demand uncertainty by making modeling as
close to the real world as possible by analyzing real-time
data to forecast demand using a neural network. It also
heuristically uses different approaches to implement dynamic
timing so that the model can grow. Then, we extracted the
Gantt chart of the schedule and machines for the imple-
mented model with the help of a case study, the type and
volume of the manufactured products daily, and we investi-
gated the effect of the Internet of Things on the parameters
by comparing the dynamic scheduling and the traditional
method.

The rest of the paper is structured as follows: Section II
reviews related work and points out our idea. Section III
introduces the algorithm and its properties in detail. The
experimental Framework and results analysis are presented
in Sections IV and V respectively and related discussions
are proposed in Section VI. Finally, Section VII provides a
general conclusion.

II. LITERATURE REVIEW
The concept of food supply chain management has been
considered seriously since 1983 when J. Hertz published an
article entitled ‘‘Introduction to Supply ChainManagement,’’
in which he explored the field to examine the intricacies
of food supply, including their purchase, storage, and dis-
tribution [15]. In the following years, many researches were
conducted in the field of supply chains, especially in the field
of food.

Today, there is great pressure on the food supply chain
to improve its revenue and overall sustainability and effi-
ciency [16]. The Internet of Things technology has notably
enhanced the food supply chain.

The global population is set to reach nine billion by 2050,
resulting in significant changes to the world and increasing

competition for the food chain. However, the development of
‘‘Industry 4’’ and Internet of Things technology may provide
promising solutions [17].
One of the most important achievements of Industry 4.0 is

the Internet of Things. The Internet of Things is defined as an
information infrastructure in the world that connects phys-
ical and virtual objects with the help of communication and
information technologies; It transforms and enables advanced
services [18].

The Internet of Things in the food supply chain is designed
to easily connect machines, equipment, products, and other
items in a network. Therefore, an IoT architecture is required
for integrated data collection and secure transmission for
further analysis [1].
By connecting vehicles to an internet network, the Internet

of Things can be utilized in food transportation to provide pre-
cise monitoring, management for environmental conditions,
forecasting needs (such as pest control measures), optimiza-
tion of routes, and overall security. This technology helps
to reduce food waste, as well as minimize downtime and
delays. This strategy offers additional advantages such as
enhanced supply chain efficiency, cost reduction, and better
fuel economy.

Lacey et al. [19] studied the Internet of Things applications
in transportation and logistics. This study outlined ‘‘differ-
ent uses of the Internet for supply and demand have driven
transportation and logistics: machine-to-machine communi-
cation, data collection, cargo tracking/tracing along routes
with transportation cost reduction’’.

One of the reliable papers in the field of the Internet of
Things and the use of optimization algorithms to show its
effectiveness in the food industry is the research conducted
by Zhang et al. [20]. In the stage of distribution and trans-
portation and route improvement, Li et al. [21] proposed a
tracking and follow-up system for the food supply chain
of ready-to-eat packaged food products using the Inter-
net of Things. Moudoud et al. [22] utilized the Internet of
Things to introduce a blockchain architecture, which was
intended to facilitate the implementation of ‘track and trace’
in the food supply chain’s transportation and delivery sector.
Tsang et al. [23] presented a food product tracking system
based on blockchain and the Internet of Things using fuzzy
logic for product life, which manages tracking operation and
shelf life of perishable products. Current food production
control systems are lengthy and complex and face increasing
safety risks and constant pressure to produce high-quality
and safe food products. All actors in food supply chain
systems contribute to the provision of food safety informa-
tion, which can lead to unforeseen risks due to the sharing
of incorrect information or delays [24]. In the study by
Oluyisola et al. [25], the concept of planning and intelligent
control of production, its use, and its sustainability con-
sequences are introduced in an experimental and research
way. Rahmani et al. [26] provided a conceptual framework
for intelligent manufacturing and production control plan-
ning, which is related to the characteristics of the planning
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environment and the need for smart manufacturing planning
and control, in the review written by Adelke et al. [27] exam-
ined more than 44 research articles and critically appraised
significant accomplishments and outcomes. In this regard,
the research conducted by Liu [11] utilized the Internet of
Things to predict the failure rate. Based on this research, it has
been demonstrated that IoT technology and neural network
prediction can accurately identify errors or malfunctions in
Food Machinery equipment. There are many studies in the
field of reducing the wastage of food resources, such as
Gontarz et al. [28], which examined the types of resource
consumption monitoring systems, methods of measuring
energy and material consumption, and criteria for evaluating
the efficiency of resource consumption monitoring systems.

The research of Garcia-Garcia et al. [29] discussed food
waste in developing and developed countries. In this paper,
a framework for improving the efficiency of food waste
management is presented. Also, Shrouf and Miragliotta [30]
represented the Internet of Things for improving energy
management in the food industry and production.Using the
Internet of Things to collect data is also very practical in Data
mining. For example, for the issue of saving and food security,
the research by Ji Weng et al. [31] discussed how using data
mining in the sustainable food supply chain, it is possible to
predict possible risks related to food safety.

Jagtap and Rahimifard [32] showed that a digital food
tracking system based on the Internet of Things in a food
factory can reduce food waste by 60.7%. In this study, real-
time data collection systems were used to collect data related
to energy consumption in the food production industry.
Alfian et al. [33] did valuable research in this field. This
research is about a remote tracking system based on radio fre-
quency identification technology, wireless sensor networks,
and data mining to track food products. Regarding food waste
as one of the most important issues in this field, a review
compiled by Chauhan et al. [34] framework examined factors
and challenges related to food loss and waste in the supply
chain. Maintaining and managing quality food along with
warnings about food conditions is the most important aspect
of achieving sustainability in the food supply chain [24].
In this regard, Stewart et al. realized with the help of sen-
sors from the Internet of Things, the data on temperature,
humidity, and emitted gases are collected and transferred to
the cloud platform. This study suggests that food quality can
be improved through an IoT-based system.

Fertility and raw materials are essential components for
the food industry’s storage. The implementation of Internet
of Things (IoT) technology in this sector enables companies
to ensure optimal environmental conditions for storing both
raw materials and finished goods.

Chen et al.’s research [35] deals with managing the envi-
ronmental conditions of products with the help of the Internet
of Things. The advantages and disadvantages of using radio
frequency identification (RFID) technology and wireless
sensors in the food product supply chain are examined.
Additionally, solutions to enhance supply chain performance

are presented. Yan et al. [36] designed a system to control the
safety and quality of agricultural products during storage and
transportation. Additionally, they introduced an application
model of the Internet of Things (IoT) specifically for the agri-
culture supply chain. Jagtap and Rahimifard [37] examined
the use of Internet of Things technology in improving the
efficiency of resources in the supply chain, such as manag-
ing food energy and material consumption. In this research,
the key concepts of the Internet of Things and its applica-
tions in different parts of the food supply chain, including
agriculture, transportation, storage, and distribution, have
been investigated. Also, Barandun et al. [38] indicated that in
their investigation, cellulose fibers were utilized for detect-
ing gases that can dissolve in water. A novel approach has
been proposed in this paper to manufacture a gas sensor
using ribbon electrodes and cellulose fibers at essentially
zero expense. Golinska-Dawson et al. [39] investigate a pric-
ing model for demand and food chain quality control using
Internet of Things technology. This paper presents a food
price and quality control algorithm based on IoT sensor
data.

One of the most up-to-date research conducted in the field
of correct maintenance and increasing quality in the food sup-
ply chain is the use of blockchain, From an IoT perspective,
Kayikci et al. [40] explore the potential of blockchain tech-
nology in the food chain. In this study, the Internet of Things
is used as one of the main tools to collect and transmit data
related to the food supply chain, and its role in blockchain
implementation is investigated. Skilton and Robinson [41]
considered traceability and transparency in the supply chain
to be completely related because the result of having a system
with traceability is to create transparency. In their research,
traceability is considered a process that identifies and val-
idates the various components and timing of events along
the supply chain. Abad et al. [42] in research in the field of
fish to validate a radio frequency identification smart tag for
real-time tracking and cold chain monitoring in food pro-
grams have been developed. L. Boquete et al. [43] designed,
developed, and tested an IoT-based system to improve logis-
tics during the transportation, storage, and sale of wine bottles
by tracking the temperature in different parts of the chain.
They have used a system called ZigBee to analyze and display
data.

In the field of traceability in transportation,
Omar Farooq et al. [44] discussed the problems in the
agricultural food supply chain.

Probability can be significantly enhanced by implementing
predictive methods that utilize the real-time data generated by
the Internet of Things and supply chain transparency. One of
the researches that have shown the importance of this issue
is the research of Alfian et al. [45]. This paper introduces
a monitoring and tracking system for the food supply chain
using Internet of Things technology.

In the survey conducted by O. Saeed et al. [46], the impor-
tance of the Internet of Things and its successful applications
are comprehensively discussed by creating transparency in
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various stages of agriculture along with challenges and
solutions.

The review table 1 was used to evaluate studies that utilized
experimental methods, hardware and software, and less math-
ematical models for optimizing the Internet of Things’ input
data. Research comparable to the current model has neglected
to consider demand uncertainty, which utilizes food industry
demand forecasts to make optimal operational decisions and
increase production flexibility. From another point of view,
in the entire food supply chain, the Internet of Things is gen-
erally used in the discussion of reducing waste and managing
environmental conditions to maintain product quality, proper
storage and transportation of the product, and fewer research
discuss transparency in the supply chain and operational
decision-making in production have paid [42]. Also, in the
field of food production, there are studies for themanagement
of production planning and production scheduling, but there
is a gap in the application of smart internet in this field and
its effects. Therefore, there has been very little attention paid
to the integrated network that can Utilize the benefits of the
Internet of Things (IoT) and machine learning to optimize
production.

Therefore, to cover this literature gap, this research uses the
Internet of Things to create traceability and transparency of
production, and at the same time, with the help of a machine
learning system, it analyzes the received data to design the
most optimal planning and dynamic scheduling for produc-
tion through simulation.

III. THE PROPOSED METHOD
Job Shop through IoT was utilized in this study to model
the dynamic planning of food industry production using an
integer optimization. This model collects the data of the
inventory of raw materials and products with the help of
the Internet of Things as real-time data and analyzes these
data with the help of machine learning through the neu-
ral network method to predict the required demand and
schedule the production. This model is then solved using
two heuristic methods and its results are compared. This
schedule is dynamic; it uses a neural network to predict
demand based on real-time data. This allows for updates
as needed and demonstrates a high response capability to
demand uncertainty.

The overall procedure of the algorithm is shown in
Figure 1.

FIGURE 1. Model solution structure.

TABLE 1. Summary of recent research papers.
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A. FIRST STEP: PREDICTING DEMAND AS MODEL INPUT
USING A NEURAL NETWORK
In this field, artificial neural networks are an important
type of machine learning model. As a result of analyzing
the input data, the neural network logically determines the
relationship between the data, which can be complex and non-
linear. After finding the connection, it performs simulation
work for similar possible cases. This network is adjusted by
comparing the output with the target, ensuring they closely
match [67]. Adaptability and the ability to detect complex
patterns in data are among the advantages of neural networks,
and neural networks are used in this research to predict
demand for products. At first, the information for one year
was gained by reporting the special sales scale. Since data
preparation can be effective for the better performance of
the model, the statistical dispersion method has been used
for data preparation and to identify outliers. This method
assumes that the distribution of the data of the variable
X is a distribution with mean X̄ according to Eq.(1) and
standard deviation σ according to Eq.(2). If a data is out
of range (σ3-X̄ σ 3 +X̄ ), it will be considered as outlier
data.

X̄ =

∑i=n
i=1 Xi
n

(1)

σ =

√√√√ 1
n− 1

i=n∑
i=1

(X i − X)2 (2)

The best neural network method is chosen by comparing the
models with the mean squared error (MSE) criteria according
to Eq.(3).

MSE =

n∑
i=1

(
yi −

(
y∧i

))2 (3)

In this Eq. (3), N is the number of samples, yi is the target
value and y∧i is the value predicted by the model for the ith
sample.

Approximation in regression refers to a set of techniques
and algorithms that try to find an approximate mathematical
function using data. In nonlinear approximation methods,
attempts are made to build nonlinear models with nonlin-
ear functions (such as power, logarithmic, polynomial, etc.).
A better estimation of the relationship between the dependent
and independent variables can be achieved by making this
adjustment. These methods are selected and applied accord-
ing to the type of data and the specific problem. Due to the
non-linearity of the values in this research, a function should
be used to determine the expected time of each device for the
specified raw materials and the volume of products. Approx-
imate using the closest values to the input data. For this
purpose, we must choose a function that is used both during
extrapolation (extrapolation means predicting the values of
the function at points outside the range of the available data)
and interpolation (interpolation means predicting the values
of a function at the data points located in the range of the

function and are not available in the original data) have an
acceptable performance. By testing the performance of the
desired function for approximation during extrapolation and
interpolation according to the mentioned points, the expo-
nential function according to Eq. (4) is considered for this
problem:

Y = c + a.xb (4)

X represents the initial volume of milk for each machine and
a, b, and c are estimation coefficients that will be calculated
by the least square method to determine the time required for
each machine for different amounts of milk and in the next
step for the volume of produced products.

The least squares method is a crucial and widely used
technique for parameter estimation in mathematical mod-
els. It aims to match the model with observed data by
finding parameters that minimize the error function and
represent the discrepancy between predictions and actual
observations.

E(a b c) =

n∑
j=1

(
yj −

(
a · xbj + c

))2
(5)

E(a b c) =

n∑
j=1

(
yj −

(
a · xbj + c

))2
(6)

Eq. (5) and Eq. (6) are used to estimate the coefficients of
devices and the volume of production products, respectively.
Based on these equations, the time required for each device
for varying amounts is calculated, and the final production
volume is determined.

B. SECOND STEP: MATHEMATICAL MODELING
This section proposes the mathematical model, the assump-
tions, indices, and parameters of the model are defined below.

The implementation of this model in the production job
shop will also be according to Figure 2.
The assumptions of the model are:

• The operation is typically a job shop.
• Production machines have a certain maximum and min-
imum capacity.

• Apenalty for perishability has been included for produc-
ing over-demand.

• Shortage is not allowed and demand should be covered.
• Raw materials are purchased in proportion to demand.
• First, the inventory is sold, and then we sell the manu-
factured products. (First in first out (FIFO))

• The time required to set up the machines has been
accounted for.

• When product manufacturing starts, stopping is not
allowed, and the process must be completed.

• The production time horizon is 3 days.

The objective function of this problem, which seeks to max-
imize profits for the whole system, is given in Eq. (7)
after applying the neural network algorithm to determine the
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demand as the input to the mathematical model:

max g =

∑
i∈I

(
∑
n∈N

xni × P i)

 −
∑
i∈I

∑
n∈N

xni × cpi


−

∑
j∈J

∑
n∈N

dmn
j × cmj

 −
∑
n∈N

DwnαCw

−

∑
i∈I

zni ·
(
xni − d i

)
·
M
Ed i

−C (7)

Eq. (7) is the target function of the problem, which seeks
to maximize the profit of the entire system and comprises
the total revenue from the sale of products minus the rel-
evant costs. These costs are, respectively, the direct costs
of product manufacture including raw materials, the costs
of the use of the machine per minute, which include the
cost of depreciation and maintenance, the cost of work-
force and perishability, which is considered linearly as a
lifetime of each product, in case of excess cost produc-
tion as penalty. The longer the lifetime, the lower the
penalty.

xni ⩾ dni + hi ∀i ∈ I (8)

T nj ⩽ tmax ∀j ∈ P (9)

N n
j ⩾ 1 ∀j ∈ P (10)

N n
J ⩽ R ∀j = P (11)

Eq. (8) is for the minimum production to cover the demand.
Eq. (9) is the limitation of the maximum duration of
the machine involvement, which can be limited to sev-
eral machines and serial cases. Eq. (10) represents the
series of machines and each serial machine simultane-
ously can produce only one product. Eq. (11) is about
the machines that have more than one inventory and
are parallel; similar machines, according to their num-
ber, can be involved in manufacturing several products
simultaneously.

cminj ⩽ caj ⩽ cmaxj (12)

hnk =

∑
i∈I

(
dni − hni

)
αki (13)

Eq. (12) reveals the limitation of the capacity of the
machines. Eq. (13) calculates the required inventory of raw
materials every day. The required inventory of each prod-
uct is subtracted from the remaining inventory to get the
amount of the required product. Then it is multiplied by
the raw material conversion rate to determine the needed
material.

C. THIRD STEP: METHOD OF HEURISTIC SOLUTIONS
This research has implemented the optimization by genetic
and particle swarming algorithms in two different ways,
which we will explain in the following, and discuss its
performance after comparing the optimization of these two
methods.

FIGURE 2. Operational implementation.

TABLE 2. Notations table.

1) PARTICLE SWARM OPTIMIZATION ALGORITHM
In the particle swarm algorithm, optimization is performed
by a group of individuals (particles) that cooperate and share
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their information to reach an optimal solution. The opti-
mization steps in the algorithm are as follows, as shown
in Figure (3):

• Initialization: The initial position and speed of the parti-
cles are determined randomly.

• Movement of particles: each particle moves to a new
location according to its current location and speed.

• Information exchange: particles share their information
with their neighbors and the best speed and location are
updated.

• Location and velocity update: According to shared infor-
mation and own experiences, the location and velocity of
each particle are updated.

• Evaluation: The performance of each particle is evalu-
ated to reach the optimal solution.

• Stopping criteria: The process continues with iteration
until it reaches a certain number of iterations or the
specified stopping conditions are met [73] and the best
position is introduced as the output. The condition of
stopping the problem of this research is that the relative
change in the best objective function g compared to the
last iterations is less than 10−6.

FIGURE 3. The optimization steps in the PSO algorithm.

The speed of the particle represents its future location change
in the particle swarm algorithm. Therefore, when a particle
moves through the optimization space, its velocity determines
how fast it moves in a particular direction. This value is
updated in each iteration of the search, according to Eq. (14).
In this regard, t represents the repetition number and C vari-
ables are learning factors or acceleration coefficients. Most
sources consider C1 and C2 equal to 2 [70]. r is a uniform
random number in the interval (0, 1) and the parameter w
represents the inertia weight, which takes an initial value in
the interval (0, 1) [71] Inertia weight is the effect of the fast
speeds. It controls the current speed, which in this research

decreases linearly from 0.8 to 0.3 during the steps of the
algorithm.

The term pi represents the best position that the particle
has experienced so far, often referred to as the ‘best personal
position. ‘Meanwhile, pgd is the best position that has been
achieved by the population of particles, known as the’ best
overall position.

V i (t + 1) = WV i(t) + C1r1,i(t)
(
pi(t) − X i(t)

)
+ C2r2,i(t)

(
pg(t) − X i(t)

)
(14)

X i(t + 1) = X i(t) + V i(t + 1) (15)

2) GENETIC ALGORITHM
Based on the genetic algorithm depicted in Figure 4, opti-
mization is achieved by repeating the process from generation
to generation. The chromosomes in each generation are
generated from those in the existing population, gradually
converging toward an optimal solution. To produce offspring
for subsequent generations, the algorithm selects individuals
from the current population as parents. The goal of each
generation is to surpass the previous one in performance,
which is enhanced by crossover andmutation processes. Over
successive generations, the population evolves toward an
optimal solution until a predefined stopping condition is met.

FIGURE 4. The optimization steps in the GA.

IV. EXPERIMENTAL ANALYSIS: THE FRAMEWORK
In this section, the empirical analysis framework of the
model is introduced. A case study with its description and
analytical case information is presented in section A. The
required parameters for the proposed method are discussed
in section B, and finally, the sensitivity analysis approach to
verify the significance of the results is discussed in section C.

Comparing the optimization method between the two algo-
rithms, the differences and similarities are as follows:
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• In the genetic algorithm, the population is generated
from different sizes, each of which has the role of
an individual. In the particle swarm algorithm, par-
ticles move toward optimization by interacting and
cooperating.

• In the genetic algorithm, selection and combination of
genomes (crossover) and random changes (mutation)
are used to produce a new generation. In the particle
swarm algorithm, the location and speed of particles are
changed based on current and experimental information.
In a genetic algorithm, the number of generations is
usually more, and improvement is done gradually. The
particle swarm algorithm iteratively improves solutions
until convergence to either a local or global optimum.

A. CASE STUDY
The traditional dairy production job shop in Tehran in the
southern region has been under study. This job shop manu-
factures the products after obtaining raw materials from the
cattle farm and then sells them in a store in the same area. The
products of this job shop include cream, yogurt, and dough;
a part of the milk is used to manufacture these products, and
the rest is transferred directly to the store for sale.

In this job shop, there are 5 machines, with 2 machines
available from machine No. 2. Machines 4 and 5 are desig-
nated for the cold room and hothouse, respectively, operating
in parallel and capable of accommodating multiple prod-
ucts simultaneously. The values for each set are detailed
in Table 3.

TABLE 3. Size of problems.

Table 4 specifies the result of the current depreciation of
machines in one year.

Depreciation is calculated using the most conventional
method, i.e. straight line, Eq. (16):

Depreciation =
cost − residual value

years of useful
(16)

Tables 5 and 6 list the total cost of machines and problem
parameters.

B. MODEL PARAMETERS
The obtained information is related to one year, i.e. 350 work-
ing days (15 days off due to Nowruz Tasua and Ashura days)
with a special sales scale report.

TABLE 4. Depreciation of machines.

TABLE 5. Total cost of machines per minute.

TABLE 6. Parameter values.

In neural networks, careful consideration of the number of
layers and the architectural design is particularly crucial. The
arrangement and complexity of layers play a significant role
in determining the network’s ability to learn and generalize
from data. To determine the exact number of layers in the
neural network, there is no pre-defined and specific structure,
and only a series of general rules can be considered, such
as the more complex the problems, the higher the number of
layers. Also, considering the optimal output and the fact that
we stop when the optimal solution is obtained with smaller
layer numbers and less time, 45 different layers were tested
and, finally, the number of hidden layers for this problem was
considered 15.

Also, there are different types of architectures for neu-
ral networks. This research investigated three types of
feed-forward networks. For network training, three training
methods named ‘‘Levenberg-Marquardt train (Train LM)’’,
‘‘Train GDX’’ and ‘‘Train BR’’ have been investigated.
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The data in neural network testing is divided as follows:
80% for training, 10% for validation, and 10% for testing.

V. EXPERIMENTAL ANALYSIS: THE RESULTS
AND DISCUSSIONS
In this section, the presentation and analysis of the experi-
mental results of the proposed method are discussed. As the
case study has been introduced in the previous sections, the
presented method has been implemented to supply the food
chain of the case study. The results of the comparison of
neural network architecture approaches to choose the best
architecture, the comparison of heuristic approaches to deter-
mine which method is the most effective, the results of the
required production schedule using the proposedmethod, and
the comparison with the traditional method, rawmaterial sup-
ply diagrams using the proposed method, effective analysis
of management decisions, and finally sensitivity analyses are
presented.

A. NEURAL NETWORK RESULTS
There are different types of architectures for the neural
network. In this research, three types of feed-forward net,
cascade forward net, and fit net were investigated.

Among them, the feed-forward method showed the best
performance and was chosen as the prediction method of
this research. One of the important principles in feed-forward
neural networks is that there is no connection between the
layers, and the information is not fed backward or returned
to the previous layers. Also, Loevenberg-Marquardt training
has been selected for training networks and used in net-
work training. The performance of this network is shown
in Figure 4, which received the data for the past 5 days and
will be estimated for the next 3 days.

As shown in Figure 5, the structure of this network is
clear, considering the existence of 4 products and having
the data of the last 5 days, we have 20 input numbers for
the network. The output will be 12 products for 3 days and
4 products. The number of hidden layers of the network is
15 and the last layer is linear. The number of repetitions of
the implementation is 12.

Figures 6 - 8 show the results of neural network
implementation.

FIGURE 5. The structure of the neural network.

As Figure 6. shows, this network after 12 repetitions is
finally stopped by the last factor with six rounds of non-
improvement. Therefore, the optimal value is determined in

the 6th round and the value of 89.27 is gained for its perfor-
mance. If the curve of the test data demonstrates a substantial
increase before that of the validation data, it may suggest the
presence of overfitting. Figure 6. reveals that the validation
and test data are close to each other and its performance is
appropriate.

FIGURE 6. The mean squares in different iterations.

The next step in network validation is to create a regression
plot as shown in Figure 7. that displays the relationship
between network outputs and targets. Three graphs illus-
trate the training, validation, and testing datasets, with the
fourth graph portraying the comprehensive performance. The
dashed line in each graph represents the perfect result when
the outputs are fully on target. The red line represents the best
linear regression fit between outputs and targets.

If everything is done correctly, the outputs and goals of
the network remain constant throughout the training period;
however, in practice, this does not always occur. Therefore,
the closer the correlation coefficient (R) number is to 1, the
better the model performs. A correlation coefficient of one
signifies a perfectly linear relationship between the output
and the target variables, while a value approaching zero indi-
cates the absence of such a linear relationship.

In this researchmodel, the test data, training, and validation
sets demonstrate a high degree of alignment, as indicated by
the correlation coefficient of the entire model, which is close
to one, specifically at 0.97. Ultimately, Figure 8 displays the
error graph, delineating the distribution of errors between
target and predicted values post-training of a neural net-
work. These errors, ranging from −27.13 to +28.5, represent
deviations between predicted and target values, potentially
including negative values. Notably, the error closest to zero
is −1.45, signifying excellent model performance. Follow-
ing closely, the second most common error value near zero
is 2.8. The orange line signifies zero error instances, posi-
tioned amidst the highest frequency of errors, reaffirming the
model’s efficacy in this scenario.

B. COMPARATIVE RESULTS OF PARTICLE SWARM
ALGORITHM AND GENETICS
Considering the problem characteristics and data type, both
genetic algorithms and particle swarms can discover optimal
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FIGURE 7. Neural network regression diagram.

FIGURE 8. The neural network error diagram.

or near-optimal solutions. The convergence rate of optimiza-
tion algorithms reflects the average speed and number of
iterations required to reach an optimal or improved solu-
tion. Essentially, convergence speed indicates how rapidly
the algorithm approaches optimization, or in simpler terms,
reduces the distance between the current and the optimal
solution.

Figures 9 and 10 demonstrate that the particle swarm
method converges faster than the genetic algorithm and
exhibits a higher convergence rate.

C. PRODUCTION SCHEDULING RESULTS
The optimal values represent the products needed for the
upcoming three days, considering demand and production
capacity. Determined by current inventory levels and prod-
uct perishability, these values aim to fulfill demand, albeit
not necessarily reaching parity. Figure 11. shows the pro-
duction schedule for each day. This output is displayed in

FIGURE 9. The genetic algorithm convergence diagram.

FIGURE 10. The convergence diagram of particle swarm algorithm.

three modes, including heuristic algorithms and the tradi-
tional method of this job shop before using the Internet of
Things. Following that, we focus on key operational decisions
in the job shop, such as machine production scheduling,
material volume management within each machine, and the
final product output from the process.Production occurs
in 3 ways and two types. Number 1 denotes the pro-
duction of yogurt paired with cream, number 2 entails
the concurrent production of yogurt, dough, and cream,
and number 3 involves the production of dough alongside
cream. Machine No. 2 is available in two numbers and
machines 4 and 5 are parallel. The time lasts about five
days considering the longest production cycle. The pro-
duction should be started two days in advance to meet
the expected 3 days. The results displayed in Tables 7, 8,
and 9 pertain to production scheduling optimization achieved
through the genetic algorithm, particle swarm optimization,
and traditional methods, respectively. Also, the sequence and
scheduling diagram relates to three methods and is presented
in Figures 12, 13, and 14.
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TABLE 7. Production schedule by traditional production method.

TABLE 8. Production scheduling by genetic algorithm method.

FIGURE 11. 3-day production schedule of products.

D. SUPPLY OF RAW MATERIALS
Ultimately, we address the timely and optimal supply of
raw materials to maximize integration throughout the supply
chain. In this case study, focusing on milk and milk powder
as raw materials, we have determined necessary quantities
based on forecasts and current stock levels. This approach

TABLE 9. Production scheduling by particle swarm algorithm method.

empowers buyers to make informed decisions about purchase
volume while striving to maintain inventory levels closest
to the required amounts to avert shortages and minimize
wastage. Figures 15 and 16 depict these quantities sepa-
rately for three traditional methods and two optimization
algorithms.

E. MANAGERIAL INSIGHTS
We will examine the utilization of the Internet of Things
and its influence on boosting productivity from a managerial
viewpoint to identify the most efficient production method.
Consequently, we will compare and analyze profitability, rev-
enue, and production costs across different sectors using both
traditional productionmethods and the approach developed in
this model. The model’s findings suggest that income could
rise by 10 to 15%, and profit by 13 to 18%, depending on
the solving method whether the genetic algorithm or particle
swarm algorithm—is used. Notably, it’s crucial to high-
light that even if income doesn’t seem to increase initially,
the modern method will, in practice, deliver fresher prod-
ucts to customers, a factor that will contribute to long-term
income growth due to product perishability considerations.
Additionally, given the relatively constant production rate in
the traditional method, any product shortages will signifi-
cantly enhance the positive impact of the developed model
on income. Conversely, in scenarios where there is minimal
shortage of sales and surplus production in the traditional
method, the income disparity between the traditional and
developed methods will narrow.

102712 VOLUME 12, 2024



B. Javadi et al.: Application of IoT to Food Supply Chain Under Uncertainty-Case

FIGURE 12. The production scheduling by genetic algorithm method.

FIGURE 13. The production scheduling by particle swarm algorithm method.

FIGURE 14. The production scheduling by traditional production.

FIGURE 15. Raw milk powder materials for production.

From a cost perspective, the modern method demands a
larger workforce and longer production cycles comparing to
traditional methods. Traditional production, which involves
larger batches and fewer processing steps, results in shorter
overall production times. However, contemporary production
methods involve more frequent iterations and smaller, more
diverse batches, leading to shorter, more frequent production
cycles. This underscores the importance of investing more
in human resources, as it ultimately contributes to increased
profitability.

FIGURE 16. Raw materials for milk production.

The cost of the products in the traditional method is almost
constant and product cost in themodernmethod is determined
based on the predicted demand of the neural network. There-
fore, when the demand is higher than the number of products
produced in the traditional production method, the cost of
the products will be higher in the modern method, while the
cost of the products may be higher in the traditional method
when the demand is lower. Thus, it can be concluded that the
modern method enhances system productivity by providing
flexibility in production volume to better match demand.
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FIGURE 17. Separation of cost and profit.

TABLE 10. Separation of cost and profit.

This is accomplished by either reducing product costs during
surplus production in the traditional method or by averting
shortages and consequently boosting sales. In addition to the
time of use, the cost of machines also depends on the type
of machine and can be lower or higher than the traditional
method.

In Figure 17 and Table 10, the results of income, profit, and
expenses are displayed separately.

In the traditional method, a combined production approach
results in the production of all products in each production
cycle, albeit in certain proportions. As depicted in Figure 11,
this leads to a higher volume of dough, a lower volume
of yogurt, and a fixed quantity of cream being produced.
While this may not pose a problem due to the higher sales
volume of milk and dough, it is crucial to recognize that
cream and yogurt are the most profitable products based on
demand and selling price. Therefore, it may be beneficial to
occasionally reduce dough production to prioritize cream and
yogurt, thereby maximizing profitability.

Furthermore, it is possible to determine if the productivity
of the devices has changed based on the schedules, or accord-
ing to their use.

TABLE 11. Comparison of the efficiency of machines.

FIGURE 18. Comparison of workshop productivity.

FIGURE 19. Sensitivity analysis of the perishability parameter in the
particle swarm algorithm.

As Table 11 shows, both optimization methods of
genetic algorithm and particle swarm algorithm are better
than the traditional method and productivity has increased
by 10 to 13 percent.

F. SENSITIVITY ANALYSES: PERISHABILITY PARAMETERS
AND DEMAND
In this section, a sensitivity analysis of the model’s key
parameters will be conducted, specifically focusing on
demand and the penalty for perishability. By increasing sen-
sitivity, we seek to evaluate their influence on production

102714 VOLUME 12, 2024



B. Javadi et al.: Application of IoT to Food Supply Chain Under Uncertainty-Case

FIGURE 20. Sensitivity analysis of the perishability parameter in the
genetic algorithm.

FIGURE 21. Sensitivity analysis of the demand parameter in the particle
swarm algorithm.

FIGURE 22. Sensitivity analysis of the demand parameter in the genetic
algorithm.

volume and analyze the model’s sensitivity to perishability
coefficients. Considering the constraint of no shortages, pro-
duction will be increased to fully meet demand. Figure 19
demonstrates the impact of perishability on production for the
particle swarm algorithm, while Figure 20 illustrates the same
for the genetic algorithm.

The demand is considered to be 25% higher and lower
than the current state to check the effect of demand on the
volume of manufactured products. Then the production vol-
ume has been checked based on each of the demand modes.

Figures 21 and 22 are drawn for particle swarm algorithms
and genetics to measure this problem.

VI. CONCLUSION
This research seeks to achieve the best scheduling and vol-
ume of production so that it delivers fresher products to the
final customers and has the most profit for the manufacturer,
keeping in mind the perishability of the products and the full
coverage of the demand. The production schedule for each
machine and the required raw materials and manufactured
products have been compiled with a short-term time hori-
zon of 3 days. Production should commence 2 days before,
accounting for the longest production cycle. The model
should be executed after the production of each product batch
to facilitate dynamic scheduling at the workshop level. This
allows for the schedule to be updated and re-executed in the
event of any changes, which are determined by real-time data
and forecasted demand.

This model enables precise determination of raw material
usage, resulting in expedited availability and decreased fresh
raw material capital consumption. This has been achiev-
able by considering the volume of the required product,
the inventory of the warehouse, and the conversion rates
so that it can prepare the materials at the operational level
and at the right time. This model trains the neural network
with the help of the data of the store’s one-year demand
that can get the production schedule with proper perfor-
mance. Two genetic and particle swarm heuristic algorithms
have been used to solve the model; the particle swarm
algorithm provides a higher convergence speed for solving
the model.

The results demonstrate that modern job shop performance
can increase productivity by 13%. Although the particle
swarm algorithm has performed better in the convergence
rate, the genetic algorithm has performed better in increasing
productivity and has improved productivity by 3% compared
to the particle swarm.

The sensitivity analysis of the perishability parameter
shows the model has a great tendency to produce in higher
volumes and excess by reducing the effect of perishability;
The production volume decreases by increasing this coef-
ficient, and this downward trend will gradually decrease
according to the required demand coverage. The desired
model produces yogurt and cream to a high extent in different
demand states. Buttermilk and milk have quantitatively the
highest volume of demand and the longest lifespan, and
apparently, they should have a larger volume of production
as in the traditional method. However, the model is more
inclined to produce yogurt and cream. The reason is the
higher profit the cream and yogurt contain. This profit is for
cream in the first rank and for yogurt in the second according
to the volume of demand.

The supply chain for this problem is direct. A closed-loop
supply chain can be considered for the development of this
research. Thus, if a product of this job shop is not sold or
decays, it should be returned to the centers and recovered.
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