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ABSTRACT Home banking and digital payments diffusion has greatly increased in recent years. As a result,
fraud has also dramatically grown, resulting in the loss of billions of dollars worldwide every year. Therefore,
banks and financial institutions are required to offer clients increasingly effective and sophisticated services
for illegal transaction detection. Machine learning strategies are commonly employed for this crucial
application. However, classical models are not satisfactory enough in highly unbalanced classification tasks
like fraud detection. Quantum machine learning, working intrinsically in a higher dimensional computation
space thanks to superposition and entanglement, can express more complex models than its classical
counterpart and thus could provide a significant advantage in identifying potential illegal transactions. This
work aims to analyze the potential of quantum classifiers in the fraud detection context, focusing on the
Variational Quantum Circuit (VQC) model. The study has been led by exploiting a dataset based on real
transactions provided by Intesa Sanpaolo of 500000 items with 15 features. Considering the limitations of
contemporary Noisy Intermediate-Scale Quantum (NISQ) computers and quantum simulators, the dataset
has been reduced in the number of transactions and features, exploiting Principal Component Analysis
(PCA). The results obtained have been compared on equal terms with those of the most commonly employed
classical methods, such as Logistic Regression, Random Forest, XGBoost, Support Vector Machine, and
Neural Networks, obtaining a better classification quality in terms of recall. Even though this work is
preliminary, the results are encouraging and prove the quantum models’ potential in highly unbalanced
classification tasks.

INDEX TERMS Quantum machine learning, fraud detection, quantum data encoding, variational quantum
circuits, anomaly detection, anti-fraud engine, quantum computing, transaction classification, hybrid
quantum-classical computing, angle encoding, quantum neural network.

I. INTRODUCTION
The diffusion of home banking and digital payments has
grown significantly in recent years. Unfortunately, financial
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fraud increases dramatically with these, provoking billions
of dollars of annual loss worldwide [1]. Consequently,
to guarantee service quality to their clients, banks and
financial institutions actively seek methods that are even
more effective and sophisticated for identifying illegal
transactions.
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FIGURE 1. Starting from labeled financial transactions associated with fifteen features, obtained as alerts generated by the intesa sanpaolo transaction
monitoring engine during 2022, the dataset has been split — exploiting a stratification technique for maintaining the proportion between the frauds
and legal transactions — into training, validation, and test sets. Afterward, the Principal Component Analysis (PCA) technique was applied to reduce the
number of features. Then, the training dataset has been exploited for training classical models, such as XGBoost, Support Vector Machine (SVM), logistic
regression, neural networks, random forest, and quantum model, in particular, Variational Quantum Circuit (VQC). In both cases, the degrees of
freedom, like the threshold, have been optimized to maximize the prediction quality in the validation dataset. The obtained results are compared for
selecting the best model.

Machine learning (ML) is commonly employed for
tackling this challenge [2], [3], [4], [5], recognizable as a
binary classification task. However, classical models are not
always wholly satisfactory when there is a high imbalance
between the two classes. Specifically, the elements of
one class are substantially more than those of the other.
In recent decades, the attraction of quantum computing has
reached an exceptional acceleration, especially in the realm
of machine learning solutions [6], where its ability to perform
a virtual parallel exploration of the solution spaces and handle
complex models holds the promise to overcome classical
limitations.

Indeed, quantum machine learning (QML) exploits
superposition and entanglement for working inherently in a
higher dimensional space.Moreover, the capability to express
complex patterns can offer significant advantages in illegal
transaction identification tasks. For these reasons, there has
been a notable upsurge in interest in recent times regarding
exploring QML for applications in this domain [7], [8].
This article delves into a comprehensive exploration of the

potential of quantum classifiers for fraud identification,
focusing on the Variational Quantum Circuit (VQC)
model. The analysis leverages a dataset based on real trans-
actions comprising about 500000 entries provided by Intesa
Sanpaolo Bank, with fifteen identified features. To align

with the constraints of contemporary Noisy Intermediate-
Scale Quantum (NISQ) computers, which are affected
significantly by the noise that compromises the obtained
results, the quantum models have been executed on an ideal
simulator. The complexity of simulations increases expo-
nentially with the number of qubits, requiring the number
of transactions and features reduction, using the classical
Principal Component Analysis (PCA) procedure [9], for
liming the complexity.

For each reduced dataset, 400 different models are trained
and evaluated to identify the one that provides the best
performance. Moreover, a comparative analysis has been
performed, pitting the proposed quantum model against
main classical methods, e.g.,Logistic Regression,XGBoost,
Support Vector Machine, Random Forest, and Neural
Networks. On average, the quantum models exhibited a
better classification quality in terms of precision and recall,
emphasizing their potential efficacy in addressing highly
unbalanced classification tasks, especially in datasets with a
reduced number of features and elements.

Finally, the impact of noise in real quantum devices
has been evaluated by performing predictions on ibm_
brisbane real device.

The article is organized as follows. Section II presents the
fundamentals of quantum computing and quantum machine
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learning. In Section III, the proposed quantum model is
presented and detailed. Section IV presents the implemented
approach for optimizing the considered models with regard
to the threshold hyperparameter. Section V shows the results
and explains figures of merit and the validation methodology.
Finally, in Section VI, conclusions are drawn, and future
perspectives are illustrated.

II. THEORETICAL FOUNDATIONS
This section briefly presents the basis of the Quantum
Computing (QC) paradigm (Section II-A) and its application
in the Machine Learning (ML) context (Section II-B),
named Quantum Machine Learning (QML), for develop-
ing classification models more complex than their classical
counterpart. Further details about QC, ML, and QML can be
found in [10], [11], [12], and [13], respectively.

Additionally, this section presents an analysis available in
the literature about the exploitation of quantum computers for
fraud detection classification tasks.

A. QUANTUM COMPUTING
Quantum computing is an innovative computational
paradigm that leverages principles from quantum mechanics,
such as superposition and entanglement, to accelerate some
specific tasks.

The main differences between quantum and classical
computing are:

• probabilistic nature of QC in contrast to classical com-
puting that operates within a deterministic paradigm;

• quantum information cannot be copied (non-cloning
theorem);

• the fundamental unit of quantum information, the qubit,
can assume infinite possible states according to the
superposition principle;

• a quantum circuit is a time series of transformations
(gates) applied to the quantum system instead of
physically constructed in a spatial layout as in classical
circuits;

• all the quantum gates are reversible.
In the following, qubit and quantum gate concepts are
introduced.

1) QUBIT
The fundamental unit of quantum information is the qubit.
The generic state of a qubit |ψ⟩ can be expressed, according
to Dirac notation, as:

|ψ⟩ = c0 |0⟩ + c1 |1⟩ = c0

(
1
0

)
+ c1

(
0
1

)
=

(
c0
c1

)
, (1)

where |0⟩ and |1⟩ are the basis states 0 and 1, respectively,
c0 and c1 are complex number called probability amplitudes.
It is possible to notice that, as previously mentioned,

unlike classical computing, where a bit is constrained to
assume 0 or 1, a qubit, ruled by the superposition principle,
can exist in any linear combination of its basis states,
offering infinite possible states. Regardless, observing a qubit

(measure), it collapses into either of the two computational
bases, |0⟩ and |1⟩, with a probability of |c0|2 and |c1|2,
respectively. Consequently, the probability amplitudes must
satisfy the following relation:

|c0|2 + |c1|2 = 1 . (2)

2) QUANTUM CIRCUITS
In general, the state vector |ψ⟩ of N -qubit system can
be obtained by extending the single qubit representation,
through the tensor product of the state of the single qubits
constituting the system:

|ψ⟩ = |ψN−1⟩ ⊗ |ψN−2⟩ ⊗ · · · ⊗ |ψ1⟩ ⊗ |ψ0⟩

=

(
c0N−1

c1N−1

)
⊗

(
c0N−2

c1N−2

)
⊗ · · · ⊗

(
c00
c10

)

=


c00···00
c00···01
...

c11···10
c11···11


= c00···00 |00 · · · 00⟩ + c00···01 |00 · · · 01⟩

+ · · · + c11···10 |11 · · · 10⟩ + c11···11 |11 · · · 11⟩ , (3)

where the probability amplitude c00···00 is associated with the
|00 · · · 00⟩, c00···01 to |00 · · · 01⟩ and so forth.

The N -qubit system state can be transformed by applying
quantum gates, which can be formally described as unitary
2n × 2n unitary matrices, where n ≤ N . Gates involving
at least two qubits (unitary matrices larger than 2 × 2) are
exploited for creating entanglement, i.e. to establish a strong
correlation between qubits where the state of one depends on
the state of another.

Noteworthy quantum gates include:
• the Pauli gates, whose matrices are:

X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
; (4)

• the rotational gates, which are mostly used for QML
applications, can be derived as exponential of the Pauli
gates, and depend on the parametric angle θ :

Rx(θ ) = e−iθX/2 =

(
cos( θ2 ) −i sin( θ2 )

−i sin( θ2 ) cos( θ2 )

)
Ry(θ ) = e−iθY/2 =

(
cos( θ2 ) − sin( θ2 )
sin( θ2 ) cos( θ2 )

)
Rz(θ ) = e−iθZ/2 =

(
e−i

θ
2 0

0 ei
θ
2

)
; (5)

• CNOT gate, a controlled version of the X gate, applied
to one qubit (the target) based on the state of another
(the control). Its matrix is, if the control qubit is the
Least Significant Qubit (LSQ) and the target is the Most
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FIGURE 2. Representation of the different kinds of learning: supervised, unsupervised, and reinforcement. In the supervised block,
a classification example is represented, while for the unsupervised it is shown as an example of clustering.

Significant Qubit (MSQ), the following:

CNOT =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 . (6)

B. MACHINE LEARNING
Machine Learning (ML) is a domain of Artificial Intelli-
gence (AI), whose target is to develop models for adapting
a computer system’s behavior to the input for performing
a specific task. In particular, the system becomes able to
recognize patterns and make decisions or predictions based
on data.

It can be subdivided, as shown in Figure 2, into three
classes:

• Supervised Learning, in which the model is trained
through a set of labeled data provided in input
in the training phase (for example regression and
classification);

• Unsupervised Learning, where the data provided as
input in the training phase are not labeled (for example
principal component analysis [14] and clustering [15]);

• Reinforcement Learning, in which the model is
inserted in a feedback mechanism such that it can learn
from both input data and experience.

Classification, which is the focus of this work, belongs to the
Supervised Learning category. It aims to subdivide input data
into two or more predefined classes (in the fraud detection
context, fraud and legal transactions classes). There are three
different types of classification: binary, multi-class, and

multi-label. The difference between them is in the nature of
output labels. In the first, the target is one of the two possible
mutually exclusive classes; in the second, the possible classes
aremore than two and alwaysmutually exclusive, while in the
last, the possible classes can be non-mutually exclusive.

For performing a classification, it is necessary to define and
train a model by evaluating a loss function and minimizing
it through a proper optimizer, as shown in Figure 3. A model
can be described as a black box that acquires the inputs and
processes them by applying a parametric function to produce
the desired outcome. The parameters of the function are
chosen by defining the loss function as the distance between
the predicted and the expected labels. Thismust beminimized
with a proper optimizer to reduce errors.

The effectiveness of classification strongly depends on the
model choice, which is, to all effects, a hyper-parameter,
i.e. a parameter that is not derived from the learning process.

Quantum computation can be applied in this context
to define new kinds of models, which can overcome the
limitations of the existing classical ones in describing the
target phenomena.

In this work, various classical machine learning models are
considered, including:

• Logistic Regression;
• Random Forest;
• eXtreme Gradient Boosting;
• Support Vector Machine;
• Neural Network.

Each of these models will be systematically addressed in the
subsequent sections.
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FIGURE 3. Classification block scheme.

1) LOGISTIC REGRESSION
Logistic Regression [16], a statistical technique, is employed
for binary classification tasks. It stands as a foundational
model within the realm of machine learning. Given a
set of independent variables, the logistic regression model
endeavors to estimate the probability that a specific instance
pertains to a designated class. It is characterized by the
logistic function, defined as follows:

f (x,w) =
1

1 + e−w·x , (7)

where f (x,w) denotes the probability of observing a positive
outcome, and w represents the coefficients to be determined.
This function ensures that the predicted probabilities reside
within the closed interval [0, 1].

2) RANDOM FOREST
Random Forest [17] is an ensemble classifier comprised
of multiple decision trees, collectively determining the class
based on the aggregated results of individual trees. For each
of the K trees in the forest, a subset of features and training
data points are selected.

This modeling approach exhibits the potential to achieve
high accuracy and scalability. However, Random Forest
models may be susceptible to overfitting, i.e., they learn
too much from training data, capturing noise instead of real
patterns, leading to poor performance on new, unseen data.

3) EXTREME GRADIENT BOOSTING
XGBoost [18], an acronym of eXtreme Gradient
Boosting, stands as a formidable and versatile machine
learning algorithm within the ensemble learning domain.
It exhibits notable efficacy in tasks involving regression and
classification.

At its essence, XGBoost operates as an ensemble of
decision trees, with each tree dedicated to correcting the
errors of its predecessor. The algorithm utilizes a gradient-
boosting framework, iteratively enhancing performance by
optimizing a predefined loss function by adding decision
trees to the ensemble.

The predictive model is represented as a summation of
individual tree predictions:

ŷi =

K∑
k=1

fk (xi) , (8)

where, ŷi signifies the predicted output,K denotes the number
of trees, and fk (xi) represents the prediction of the k-th tree for
input xi.

XGBoost is distinguished by its incorporation of regu-
larization techniques, effective handling of missing values,
and the integration of features. Notably, it demonstrates
computational efficiency and has garnered popularity in
several ML competitions.

4) NEURAL NETWORKS
ANeural Network [19] is a computational model inspired by
the structure and functioning of the human brain. It comprises
interconnected nodes, often organized into layers. The
fundamental unit is the artificial neuron, which receives
input, processes it using a set of weights, and produces an
output.

Mathematically, the output of a neuron is determined by an
activation function applied to the weighted sum of its inputs:

y = f
( n∑
i=1

wi · xi + b
)
, (9)
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where wi represents the weights, xi denotes the inputs, b the
bias term, and f the activation function.

Neural Networks typically consist of an input layer, one
or more hidden layers, and an output layer. Learning in a
Neural Network involves adjusting the weights and biases
based on the error between the predicted output and the actual
target.

This model is characterized by high accuracy and robust-
ness to noise and outliers, although it generally requires an
extended training period.

5) SUPPORT VECTOR MACHINE
A Support Vector Machine (SVM) [20] represents a
powerful machine learning model designed primarily for
binary classification tasks. The main goal of an SVM is
to discern patterns within data by identifying a hyperplane
that effectively separates two distinct classes, maximizing
the margin between the classes and ensuring optimal
classification performance.

In situations where a linear decision boundary proves
insufficient to capture the underlying complexity of the data,
SVMs offer the flexibility to operate in higher-dimensional
spaces by employing kernel functions, such as the Radial
Basis Function (RBF) kernel. These kernel functions
facilitate the transformation of the input data into a space
where a linear separation is more achievable, allowing SVMs
to handle nonlinear relationships effectively.

C. PREVIOUS WORKS
In recent years, some explorations of quantum machine
learning solutions for fraud detection tasks have been
presented, like [9], [21], and [22], aiming to evaluate the
potential of quantum computers in real-world applications.
It is important to note that the mentioned works have been
published in the last three years, proving that nowadays fraud
detection is an important topic.

For example, in [9], quantum support vector machines
and variational quantum algorithms classification capabilities
have been compared against the Logistic Regression, Deci-
sion Tree, Random Forest, K-Nearest Neighbors, and SVM
classical models. Despite employing a synthetic dataset, the
study demonstrated a quantum advantage. Similar to our
work, this has also reduced the dimensionality of the dataset
through appropriate techniques.

In [21], Quantum Graph Neural Networks have been
explored considering an available credit card fraud detection
dataset and compared with Classical Graph Neural Networks,
demonstrating the benefit of the quantum models. Notably,
the consideration of thresholds as model hyperparameters
aligns with our methodology.

On the other hand, [22] explores the potential benefit of
quantum computers in machine learning model optimization.
In particular, it exploits quantum annealers, a special-purpose
quantum computer for combinatorial optimization.

The main strengths of our work compared to the current
literature are:

• employment of a real dataset provided by Intesa
Sanpaolo bank consisting of recent (two years ago)
transactions;

• comprehensive analysis of the dataset characteristics;
• optimization of the encoding mechanism of Vari-
ational Quantum Circuit, considered as a model
hyperparameter;

• optimization of the model threshold as a hyperpa-
rameter, enhancing the model capability of managing
imbalance;

• comparisons with the main classical models;
• evaluation of execution on a real quantum device and
ideal behavior obtained with a simulator.

III. PROPOSED QUANTUM MODELS
The model explored in this work is called Variational
Quantum Circuit (VQC) [12], [23]. The key concept
behind VQC is the refinement of parameters guided by an
objective function. It is a hybrid quantum-classical approach
composed of a parameterized quantum circuit (quantum part),
representing the model, and an optimizer (classical part)
exploited for a loss-function-dependent evaluation of the
parameters (Figure 4).
The quantum circuit consists of two parts. The first one,

named encoder, properly describes the data features by
embedding them into a quantum state. At the same time,
the second is a parameterized quantum circuit, that modifies
the initial state vector allowing the classification of the input
data. The final quantum states and classification results are
evaluated through themeasurement operation.

In the training phase, the classical optimizer aims to
optimize the quantum circuit parameters according to the
values measured encoding input data in the quantum circuit
and the chosen loss function. Once the model has been fully
trained for classifying new data, it is sufficient to evaluate the
measurement obtained by embedding it in the quantum circuit
with the trained parameters.

Each part of the deployed models is detailed in the
following.

A. ENCODING CIRCUIT
The encoder plays the fundamental role of embedding clas-
sical data into quantum states. This operation is performed
through a unitary matrix U (x). In the literature, several types
of encoding strategies have been proposed and discussed. The
main are angle, amplitude, and basis encoding. The first
encodes the data inside the parametric angle of rotational
gates, requiring N qubit for N features. At the same time,
the second embeds the data, after a normalization step,
into the amplitudes of a quantum state, requiring log2 (N )
qubits. Despite the reduced number of qubits required, imple-
menting this strategy requires several transformations, which
increase exponentially with the qubit count, overcoming
those required for angle encoding.Moreover, the depth is also
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FIGURE 4. Variational Quantum Circuit (VQC) model, composed of a parametric quantum circuit and a classical optimizer.

significantly higher than one of the angle methods, affecting
the fidelity significantly in the case of execution on real
hardware. Finally, the last associates each feature, written as
a binary string, with a basis state, requiring N × M qubits,
whereM is the number of bits in the binary string.
This work explores angle encoding, which can be consid-

ered the most promising, since the qubit scaling is acceptable
for near-term applications, considering the limitations of
the current NISQ devices, and requires a lower number of
transformations than the amplitude one [24].
To better understand how angle encoding works, an exam-

ple is reported in the following.

1) EXAMPLE
Considering a vector of features x =

[
x1 x2 x3 x4

]
and the

RY gates for encoding, the quantum state obtained is equal
to:

|ψ⟩ = ⊗
n
i=1 |ψi⟩ , (10)

where

|ψi⟩ = cos
(
xi
2

)
|0⟩ + sin

(
xi
2

)
|1⟩ . (11)

The graphical representation of this quantum circuit is shown
in Figure 5.

Exploiting the RY gate is only one of many possibilities
for implementing angle encoding. Indeed, all the rotational
gates RX, RY, and RZ and their combinations can be
employed, applying or not a uniform superposition layer
before. As proven in [24], not all the possible combinations
aremeaningful. The combinations considered in this work are
reported in Table 1.

FIGURE 5. Angle encoding of a four-feature vector exploiting RY gates.

TABLE 1. Angle encoding strategies which are grouped by the number of
transformations required.

B. PARAMETRIZED CIRCUIT
The parametrized circuit is the core of the VQC model since
it processes the encoded data. It usually consists of two-qubit
gates to create a correlation among features and rotational
gates, whose angles represent the model parameters.
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FIGURE 6. Single layer of a four-qubit basic entangling layer circuit. The
number of parameters is equal to the number of qubits.

FIGURE 7. Single layer of a four-qubit strongly entangling layer circuit.
the number of parameters is equal to three times the number of qubits.

Among all possible types of ansatz, this study is focused on
Strongly Entangling Layer and the Basic Entangler Layer
circuits, both available in the PennyLane library [25].
The Basic Entangling Layer circuit, shown in Figure 6,

consists of one-parameter (θi) single-qubit rotations (usually
RX gates) on each qubit, followed by a so-called ring of
CNOT gates. On the other hand, the Strongly Entangling
Layer, as shown in Figure 7, includes three-parameter
(φi, θi, ωi) single-qubit rotations (ROT gate) on each qubit
— equivalent to RZ-RY-RZ — and the CNOT ring for
creating an entanglement layer. Thanks to its three angles, the
ROT gate, which is a generic unitary operation, guarantees
an higher flexibility in the transformation, permitting the
rotation in any direction of the Bloch sphere. In this way,
a higher expressivity of the model should be ensured. The
drawback is that the number of parameters to optimize
increases, potentially making convergence more complex.
Therefore, the best option is problem-dependent, making the
parametrized circuit a further hyperparameter of the model.
For this reason, both circuits have been evaluated in the
presented analysis.

C. RE-UPLOADING
The re-uploading [26] is a strategy employed for training
VQC. It consists of repeatedly applying the data encoding
layers and parametric blocks, as shown in Figure 8. It is

FIGURE 8. Re-uploading technique.

FIGURE 9. Sigmoid function σ (x) =
1

1+e−x .

commonly used to enhance the model’s expressive power
and its ability to represent complex data patterns, leading
to higher accuracy and more robust performance. However,
its main disadvantages include longer computational times
due to its iterative nature and increased sensitivity to noise
compared to simpler versions of the quantum algorithm
caused by the increased depth. As a result, deciding
whether to apply it or not becomes an additional model
hyperparameter, necessitating evaluation of the model under
both conditions to achieve the best possible performance.

D. MEASUREMENT
In order to obtain the classification result, it is necessary to
measure the most significant qubit. The exploited observable
is Pauli-Z, whose eigenvalues are 1 and -1, associated with
the eigenvectors |0⟩ and |1⟩, respectively. Therefore, the
output obtained is in the range [−1, 1] that has to be added to
a trainable bias b and then normalized in the interval [0, 1],
through the sigmoid function, shown in Figure 9, whose
expression is:

σ (x) =
1

1 + e−x
. (12)

where x is the output of the model combined with the
bias parameter. Therefore, the value is normalized in the
interval [0,1].

The choice of the Pauli-Z operator for measurement is
related to its straightforward implementation, direct interpre-
tation, and null overhead in terms of quantum operations,
which is more efficient in the case of execution on real
hardware.
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E. CLASSICAL OPTIMIZER
After defining the quantum circuit, the model parameters
must be updated to enhance classification performance.
For parameter optimization, gradient descent optimizers are
commonly used, necessitating the computation of the deriva-
tive of the loss function for each parameter. Consequently,
back-propagation techniques [27], which are available in
libraries such as Pennylane and Pytorch, are employed to
evaluate these derivatives. However, these techniques are
only applicable when the quantum circuit is simulated.
Indeed, alternative methods, such as parameter shift rule, are
required in case of execution on real hardware for derivative
computation.

IV. THRESHOLD OPTIMIZATION
In the case of unbalanced classification, optimizing the
threshold could be fundamental for accurately classifying the
elements belonging to the minority class, specifically class
1. Therefore, a proper criterion should be defined. In the
literature, several figures of merit exist with advantages and
disadvantages, which have been discussed in the following.

A. FIGURES OF MERIT
First, accuracy, the most renowned Figure of Merit,
is defined as the ratio between correctly classified samples
and the overall dataset dimension:

Accuracy =
TP + TN

TP + TN + FP + FN
, (13)

whereTP represents the count of true positives,TN signifies
the count of true negatives, FP denotes the count of false
positives, and FN reflects the count of false negatives.
Unfortunately, this is inappropriate for highly unbalanced
datasets as achieving a high score can be obtained by
predicting all the elements belonging to the majority class.

Another crucial Figure of Merit is called recall or
sensitivity. It expresses the effectiveness of predicting the
positive class and can be computed as follows:

recall =
TP

TP + FN
. (14)

It can be employed for imbalance classification tasks where
accurately classifying positives is of essential importance,
and the penalties introduced by false positives are considered
negligible, implementing a conservative policy.

Its counterpart for negative samples is known as specificity
or selectivity and can be calculated as follows:

specificity =
TN

TN + FP
. (15)

Starting from recall and specificity, a figure of merit that
balances both can be defined:

Gmean =
√
recall · specificity , (16)

This could be a good compromise, but it gives the same
importance to both, which could be risky in high-imbalance
classification.

Another commonly employed figure of merit is precision,
defined as the ratio between the count of true positives and
the total number of positive instances:

precision =
TP

TP + FP
, (17)

and it expresses the effectiveness of themodel in identifying
positive samples.

Precision and recall can be combined to derive the
following composite figures of merit:

F1Score =
2 · recall · precision
recall + precision

, (18)

FβScore =
(1 + β2) · recall · precision
recall + β2 · precision

, (19)

where β can be employed for balancing their contributions as
functions of the task characteristics.

Alternatively, another interesting figure of merit for
imbalance dataset classification is the positive likelihood
ratio, which can be defined as:

LR+ =

TP
TP+FN

FP
FP+TN

. (20)

Beyond the threshold figures of merit, ranking metrics
can be exploited for evaluating a model’s capability of
separating classes of the dataset of interest. These provide a
comprehensive perspective by showing the performance of
two figures of merit across various threshold values.

The most popular figure of merit in this context is the
Receiver Operating Characteristic (ROC) curve, which
shows the True Positive Ratio (TPR), i.e., the recall, and
the False Positive Ratio (FPR) under different thresholds.
An example of its expected shape is provided in Figure 10a.
However, it is proven that this curve cannot be particularly
meaningful in the case of the highly unbalanced dataset since
it provides a too-optimistic view of the model performance,
giving the same importance to both classes.

Alternatively, the precision-recall curve can be exploited.
It can be exploited similarly, but it focuses on problem
performance in classifying the minor class (the fraudulent
transaction in this case). Indeed, this plot shows the precision
and the recall across diverse thresholds. Figure 10b gives an
example of the expected results for an effective model.

In both cases, the area under the curves can be calculated to
obtain a single score, summarizing the plot that can be used
for comparing different models.

B. METHODOLOGY
This work evaluates all the presented figures of merit for each
considered classical or quantum model for fifty threshold
values in the range (0, 0.5] in the training and validation set.
The samples in the range do not have a uniform distribution.
Indeed, most of the samples are concentrated in the range
(0, 0.05] since, considering the imbalance in the dataset, this
region is the most meaningful.

102926 VOLUME 12, 2024



A. Tudisco et al.: Evaluating the Computational Advantages of the VQC Model

FIGURE 10. Explanation through examples of the ranking metrics for comparing models.

FIGURE 11. Complete dataset analysis.

The area under the ROC curve and precision-recall curves
have been exploited as key metrics for evaluating the efficacy
of quantum models generated through various encoding
mechanisms alongside classical models in training and vali-
dation steps. These metrics are recognized as comprehensive
indicators of model performance.

Given the application’s critical nature and the dataset’s
inherent class imbalance, we prioritize the precision-recall

curve over the ROC curve. Consequently, the optimal
encoding technique and the number of layers have been
identified for each dataset size — both in terms of
features and data — based on its ability to maximize
precision-recall score on the validation dataset. Subse-
quently, the threshold maximizing the Fβ-score with β

equal to two in the validation set has been found for
the best quantum and classical models. The Fβ-score
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has been chosen since it considers both precision and
recall.

Finally, the optimized models have been evaluated with the
test dataset, considering precision and recall figures of merit.
In this way, quantum and classical models can be compared
to identify the best model for the application.

V. RESULTS
This section presents the analysis of the employed datasets
and the outcomes obtained by exploiting classical and
quantum models. Additional results, not detailed within this
manuscript, are available through the GitHub repository.

A. SETTINGS
The employed models have been defined exploiting the Pen-
nylane library (version 0.28), an open software framework for
differentiable programming for quantum computers, which
is particularly useful for Quantum Machine Learning and
Quantum Chemistry applications owing to its compatibility
with classical machine learning libraries such as Tensorflow
and Pytorch. Notably, in this work, the models are trained
with Pytorch (version 0.28).

In terms of training methodology, all developed models
adhere to the same approach. This approach involves training
eachmodel for ten epochs utilizing a mini-batch strategy with
batches of size 10. The Adam optimizer [29], a stochastic
gradient descent optimizer, has been selected for this purpose,
with an initial learning rate set to 0.01.

The evaluated loss function to be minimized is the Binary
Cross Entropy, defined as:

L(p, y) =
1
M

M−1∑
i=0

(−yn log pn − (1 − yn) log(1 − pn)) ,

(21)

where y are the target labels, p are the outputs of the VQC,
passed through the sigmoid function, andM is the batch size.
The quantum models have been trained by exploiting

the default.qubit Pennylane simulator running on the
Legion HPC server accessible through HPC Polito services.
Prediction results on training, test and validation datasets
have been performed on single-process Intel(R) Xeon(R)
Gold 6134 CPU @ 3.20 GHz opta-core, Model 85, with a
memory of about 103 GB [30].

The classical models have been trained on a single-process
Intel(R) Xeon(R) Gold 6134 CPU @ 3.20 GHz opta-core,
Model 85, with a memory of about 103 GB [30]. Prediction
outcomes on training, test and validation datasets have been
performed on the same platform.

B. DATASET
The labelled dataset employed for the presented analysis
comprises 515651 entries associated with fifteen features.
These data samples represent alerts generated by the Intesa
Sanpaolo Transaction Monitoring Engine during 2022,
where sensible information has been hashed with the

SHA-512 algorithm. As previously mentioned, the dataset
is strongly unbalanced since the ratio between the samples
belonging to the 1 class, which identifies the frauds, and the
overall data set is equal to 2%.

Each element of the dataset consists of the following
numerical features:

• transaction timestamp;
• transaction amount;
• year;
• month;
• day.

In addition, there are eleven categorical features, each hashed
for privacy considerations.

Undoubtedly, hashing some categories leads to a loss
of information. However, the dataset used closely mirrors
real-world scenarios as it is not a purely synthetic dataset but
rather derived from actual transactions of Intesa Sanpaolo,
with specific information intentionally protected for privacy
reasons.

The overall provided dataset has been analyzed to evaluate
the φK correlation among features — able also to show
non-linear relations and to work with both categorical and
interval features— and the significance of these correlations,
through the PhiK library [28]. The conducted analysis is
summarized in Figure 11, where the correlation matrix, the
global correlation of each feature, and the significance of
feature correlations are reported. The feature associated with
years was excluded from this analysis since all the data comes
from transactions that occurred in the year 2022, rendering
this element non-contributory to the examination.

Current quantum computers, characteristic of the Noisy
Intermediate-Scale Quantum (NISQ) era, present strong
limits in terms of reliability. Furthermore, the inherent
non-idealities present in quantum technologies, such as
relaxation and decoherence, can significantly compromise
the achieved results, especially in circuits with high depth or
involving numerous qubits, not allowing the evaluation of the
QML potential.

Exploring quantum solutions through simulators is today
the most common strategy. In this way, the possibility of
obtaining non-meaningful results due to noise is avoided.
However, the time required for simulation grows exponen-
tially with the number of qubits. Unfortunately, the dataset
dimension and the number of features are incompatible with
the quantum simulation, due to its exponential increase of
complexity.

Consequently, some dataset reductions are necessary
to evaluate the prospect of quantum computing in this
classification task.

Therefore, the Principal Component Analysis (PCA)
technique can be applied, after a proper normalization step,
mandatory for its effectiveness. The PCA is an unsupervised
learning approach able to reduce the dimensionality of
datasets while preserving crucial information. In particular,
it computes the covariance matrix of the dataset, extracts its
eigenvectors and the eigenvalues, filters the eigenvectors to
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FIGURE 12. Reduced two-feature 1000-transaction dataset.

FIGURE 13. The cumulative explained variance for each component,
applying principal component analysis. Notice that eight features include
more than 99% of the variance.

match the desired number of components, sorting them by
their associated eigenvalue, and multiply the original space
by the generated feature vector. A drawback of this approach
is the loss of interpretability of the dataset, which can be a
significant limitation for some applications.

In order to identify reasonable numbers of components to
keep with PCA, the cumulative explained variance can be
evaluated and plotted, as shown in Figure13. It is possible
to notice that eight components include more than 99% of
the variance, i.e. about all the meaningful information in the
dataset. For this reason, we have decided not to consider
datasets with more than eight components. In particular,
we consider two, four, six, and eight components for
the reduced datasets. Moreover, the dataset dimension has
been reduced through a proper sampling technique, which
maintains the ratio among elements of the two classes,
resulting in dataset sizes of 1000, 2000, 4000, 6000, 8000,
10000, and 20000 transactions.

FIGURE 14. Dataset split in training, validation and test set.

The reduced datasets have been analyzed deeply with the
same technique applied to the original dataset. For resuming
the obtained results, the correlations and significances of the
smallest (two features and 1000 transactions) and the larger
(eight features and 20000 transactions) analyzed datasets are
reported in Figures 12 and 15, respectively. It is possible
to notice that the reduced datasets have a high level of 8k
correlations, with high significance scores.

As usual, each obtained reduced dataset has been
split — exploiting a stratification technique for maintaining
the proportion between the frauds and legal transactions —
into training, validation, and test sets equal to 80%, 10%,
and 10%, respectively, of the overall dataset (Figure 14). The
first has been employed for training the model, the second
for selecting the optimal one and the last for evaluating the
classification performance.

In order to acquire information as much information as
possible about data, the two feature-reduced datasets are
graphically represented. The smallest (1000 transactions) and
largest (20000 transactions) are reported in Figure 16. It is
possible to notice that the elements belonging to class 1
(frauds) and class 0 (legal transactions) are not linearly
separable, which makes the classification more complex.

C. CLASSICAL MODELS RESULTS
In this section, the results obtained with classical models in
training and validation using various thresholds are discussed
in terms of the area under the ROC curve and precision-recall
(ROC PR) curves.

Table 2 displays the area under the ROC curve and
precision-recall (PR) curves achieved with the Logistic
Regressionmodel. It is possible to notice that the ROC scores
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FIGURE 15. Reduced eight-feature 20000-transaction dataset.

FIGURE 16. Graphical representation of two-feature datasets.

obtained are, on average, quite high. However, precision-
recall are very low, especially when the datasets with fewer
features are considered. This means that this model is
expected to provide, chosen the best threshold, high accuracy
scores, but limited precision and recall, which are more
crucial in this kind of application.

In Table 3, the area under the ROC curve and precision-
recall (PR) curves obtained with different thresholds on the
training and validation datasets using the Random Forest
model are presented. Notably, the best outcomes are attained

with a dataset containing eight and six features. However,
it is observed that, generally, while the model exhibits a high
ROC score during training, there is a substantial decrease
in performance during validation, indicative of potential
overfitting. Both in training and validation, this model
presents quite low scores of precision-recall, indicating poor
performance from the precision and recall point of view.

Moving to Table 4, the area under the ROC curve
and precision-recall (PR) curves resulting from various
thresholds on both training and validation datasets utilizing
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TABLE 2. Area under the ROC curve and precision-recall (PR) curves
obtained with the training and validation datasets, considering the
logistic regression model. The best absolute results for each column are
in blue, while the best results for each dataset size are bolded.

the XGBoost model are shown. The best performance,
in terms of precision-recall in validation, with this model
is observed with a dataset consisting of 8000 transactions
and eight features. Also in this case, while the ROC scores
obtained are, on average, quite high, precision-recall results
are very low, especially in the datasets with fewer features.

In Table 5, the area under the ROC curve and precision-
recall (PR) curves obtained with different thresholds on both
training and validation datasets using the support vector
machine model, considering both linear and radial basis
function (rbf) kernels, are presented. For the linear kernel, the
distance is evaluated as the inner product of the two feature
vectors:

k(x, x ′) = x · x ′ , (22)

while for the radial basis function (RBF) kernel, the distance
is evaluated as:

k(x, x ′) = e−
∥x−x′∥2

2σ2 . (23)

The most favorable outcome, in terms of precision-recall in
validation, in this case, is achieved with the dataset compris-
ing 8000 transactions and features features. It is possible to
notice that, on average, the rbf kernel performs perceptibly

TABLE 3. Area under the ROC curve and precision-recall (PR) curves
obtained with the training and validation datasets, considering the
random forest model. The best absolute results for each column are in
blue, while the best results for each dataset size are bolded.

better than the linear one with datasets considering a lower
number of features.

Furthermore, Table 6 illustrates the area under the ROC
curve and precision-recall (PR) curves resulting from various
thresholds on both training and validation datasets utilizing
the Neural Network model. The model with the number of
layers maximizing the area under the precision-recall curve
in validation is reported for each dataset. Remarkably, the
optimal performance in terms of precision-recall in validation
is observed with a dataset containing 20000 transactions and
four features.

Upon comparing all the classical results, it is observable
that logistic regression emerges as the most promising model
for addressing the task at hand, while XGBoost is the worst
from the area below precision-recall in the validation point of
view. In all the classical models considered, it is possible to
notice that the worst performance has been obtained with the
smallest datasets. This is coherent with the expectation since
these contain less information for optimizing the model.

D. QUANTUM MODELS RESULTS
In this section, the results obtained with quantum models in
training and validation using various thresholds are discussed
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TABLE 4. Area under the ROC curve and precision-recall (PR) curves
obtained with the training and validation datasets, considering the
XGBoost model. The best absolute results for each column are in blue,
while the best results for each dataset size are bolded.

in terms of the area under the ROC and precision-recall (PR)
curves. To streamline the discussion, only the model with the
encoding mechanism and the number of layers maximizing
the area under the precision-recall curve in validation for
each dataset are reported. Those models are considered the
best for this task, in particular, since they should guarantee
good results in terms of precision and recall in the test set.
In the case of parity, the least complex model, i.e., with the
lowest number of layers and gates involved in the encoding
mechanism, has been considered. The other results obtained
with the other encoding mechanism and the number of layers
are available in the GitHub repository.

Table 7 shows the area under the ROC curve and precision-
recall (PR) curves resulting from various thresholds with
the basic entangling layer variational quantum circuit.
The ROC scores obtained in training are, on average, lower
than those obtained by classical models, but the precision-
recall scores, especially in validation, are promising and
significantly better. Moreover, it could be highlighted that
the encoding mechanisms guaranteeing the best performance
are the most complex ones, i.e., including more than one
rotational gate or at least the Hadamard layers.

Table 8 shows the area under the ROC curve and precision-
recall (ROC PR) curves obtained by employing the strongly

TABLE 5. Area under the ROC curve and precision-recall (PR) curves
obtained with the training and validation datasets, considering the
support vector machine model with linear and radial basis function (rbf)
kernel functions. The best absolute results for each column are in blue,
while the best results for each dataset size are bolded.

entangling layer variational quantum circuit. Also in
this case, while the outcomes obtained in training are not
significantly higher, the precision-recall scores in validation
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TABLE 6. Area under the ROC curve and precision-recall curves (PR)
obtained with the training and validation datasets, considering the neural
network model with the number of layers maximizing the ROC PR in
validation. The best absolute results for each column are in blue, while
the best results for each dataset size are bolded.

outperform all the classical models, proving the ability of
quantum computers to model more complex scenarios better.

As in the article [24], it is clear that re-uploading can be
considered a hyper-parameter in the definition of the model.
In fact, considering the different reduced datasets, not always
the re-uploading models outperform others.

E. COMPARISON OF CLASSICAL AND QUANTUM MODELS
IN TEST
Afterward, the analysis of the models in training and
validation set, the threshold maximizing the Fβscore (β =

2), which takes into account both precision and recall,
in validation has been identified for each model for each
dataset. Considering these thresholds, the prediction out-
comes obtained by considering the test dataset have been
obtained. Precision and recall figures have been evaluated
and collected in Table 9 for comparisons. We would like to
remark that, in this particular application, these are the most
relevant Figures of Merits since they show the capability of
correctly identifying the positive outcomes (recall), i.e. the
frauds, without exceeding in costly false positive allarms
(precision).

TABLE 7. Area under the ROC curve and precision-recall curves (PR)
obtained with the training and validation datasets, considering the basic
entangling layer variational quantum circuit with the encoding
mechanism and number of layers maximizing the ROC PR in validation.
The best absolute results for each column are in blue, while the best
results for each dataset size are bolded.

The classical models present poor performance, especially
in terms of precision, for datasets with a few number of fea-
tures (two and four), while quantum models guarantee better
results. On average, it is possible to notice that quantum
models provide good results in terms of precision and
recall with respect to classical models, representing in the
majority of the cases the best compromise among the two
metrics. This proves the potential of QML in overcoming
classical models in terms of prediction quality in the case of
unbalanced classification tasks.

To be precise, the best compromise between precision and
recall is:

• for 1000 elements and two features dataset is the VQC
model with basic entangling layer considering Z_H
encoding and 2 layers with re-uploading technique,
guaranteeing the best precision and a recall close to the
best;

• for 1000 elements and four features dataset is theVQC
model with strongly entangling layer considering
ZY_H encoding and 10 layers with re-uploading
technique, guaranteeing the best precision and a recall
close to the best;
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TABLE 8. Area under the ROC curve and precision-recall curves (PR)
obtained with the training and validation datasets, considering the
strongly entangling layer variational quantum circuit with the encoding
mechanism and number of layers maximizing the ROC PR in validation.

• for 1000 elements and six features dataset, logistic
regression model provides the best precision and the
best recall;

• for 1000 elements and eight features dataset is the
VQC model with basic entangling layer considering
ZYX_H encoding and 10 layers without re-uploading
technique, guaranteeing the best precision and a recall
close to the best;

• for 2000 elements and two features dataset is the
VQC model with basic entangling layer considering
YZ encoding and 2 layers without re-uploading
technique, guaranteeing the best precision and recall;

• for 2000 elements and four features dataset is theVQC
model with strongly entangling layer considering YX
encoding and 2 layers with re-uploading technique,
assuring the best precision and recall;

• for 2000 elements and six features dataset is the
VQC model with basic entangling layer considering
YZX_H encoding and 2 layers without re-uploading
technique, providing the best precision and a recall close
to the best;

• for 2000 elements and eight features dataset logis-
tic regression, random forest and support vector

machine with linear kernel give the best precision and
recall;

• for 4000 elements and two features dataset is the
VQC model with basic entangling layer considering
YX_H encoding and 10 layers without re-uploading
technique, providing the best precision and a recall close
to the best;

• for 4000 elements and four features dataset is the
VQC model with basic entangling layer considering
XYZ encoding and 10 layers without re-uploading
technique, providing the best precision and recall;

• for 4000 elements and six features dataset is the VQC
model with basic entangling layer considering ZY_H
encoding and 8 layers with re-uploading technique,
providing the best precision and recall;

• for 4000 elements and eight features dataset support
vector machine with linear kernel gives the best
precision and recall;

• for 6000 elements and two features dataset is the VQC
model with strongly entangling layer considering
XZY encoding and 10 layers with re-uploading
technique, providing the best precision and recall;

• for 6000 elements and four features dataset is the
VQC model with basic entangling layer considering
XZ encoding and 6 layers without re-uploading
technique, providing the best precision and recall;

• for 6000 elements and six features dataset is the VQC
model with strongly entangling layer considering
YZ_H encoding and 4 layers without re-uploading
technique, guaranteeing the best precision and recall;

• for 6000 elements and eight features dataset is the
VQC model with basic entangling layer considering
YZ_H encoding and 4 layers without re-uploading
technique, providing the best precision and a recall close
to the best;

• for 8000 elements and two features dataset is the VQC
model with basic entangling layer considering YXZ
encoding and 8 layers with re-uploading technique,
providing the best precision and a recall close to the best;

• for 8000 elements and four features dataset is theVQC
model with strongly entangling layer considering
ZXY_H encoding and 6 layers without re-uploading
technique, providing the best precision and recall;

• for 8000 elements and six features dataset is the
VQC model with basic entangling layer considering
ZY_H encoding and 6 layers without re-uploading
technique, providing the best precision and a recall close
to the best;

• for 8000 elements and eight features dataset is the
VQC model with basic entangling layer considering
Y_H encoding and 8 layers with re-uploading tech-
nique, providing a precision and a recall close to the best;

• for 10000 elements and two features dataset is theVQC
model with strongly entangling layer considering
YXZ encoding and 8 layers without re-uploading
technique, providing the best precision and recall;
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TABLE 9. Precision (P) and Recall (R) obtained with the test datasets, considering Logistic Regression (LR), Neural Network (NN) with the optimal number
of layers, Random Forest (RF), SVM with the linear kernel, SVM with the rbf kernel, XGBoost, Variational Quantum Circuit (VQC) with Basic entangling layer
(maximizing the area under the precision-recall curves in the test dataset) and Variational Quantum Circuit (VQC) with strongly entangling layer
(maximizing the area under the precision-recall curves in the test dataset). For each of them, the threshold maximizes the FβScore, with β set equal to 2.
The best absolute results for precision and recall are in blue, while the suboptimal, allowing to reach a good compromise, are bolded.

• for 10000 elements and four features dataset is the
VQC model with basic entangling layer considering
YXZ encoding and 8 layers without re-uploading
technique, providing a precision and a recall close to the
best;

• for 10000 elements and six features dataset is theVQC
model with basic entangling layer considering XYZ
encoding and 2 layers with re-uploading technique,
providing the best precision and a recall close to the best;

• for 10000 elements and eight features dataset is the
VQC model with basic entangling layer considering
YX_H encoding and 4 layers with re-uploading
technique, providing the best precision and a recall close
to the best;

• for 20000 elements and two features dataset is theVQC
model with basic entangling layer considering YX_H
encoding and 8 layers with re-uploading technique,
providing a precision and a recall close to the best;

• for 20000 elements and four features dataset is the
VQC model with basic entangling layer considering
ZYX_H encoding and 6 layers without re-uploading

technique, providing a precision and a recall close to the
best;

• for 20000 elements and six features dataset is the
VQC model with basic entangling layer considering
Y_H encoding and 10 layers without re-uploading
technique, providing the best precision and recall;

• for 20000 elements and eight features dataset is logistic
regression, providing a precision and a recall close to
the best.

F. IMPACT OF REAL-DEVICE NOISE
In order to estimate the effect of nowadays quantum comput-
ers’ noise on developed QMLmodels, we evaluate prediction
quality of theVQCmodel with Strongly Entangling Layer,
considering XYZ encoding technique with re-uploading
and 6 layers, in 10000 transaction and six features
validation dataset of the on the 127-qubit ibm_brisbane
device submitting circuits via cloud with IBM Quantum
Runtime Services (Pay-as-you-go plan of Intesa Sanpaolo).
The obtained results are discussed in the following.
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FIGURE 17. Quantum circuit mapped on the ibm_brisbane quantum computer.

FIGURE 18. ROC and precision-recall curves obtained by predicting outcomes of 10000 transactions and 6 features validation dataset with the VQC
model with strongly entangling layer, considering XYZ encoding technique with re-uploading and 6 layers on the 127-qubit ibm_brisbane device and
ideal Pennylane simulator.

Figure 17 shows one of the submitted circuits mapped on
the real device. It is possible to observe that the circuit is
executed on close qubits to limit the impact of noise.

It is possible to observe from ROC and precision-recall
curves reported in Figure 18, comparing ideal simulation and
real device outcomes, that the noise degrades completely the
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FIGURE 19. Hellinger fidelity and KLD obtained comparing outcomes of ibm_brisbane device and ideal Pennylane simulator. The first shows
the closeness among ideal and real results, while the second the divergence.

FIGURE 20. Hellinger fidelity and KLD obtained comparing outcomes of ibm_algeris device and ideal Pennylane simulator. The first shows the
closeness among ideal and real results, while the second the divergence.

performance, especially in terms of precision-recall, proving
that current device are not ready for employment in real
application scenario.

To better estimate the impact of noise, Hellinger fidelity
[31] ([0, 1]) and Kullback Leibler divergence (KLD)

[32] divergence have been computed for all the performed
test.

Fidelity is defined as a measure of the closeness of two
quantum states, assuming value 1 if they are identical.
In particular, it is described as (1 − H2)2, where H is the
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FIGURE 21. Hellinger fidelity and KLD obtained comparing outcomes of ibm_brisbane device and ibm_algeris with ideal Pennylane simulator. The
first shows the closeness among ideal and real results, while the second the divergence.

Hellinger distance, computed as:

H (I ,R) =
1

√
2

√√√√ k∑
i=1

(
√
Ii −

√
Ri)2 , (24)

where I and R are the probability distribution, i.e., the square
module of the state vector, of the two quantum states, in this
case, obtained from simulation and real device, respectively.

On the other hand, KLD estimates the difference between
the two quantum states. Therefore, it is equal to 0 in the case
of two identical states. The KLD is computed as:

DKL(I∥R) =

∑
x∈χ

I (x) log
( I (x)
R(x)

)
, (25)

where I and R are the probability distribution, i.e. the square
module of the state vector, of the two quantum states, in this
case, obtained from simulation and real device, respectively.

The obtained fidelity and KLD distributions are shown
in Figure 19. Even though the fidelity distribution is
concentrated around the ideal value 1, the effect of the
values spread is not negligible. Similarly, KLD presents a
distribution close to 0, i.e., the ideal value, but its variance
is relevant.

In order to evaluate the impact of the quantum device size
on the obtained results, we evaluate the prediction outcomes
on a subset of the validation dataset with the 27-qubit
ibm_algiers computer. Fidelity and KLD divergence
obtained are shown in Figure 20. Even if also in this case
the device behaviour is far from the ideal one, the outcomes
are more accurate than ones obtained with ibm_brisbane,
as shown in the comparative Figure 21.

G. DISCUSSION
The exploration presented in this article proves that quantum
models are a promising alternative to classical ones in
some critical applications like fraud detections. In particular,
they allow the achievement of better results in terms of

precision and recall, which are the most relevant figures
of merit in this kind of application. However, quantum
devices still need to be much improved before being
competitive and comparable with classic solutions. Indeed,
the encouraging results obtainedwith the ideal simulator have
not been found by performing tests on real devices.

Moreover, it is important to notice that, on average,
among the considered quantum models, those with the most
complex encoding mechanism perform better than the
others.

The operative methodology presented in this article is
generic and can be applied for any other applications
involving an unbalanced dataset with minimal adjustment.
However, one strength point of this work is that the employed
dataset consists of real bank transaction, showing the ideal
performance of quantum computers in a real-world scenario.

VI. CONCLUSION
This work broadly investigates the potential of the
VQC-based quantum classification for fraud detection tasks.
The analysis is conducted on a dataset based on real Intesa
Sanpaolo Bank transactions properly reduced through
PCA and sampling techniques to limit the complexity of
the required quantum simulations. Results obtained from
quantummodels are benchmarked against well-established
classical methods, including Logistic Regression, XGBoost,
Support Vector Machine, Random Forest, and Neural
Networks. This work proves that quantum models provide
advantages in terms of precision and recall with respect
to classical models, especially in datasets with a reduced
number of features and elements. This can be seen as a
trace of their potential in separating elements of a highly
unbalanced dataset.

It has been proved that, on average, the most complex
encoding mechanism for VQC provides better results.

The impact of noise has also been evaluated by performing
predictions on ibm_brisbane quantum device, proving
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that current computers not yet ready to deal with
real-world problems. Indeed, non-idealities significantly
compromise the results.

The trained quantum models are available on the Github
repository. This way, transfer learning techniques like that
treated in [33] can be exploited to adapt them to other datasets
with similar characteristics.

Even though the current analysis mainly focuses on the
VQC model considering the angle encoding mechanism, this
can be considered a milestone for proving the exploitability
of quantum models for real-world machine-learning tasks.
First of all, alternative methods to PCA can be investigated
for features reduction. For example, [34] proposes to perform
this with tensor-train network (TTN) technique. Moreover,
the analysis can be further expanded by considering other
encoding mechanisms, such as amplitude one, other ansatz
circuits [35], and other quantum circuit model solutions,
like Quantum Support Vector machines (QSVM) [36] and of
hybrid quantum-classical models as those proposed in [37].
Finally, machine learning procedures exploiting quantum
computation in the parameter optimization part through
proper QUBO models [38] can be explored for evaluating
the potential benefits.

We hope that this analysis can encourage and support the
exploration of quantum solutions for further classification
tasks, positively impacting various aspects of human life.
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