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ABSTRACT Cell-free massive multiple-input-multiple-output (CF-mMIMO) networks incorporate a
cell-free architecture with distributed antennas in a geographical area, and aim to deliver high data rates
and support large numbers of users. It is crucial that such networks operate in an energy-efficient manner
within the available spectrum. Thus, we focus on maximizing the energy efficiency (EE) of a CF-mMIMO
network, which coexists with a collocated primary network in underlay mode. The EE maximization is a
non-convex problem and to compute a power allocation policy efficiently, we propose a weighted minimum-
mean-square-error (WMMSE) based Dinkelbach’s algorithm. Besides this, we also provide a simplified
algorithm formaximum-ratio precoding in which we approximate the non-convex EE objective function with
a lower bound, transforming the non-convex EE problem into a convex problem. Subsequently, we propose
a policy for downlink power allocation that maximizes the EE of the secondary CF-mMIMO network while
adhering to power constraints at each access point and interference constraints at each primary user. We also
compare with some heuristic power allocation policies. The results demonstrate that the proposed WMMSE
based power allocation scheme outperforms the heuristic power allocation schemes to a significant degree.

INDEX TERMS Beyond 5G, cell-free massive MIMO, downlink, energy efficiency, spectrum sharing,
optimization.

I. INTRODUCTION
Cell free massive multiple-input-multiple-output (CF-
mMIMO) is a potential next-generation wireless technology
wherein multiple access points (APs) distributed in a large
geographical area jointly serve user equipment (UEs) in
the region without cell-boundaries [2]. In other words,
CF-mMIMO is a distributed implementation of mas-
sive MIMO, and variants of such technologies such as
RadioWeaves have recently gained interest [3] because of
their superior features such as high spectral efficiency (SE)
and macro-diversity. Further, the interference management
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capability of the CF-mMIMO system makes it a suitable
candidate to operate in spectrum sharing systems, which are
essential to deploy new applications in the available limited
spectrum [4]. In such applications, CF-mMIMO’s ability to
efficiently support large numbers of devices in the limited
spectrum is crucial.

Accepting the need for such applications, spectrum
regulators such as the federal communication commission
(FCC) opened up the 3 GHz (3.55 - 3.70 GHz) and 6 GHz
bands 5.925-7.125 GHz for shared spectrum operations [5],
[6]. Furthermore, wireless standards such as long term
evolution-license assisted access, MultiFire, citizen’s broad-
band radio service, 5G new radio unlicensed, and IEEE
802.11be support spectrum sharing [7]. Among various
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spectrum sharing mechanisms, underlay spectrum sharing is
one of the important approaches. In it, a secondary network
(SN), which does not have the license to use the spectrum,
operates concurrently with a primary network (PN) that owns
the license [8]. So, it is crucial that the SN operates within the
permissible levels of interference that it can incur to the PN.
This implies that the SN should use its energy efficiently to
serve its UEs alongside satisfying the interference constraint.

In communications system design, energy efficiency (EE)
is an important metric that measures the number of infor-
mation bits a system can reliably transmit per unit of
energy. Maximizing EE involves balancing achievable SE
and energy consumption. However, obtaining optimal power
allocation to maximize EE often involves solving a non-
convex problem, and good heuristic algorithms are required.
The non-convexity arises due to the ratio of non-convex
SE, a non-convex function of power allocation coefficients,
and total power consumption; practical system constraints
can also be non-convex depending on the system model, for
instance, minimum rate constraint.

Several studies have examined EE based power allocation
in CF-mMIMO, [9], [10], [11], [12], [13], [14], [15], [16],
[17]. In [9], the authors proposed an algorithm based on
successive-convex-approximation (SCA) to compute power
coefficients that maximize the EE for a CF-mMIMO system
with spatially uncorrelated channels and maximum-ratio
(MR) precoding. In [10], the authors computed power
coefficients that maximize the EE of a CF-mMIMO system
by approximating the EE function to a convex function
and then solved it using Dinkelbach’s algorithm. This is
done for a clustered channel model and zero forcing (ZF)
precoder. In [11], EE-based power allocation using SCA
was studied for layered-division multiplexing-based non-
orthogonal multicast and unicast transmission systems, with
MR precoding and a spatially uncorrelated channel model.
In [12], a power allocation policy using Dinkelbach’s algo-
rithm was proposed for multi-cell mMIMO using max-min
EE optimization; the authors considered Weichselberger’s
channel model with precoding based on statistical channel
state information (CSI). Furthermore, the authors assume that
UEs have access to perfect CSI. In [13], the authors proposed
a joint power allocation and precoder design that maximize
the EE in a distributed MIMO system that serves a single
UE under the assumption of perfect CSI. In [14], the authors
proposed an algorithm to compute power coefficients that
maximize the EE through a block quadratic transformation
for a CF-mMIMO system that jointly serves UEs and
unmanned aerial vehicles (UAVs) with MR precoding.
In [15], the authors proposed an iterative algorithm based on
an accelerated projected gradient (APG) method to compute
power coefficients that maximize the EE of a CF-mMIMO
system. Further, the system model considers a spatially
uncorrelated channel model and MR precoding. In [16],
the authors proposed a power allocation algorithm that
maximizes the ratio of the geometric mean of the UE rates

(as proxy for sum-rate (SR)) and the power consumption.
In [18], the authors developed a novel alternating optimiza-
tion based algorithm to minimize battery energy usage in
wireless-powered cell-free systems by leveraging self-energy
recycling, which demonstrated significant improvement in
energy efficiency and outage rates. In [19], the authors
study the EE of coherent and non-coherent downlink data
transmission strategies in cell-free systems under realistic
fronthaul capacity constraints. The authors formulate novel
EE maximization problems for both strategies and solve
them using a framework that combines successive convex
approximation and the Dinkelbach algorithm. In [20], the
authors study the energy efficiency of cell-free massive
MIMO systems with limited backhaul capacity, proposing
an optimization scheme using distributed MR combining
and the Bussgang theorem to model quantization errors.
A non-convex energy efficiency maximization problem is
solved through a successive convex approximation approach.
In [21], the authors studied optimizing energy efficiency in
cell-free massive MIMO systems by modeling the spatial
distribution of APs as Poisson point processes. In the paper,
they derived closed-form expressions for the optimal pilot
reuse factor, AP density, number of antennas per AP, and
number of users, providing practical design guidelines for
achieving high energy and spectral efficiency. In [22], the
authors investigated the uplink spectral and energy efficiency
of cell-free massive MIMO systems with limited fronthaul
capacity, using optimal uniform quantization. They compared
different schemes for channel estimation and quantization,
demonstrating that with optimal quantization strategies,
these systems can achieve near-optimal performance with
relatively few quantization bits. The paper concludes that
cell-free massive MIMO systems are highly efficient and
practical for future wireless networks even with fronthaul
limitations.

The following recent studies have explored spectrum shar-
ing in multi-cell MIMO and CF-mMIMO: [23], [24], [25],
[26], [27], [28]. In [23], the authors studied a multi-objective
power allocation policy that achieves max-min fairness
for both PN and SN in both uplink and downlink with a
spatially uncorrelated channel model and MR precoding.
In [24], the authors proposed a power allocation policy
in which each secondary AP allocates power to secondary
UEs proportionally to their corresponding channel strength.
Further, the channel is modeled to be spatially uncorrelated
and MR precoding is used. In [27] the authors proposed
a penalty dual decomposition-based gradient projection
algorithm for maximizing achievable rates in intelligent
reflecting surface assisted MIMO systems in an underlay
spectrum sharing scenario, assuming perfect CSI is available.
In [28], the authors considered a multi-cell multi-user setup
and proposed an algorithm based on fractional program-
ming and block coordinate descent to allocate resources
(precoder design and spectrum allocation), assuming
perfect CSI.
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Focus and Contributions: We focus on an underlay spec-
trum sharing system with a secondary CF-mMIMO system
operating concurrently with a primary collocated mMIMO
system. Our proposed algorithm works for any precoder and
further we consider spatially correlated channels, unlike [9],
[10], [11], [12], [13], [14], [15], [16], [17], [23], [24], [25],
[26], [27], [28] that studied only MR precoding and/or
uncorrelated channels. We also consider imperfect CSI
obtained using MMSE channel estimation rather than the
perfect CSI assumption in [27] and [28]. For the abovemodel,
we focus on maximizing the EE of the secondary system,
which is not considered in the literature to the best of our
knowledge [1].

The specific contributions of this paper are as follows:
1) We develop a novel weighted-minimum-mean-square-

error (WMMSE) combined with Dinkelbach’s algo-
rithm to compute power coefficients that maximize EE
of the secondary CF-mMIMO system subject to an
average power constraint and an interference constraint
imposed by the primary mMIMO system. With this
formulation, we exploit the dual relation between
WMMSE and weighted SR to maximize the EE. This
algorithm is also applicable to transmit precoding with
spatially correlated channels.

2) For APs that employ MR precoding, we propose a
minorization-maximization (MM) based Dinkelbach’s
algorithm that performs power allocation to maximize
the EE of our secondary cell-free system. This algo-
rithm, applicable with only MR precoding, has lower
computational complexity than the WMMSE based
approach, which applies to any precoder.

3) We also formulate an optimization problem with
additional minimum rate or quality of service (QoS)
constraints for the S-UEs. We study the impact of
QoS constraints on the EE of the CF-mMIMO SN.
We solve this problem using the proposed WMMSE
based algorithm.

4) We also propose low-complexity heuristic power
allocation policies and show through simulations that
they perform better than simple equal power allocation.
We also provide an algorithm that employs a projected
gradient method and show through simulation that
the results outperform commonly used heuristic power
allocation policies.

5) In the simulations, we study the impact of different sys-
tem parameters on the EE for the proposed WMMSE
based and MM based power allocation algorithms.
We benchmark them with the projected gradient and
other heuristic power allocation methods. Our results
show that the WMMSE algorithm outperforms the
other methods. We also provide the results of proposed
WMMSE based method with regularized-ZF (R-ZF) to
illustrate the method is applicable to any precoder.

6) We provide insights into the similarities and differences
between the SR and the EE maximization optimization
problems. Additionally, we establish conditions under

which solutions for maximizing the SR can perform
similarly to directly maximizing the EE.

Items 1, 3, 4, 5, 6 are specific novel contributions over the
conference paper (which was restricted toMR precoding [1]).
Furthermore, our innovation lies in applying the novel
WMMSE-Dinkelbach algorithm to maximize the EE in a
spectrum-sharing scenario, rather than directly employing
standard alternating optimization methods to tackle the
non-convex EE problem. Moreover, the proposed algorithm
outperforms the latter approach, where the alternating
optimizationmethod is directly used to solve the EE problem.

A. NOTATIONS
The notation z ∼ CN (0,C) denotes that z is circularly
symmetric Gaussian random vector with mean 0 and
covariance C. We denote [M ] = {1, . . . ,M}. We denote E{·}

and V{·} as mean and variance of the argument. We denote
Tr(·) as the trace of the argument.

B. PAPER OUTLINE
The remainder of the paper is organized as follows.
Section II describes the system model for the primary
and secondary networks in downlink. It includes the pilot
sharing mechanism with the primary network, channel
estimation, downlink payload transmission, interference to
the primary network, and achievable rate for the secondary
network. Section III presents WMMSE-Dinkelbach’s algo-
rithm, the main contribution, which maximizes the EE of
the secondary network. In Section IV, we present the
MM-based Dinkelbach’s algorithm for computing power
coefficients and several heuristic power allocation schemes.
Finally, Section V presents numerical results demonstrating
the proposed algorithm’s performance and also discussion
on incorporating a minimum rate constraint into the EE
maximization problem. Appendices provide closed-form
expressions useful in formulating the optimization problem
and also includes a proof of convergence for the proposed
algorithms.

II. SYSTEM MODEL
We consider a system where two networks share the
spectrum, namely a PN that owns the spectrum license and a
SN that does not own the spectrum license. The PN consists
of a single mMIMO base station (P-BS) with M antennas
serving Kp single-antenna primary users (P-UEs). The SN
comprises a CF-mMIMO network with L secondary APs
(S-APs), with N antennas at each S-AP jointly serving Ks
single-antenna secondary users (S-UEs). As in [23], [24],
[25], [26], [27], and [28], the two networks are assumed to be
time and frequency synchronized such that they operate in the
same coherence block for uplink and downlink operations.
A pictorial depiction of the model is in Fig. 1.
For each S-UE, there is a channel to P-BS and also to

every S-AP. We denote the channel between S-UE i and
P-BS by usp-i ∈ CM and the channel from S-UE i to
S-AP l by hil ∈ CN

∀i ∈ [Ks], l ∈ [L]. Similarly,
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FIGURE 1. Network model.

for each P-UE there is a channel to P-BS and to
every S-AP. We denote the channel between the
P-UE m and P-BS by upp-m ∈ CM and the channel between
P-UE m and S-AP l by ups-ml ∈ CN

∀m = 1, . . . ,Kp.
We consider a block fading channel model in which we
assume the channel to be constant within a coherence block.
We denote with τc the number of channel uses within a
coherence block. In each coherence block, for both PN
and SN, we consider that independent channel realizations
are drawn from a correlated Rayleigh fading distribution
as follows: hkl ∼ CN (0,Rkl), usp-i ∼ CN (0,Dsp-i),
ups-jl ∼ CN (0,Dps-jl) and upp-m ∼ CN (0,Dpp-m). The
spatial correlation matrices Rkl , Dsp-i, Dps-jl , and Dpp-m
capture the channel characteristics and large-scale fading of
their corresponding channels. We assume all the channels are
unknown a priori to both PN and SN. However, the channel
statistics are known to both PN and SN.We consider that both
PN and SN operate in time-division duplex (TDD) mode,
where both networks allocate at most τp(< τc) and τd =

τc − τp channel uses for channel estimation and downlink
payload transmission, respectively. In the next subsections,
we will provide a detailed discussion of these two phases.

A. CHANNEL ESTIMATION
Both S-UEs and P-UEs transmit pilot symbols for the
S-APs and P-BS, respectively, to estimate the corresponding
channels. We assume that reciprocity of the channel holds,
i.e., the estimates of channel realizations in the uplink
remain the same during the data transmission phase in the
downlink. We consider τp mutually orthogonal pilot vectors

and represent them in matrix form as 8 =

[
φ1, . . . ,φτp

]
∈

Cτp×τp such that
∥∥φt∥∥ =

√
τp, for t = 1, . . . , τp. We divide

these pilot vectors into three sets 8 =
[
8s, 80, 8p

]
where

8s ∈ Cτp×τ1 contains τ1 pilot vectors that only SN uses,

80 ∈ Cτp×τ2 contains τ2 pilot vectors that both PN and SN
share, and8p ∈ Cτp×τ3 contains τ3 pilot vectors that only PN
uses, with τ1 + τ2 + τ3 = τp.
To estimate the channels in SN, S-APs employ aminimum-

mean-square-error (MMSE) estimator. Let tk ∈ {1, . . . , τ1 +

τ2} denote the index of the pilot vector that S-UE k uses.
Furthermore, we consider Ssk and Spk to be the subsets of
S-UE indices, {1, . . . ,Ks}, and P-UE indices, {1, . . . ,Kp},
respectively, that share the same pilot vector as that
of S-UE k . The signal that S-AP l receives in the first τp
channel uses is

Yp
l =

Ks∑
i=1

√
ηs-ihilφHti +

Kp∑
j=1

√
ηp-jups-jlφHtj + Nl, (1)

where ηs-i ≥ 0 and ηp-j ≥ 0 are the power coefficients that
S-UE i and P-UE j, respectively, assigns to their correspond-
ing pilot signals, and Nl ∈ CN×τp is the noise at S-AP l with
independent and identically distributed (i.i.d) entries drawn
from CN (0, ς2) with ς2 being the noise power.
The MMSE estimation of hkl involves two steps. The

first step is to compute a sufficient statistics by projecting
the received pilot signal at AP l onto the pilot direction
of S-UE k . The projected signal at AP l is yptk l , given by

yptk l = Yp
l φtk /

√
τp

=

∑
i∈Ssk

√
ηs-iτphil +

∑
j∈Spk

√
ηp-jτpups-jl + ntk l, (2)

where ntk l = Nlφ
H
tk /

√
τp ∼ CN (0, ς2IN ). We note that the

projected signal in (2) is a sufficient statistic of hil ∀i ∈

[Ks], l ∈ [L] as the pilots are orthogonal and Nl has i.i.d.
Gaussian entries [29]. The second step is to compute the
MMSE channel estimate ĥkl using the projected received
pilot signal yptk l :

ĥkl =
√

ηs-kτpRkl9
−1
tk l y

p
tk l, (3)

where

9 tk l =

∑
i∈Ssk

ηs-iτpRil +
∑
j∈Spk

ηp-jτpDps-jl + ς2IN . (4)

The channel estimate ĥkl and channel estimation error h̃kl =

hkl−ĥkl have Gaussian distributions, i.e., ĥkl ∼ CN (0, R̂kl)
and h̃kl ∼ CN (0, R̃kl), where R̂kl = ηs-kτpRkl9

−1
tk l Rkl and

R̃kl = Rkl − R̂kl . From estimation theory, we know that
ĥkl and h̃kl are independent [30]. Furthermore, the channel
estimates of S-UE k and S-UE i that use the same pilot vectors
are in general correlated and their cross-correlation matrix is
given by [31]

qRkil = E
{̂
hkl ĥHil

}
=

√
ηs-kηs-iτpRkl9

−1
tk l Ril, i ∈ Ssk . (5)

B. DOWNLINK PAYLOAD TRANSMISSION
In the downlink, using the known channel statistics and
channel estimates obtained in (3), S-AP l constructs the
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precoders wil ∈ CN for ∀i ∈ [Ks], to transmit data. The
transmit signal at each S-AP is given by

xl =

Ks∑
i=1

√
pilwilqi, ∀l ∈ [L], (6)

where pil ≥ 0 is the transmit power that S-AP l assigns to
transmit message symbol qi of the S-UE i. We analyze a
general precoder wil here, and specialize to the MR precoder
in Section IV. We assume that transmit symbols of different
S-UEs are uncorrelated. Each S-AP has a maximum power
budget, Pmax. The transmit symbols (with zero mean) and
precoders have average unit power i.e., E

{
|qi|2

}
= 1 and

E
{
∥wil∥

2}
= 1, ∀i ∈ [Ks], l ∈ [L]. Therefore, from (6) the

total transmit power at S-AP l is
∑Ks

i=1 pil . The transmit power
constraint, which limits the total transmit power at each AP
to Pmax, can be written as

Ks∑
i=1

pil ≤ Pmax, ∀l ∈ [L]. (7)

The signal that S-UE k receives is given by

yk =

L∑
l=1

hHklxl + uHsp-ksp + nk

=

L∑
l=1

√
pklhHklwklqk +

K∑
i=1
i̸=k

L∑
l=1

√
pilhHklwilqi + dk

=

L∑
l=1

√
pklgkk lqk +

K∑
i=1
i̸=k

L∑
l=1

√
pilgkilqi + dk , (8)

where sp is the transmit signal from P-BS to P-UEs with
zero mean and covariance D̄p, and nk is the receiver noise
at S-UE k with variance ς2. Also, dk = uHsp-ksp + nk denotes
the interference-plus-noise at the receiver, which has zero
mean and variance σ 2

k = Tr
(
D̄pDsp-k

)
+ς2, and gkil = hHklwil

is the effective channel that qi sees when S-AP l transmits and
S-UE k receives the signal.
However, the signal intended for S-UEs will be interfering

with the signals to P-UEs. The interference signal ypsm that
P-UE m receives is given by

ypsm =

L∑
l=1

uHps-mlxl . (9)

Therefore, the S-APs should ensure that the average interfer-
ence power is less than a threshold IT i.e.,

E
{
|ypsm |

2
}

= E

{
L∑
l=1

L∑
l′=1

Ks∑
i=1

√
pil

√
pil′u

H
ps-mlwilwH

il′ups-ml′ |qi|
2

}

=

L∑
l=1

Ks∑
i=1

pilTr
(
E
{
wilwH

il

}
E
{
ups-mluHps-ml

})
≤ IT . (10)

In (10), we assumed that the S-APs precoders are
independent of the channels between P-UEs and S-APs.
Furthermore, we assumed that the channels between the same
P-UE and different S-APs are uncorrelated.

C. ACHIEVABLE SPECTRAL EFFICIENCY
After receiving the signal (8), S-UE k decodes the signal,
qk , intended for it. We assume that all the S-UEs know the
statistics of the effective channels. In order to apply the use-
and-then-forget bound (also known as the hardening bound)
[31], [32], we rewrite (8) in terms of known statistics as
follows

yk =

L∑
l=1

√
pklE

{
gkk l

}
qk +

Ks∑
i=1
i̸=k

(
L∑
l=1

√
pilgkil

)
qi

+

(
L∑
l=1

√
pklgkk l −

L∑
l=1

√
pklE

{
gkk l

})
qk + dk . (11)

The achievable SE for S-UE k using the hardening bound is
given by

SEk =
τd

τc
log2(1 + 0k ) bit/s/Hz, (12)

where 0k is the effective signal-to-interference-plus-noise-
ratio (SINR) at S-UE k given by

0k =
|DKk |

2

E{|DUk |
2} + E{|UIk |2} + σ 2

k

, (13)

where

DKk =

L∑
l=1

√
pklE

{
gkk l

}
(14)

DUk =

L∑
l=1

√
pklgkk lqk −

L∑
l=1

√
pklE

{
gkk l

}
qk , (15)

UIk =

Ks∑
i=1
i̸=k

(
L∑
l=1

√
pilgkil

)
qi. (16)

The above notations DUk , UIk can be interpreted as desired
symbol qk transmitted over unknown channel and inter-user
interference from other S-UEs, respectively. σ 2

k is the
effective primary interference-plus-noise power at S-UE k .
We assume that knowledge of only channel statistics is
available at the S-UEs, which change at a much slower
timescale than the instantaneous channel gains. These can
obtained by the SN by exploiting the synchronous TDD
operation of primary and secondary systems along with the
known pilot sequences allotted to the primary UEs [33].

III. POWER ALLOCATION TO MAXIMIZE EE
We now introduce the mathematical formulation of our
problem statement, and develop an efficient power allo-
cation algorithm that maximizes the EE of an underlay
CF-mMIMO system with any transmit precoding subject
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to an average interference constraint imposed by a primary
mMIMO system. Among different definitions of EE in the
literature [34], we use the ratio of downlink throughput to
total power consumed at all the S-APs as the definition
of EE.1 Mathematically, the EE can be written in units
of [bit/J] as

EE =

∑Ks
i=1 B · SEi
PT

, (17)

where B is the bandwidth of the SN and PT is the total power
consumed by all the S-APs during downlink transmission,
which is given by [9] and [29]

PT = ζ

L∑
l=1

Ks∑
i=1

pil + ξ

Ks∑
i=1

B · SEi + PC, (18)

where ζ is the inverse of the power amplifier efficiency, ξ is
a front-haul power consumption factor that depends on the
throughput, which has the unit Ws/bit or W/(bit/s) (Watt per
unit rate), and PC is the total power that approximately
accounts for the power consumption of the transceiver chains,
channel estimation process, channel coding and decoding
units, and linear processing at the S-APs.

We compute the power coefficients2 that maximize the EE
in (17) subject to the power constraint in (7) at each S-AP, and
to the average interference constraint in (10) at each P-UE:

maximize
p

∑Ks
i=1 B · SEi(p)
PT (p)

(19a)

s.t.
Ks∑
i=1

pil ≤ Pmax, ∀l ∈ [L], (19b)

pil ≥ 0, ∀i ∈ [Ks]; ∀l ∈ [L], (19c)
L∑
l=1

Ks∑
i=1

pilbiml ≤ IT , ∀m ∈ [Kp], (19d)

where p = [p11, . . . , p1L , . . . , pil, . . . , pKs1, . . . , pKsL]
T

and biml = Tr
(
E{wilwH

il }E{ups-mluHps-ml}
)
. The problem

in (19) is non-convex due to the non-convexity of the
objective, although the constraints are convex. Besides the
non-convexity of the problem, the total power consump-
tion in (18) depends on the throughput, which further
complicates the problem at hand. We note that the power
allocation policy that maximizes (19) remains same when the
throughput-dependent power term, PT (p), is replaced by a

1We want to remark that in mMIMO systems the gap between the AWGN
Shannon capacity and that of a massive MIMO system with enough channel
hardening and favorable propagation is very small. Moreover, with practical
(adaptive) modulation and coding schemes one can achieve rates close to
Shannon capacity [35] for given signal-to-noise ratio. Consequently, the
definition of EE in our context will be a reasonable proxy for what can be
achieved in a mMIMO system.

2Alternatively, one can optimize the precoders. However, the improved
performance comes at the expense of increased complexity. Therefore,
we focus on optimizing only power coefficients, which has lower
complexity [31].

throughput-independent power term P̄T (p)

P̄T (p) = ζ

L∑
l=1

Ks∑
i=1

pil + PC. (20)

A proof for this observation follows similar steps as described
in [9, Appendix B]. However, the problem of non-convexity
remains. To address it, we reformulate the problem in (19)
and develop an algorithm based on WMMSE [36] and
Dinkelbach’s algorithm [37], [38].

A. REFORMULATION OF THE OPTIMIZATION PROBLEM
We introduce the following new notation to reformulate the
problem in (19): cil =

√
pil, ∀i ∈ [Ks], l ∈ [L]. We further

define the following notation: ci = [ci1, . . . , ciL]T as the
vector of power coefficients of S-UE i from all S-APs, c =

[cT1 , . . . , cTKs ]
T as the vector of all the power coefficients

of all S-UEs from all S-APs, and gki = [gki1, . . . , gkiL]
T

as the vector of effective channels of all S-APs whose lth
entry corresponds to the channel component between hkl
and the precoder wil . Since there is dependency on both
indices, we have adapted the above notation for convenience.
We also let gki = E {gki} denote the mean of the effective
channel vector, g◦

ki = gki − gki denote the error in the

known effective channel vector, Akj = E
{
gkjgHkj

}
denote

the correlation matrix of the effective channel vector, and
bim = [biml, . . . , bimL]

T denote the vector of statistics of
the interference seen by P-UE m due to the signal sent to
the S-UE i from all the S-APs.

Using these notations, the received signal at S-UE k given
in (11) can be written as follows:

yk = cTk gkkqk + cTk g
◦
kkqk +

Ks∑
i=1,i̸=k

cTi gkiqi + dk . (21)

Similarly, the effective SINR of S-UE k in (13) can be
rewritten as

0k (c) =
|cTk gkk |

2∑Ks
i=1,i̸=k E

{
|cTi gki|

2
}

+ E
{
|cTk g

◦
kk |

2
}

+ σ 2
k

,

=
|cTk gkk |

2∑Ks
i=1 c

T
i Akici − |cTk gkk |

2 + σ 2
k

. (22)

Finally, the optimization problem in (19) can be restated as
follows in terms of the optimization vector c:

maximize
c

τdB
τc ln 2

∑Ks
k=1 ln (1 + 0k (c))

ζ ∥c∥2 + PC
(23a)

s.t.
Ks∑
i=1

c2il ≤ Pmax, ∀l ∈ [L], (23b)

cil ≥ 0, ∀i ∈ [Ks]; ∀l ∈ [L], (23c)
L∑
l=1

Ks∑
i=1

c2ilbiml ≤ IT , ∀m ∈ [Kp]. (23d)
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The optimization problem in (23) is still non-convex due
to the non-convexity of the objective function. To deal
with this non-convexity, we will adopt the methodology of
Dinkelbach’s algorithm [38]. For the discussions to follow
we ignore the constant terms τdB

τc ln 2
as these terms do not

affect the optimal power coefficients. We study the impact of
additional QoS constraints of (minimum S-UE rates) on EE
in Section V-C.

B. WMMSE-BASED DINKELBACH’S ALGORITHM
In this section, we propose an iterative algorithm based on
Dinkelbach’s approach to solve the optimization problem
in (23). In each iteration of Dinkelbach’s algorithm, the
sub-problem to be solved is non-convex. To tackle the non-
convexity, we reformulate the non-convex objective function
by making use of the duality between the SE and the
WMMSE. This leads to a three-step iterative coordinate
ascent algorithm within each iteration of Dinkelbach’s
algorithm.

1) DINKELBACH’S SUBPROBLEM
In order to use the Dinkelbach’s approach for the fractional
objective function in (23a), we define

f1(c) =

Ks∑
k=1

ln (1 + 0k (c)) , f2(c) = ζ ∥c∥2 + PC,

(24)

and define the function that we need for Dinkelbach’s
subproblem,

F(c; λn) = f1(c) − λnf2(c), (25)

where λn is the Dinkelbach’s parameter in iteration n. Then
for a given λn, we define the subproblem Pn,

Pn : maximize
c

F(c; λn)

s.t. (23b), (23c), and (23d). (26)

Note that the function f2(c) in (25) is convex in c (ζ
is positive constant). However, the function f1(c) is not
concave. To tackle this, we resort to duality between sum SE
and WMMSE.

2) REFORMULATION OF F (C; λN) IN TERMS OF WMMSE
Given a linear combiner µk of the intended data symbol qk at
S-UE k , the MSE is

ek (µk , c)

= E
{
|µ∗

kyk − qk |2
}

= |µk |
2

(
K∑
i=1

cTi Akici + σ 2
k

)
− 2Re

{
µk (gHkk )

}
ck + 1.

(27)

We can compute the linear-MMSE (LMMSE) estimator µL
k

in closed form:

µL
k = cTk gkk

( Ks∑
i=1

cTi Akici + σ 2
k

)−1

, ∀k ∈ [Ks].

(28)

The corresponding MMSE emin
k (c) is

emin
k (c) = 1 −

|cTk gkk |
2∑Ks

i=1 c
T
i Akici + σ 2

k

=

∑Ks
i=1 c

T
i Akici − |cTk gkk |

2
+ σ 2

k∑Ks
i=1 c

T
i Akici − |cTk gkk |

2 + σ 2
k + |cTk gkk |

2

=

(
1 +

|cTk gkk |
2∑Ks

i=1 c
T
i Akici − |cTk gkk |

2 + σ 2
k

)−1

= (1 + 0k (c))−1 . (29)

The last step in (29) establishes the exact relation
between the MMSE and the SINR of S-UE k . Therefore,
solving the following WMMSE problem is equivalent to
maximizing the SE:

maximize
c,vk ,µk

− vkek (µk , c) + ln vk . (30)

This can be seen as follows: the optimal {µk} for given c,
{vk} are given in (28), the optimal vk = 1/ek for given c, {µk}

and substituting the optimal vk and µk , the problem in (30)
reduces to solving

maximize
c

ln
(
emin
k (c)−1

)
, (31)

which is equivalent tomaximizing the SE.We now extend this
framework and generalize it to solve the subproblem in (26)

maximize
c,v,µ

Ks∑
i=1

−viei(µi, c) + ln vi − λn

(
ζ ∥c∥2 + PC

)
(32a)

s.t.
Ks∑
i=1

c2il ≤ Pmax, ∀l ∈ [L], (32b)

cil ≥ 0, ∀i ∈ [Ks]; ∀l ∈ [L], (32c)
L∑
l=1

Ks∑
i=1

c2ilbiml ≤ IT , ∀m ∈ [Kp], (32d)

where v = [v1, . . . , vKs ] and µ = [µ1, . . . , µKs ].

3) COORDINATE ASCENT ALGORITHM
The advantage of the formulation in (32) is that the problem
is now convex in each of the optimization variables when the
other two variables are fixed. So the steps involved in solving
the problem are:

1) The optimal solution of µ for a given c and v is

µk = cTk gkk

( Ks∑
i=1

cTi Akici + σ 2
k

)−1

, ∀k ∈ [Ks].

(33)
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2) The optimal solution of v for given c and µ is,

vk = ek (µk , c)−1, ∀k ∈ [Ks]. (34)

3) To obtain the solution of c for a givenµ and v, we solve
a quadratically-constrained-quadratic-programming
(QCQP) problem. In order to formulate the QCQP
problem, we let Q0 ∈ CKsL×KsL , Q̄l ∈ CKsL×KsL

and Q̃m ∈ CKsL×KsL be block diagonal matrices.
We define the k th block of these matrices as follows:

[Q0]kk =

Ks∑
j=1

vj|µj|
2Ajk + λnζ I,

[Q̄l]kk = diag(0, · · · , 0, 1, 0, . . . , 0),

[Q̃m]kk = diag(bkm1, · · · , bkmL), (35)

where diag(·) is a diagonal matrix whose diagonal
entries are the elements of the argument, and [Q̄l]kk is
a diagonal matrix with only one nonzero entry at index
(l, l). Also, let r0 ∈ RKsL be a block vector whose k th

block entry equals vkR{µkg∗
kk}. Then the solution of c

for a given µ and v is obtained as the solution of the
following QCQP problem:

maximize
c

− cTQ0c + 2rT0 c (36a)

s.t. cT Q̄lc ≤ Pmax, ∀l ∈ [L], (36b)

cli ≥ 0, ∀i ∈ [Ks]; ∀l ∈ [L], (36c)

cT Q̃mc ≤ IT , ∀m ∈ [Kp]. (36d)

We can solve the QCQP problem in (36) efficiently
using convex optimization algorithms, for example,
an interior-point method.

The overall WMMSE-based Dinkelbach’s algorithm to
solve (32) is given in Algorithm 1. We note that the
objective function in (32) converges as it produces a sequence
of increasing function values with each iteration and the
objective is upper bounded. For proof of the convergence,
refer to Appendix B.

Algorithm 1 Sequential WMMSE-Dinkelbach’s Algorithm

Initialize ϵ > 0; n = 0; λn =
f1(cn)
f2(cn)

; where cn is any
feasible point.

Repeat
(i). For given λn, solve the subproblem Pn in

(32) iteratively using (33), (34), and (36),
until convergence;
Let the solution be c∗

n;

(ii). λ(n+1) =
f1(c∗

n)
f2(c∗

n)
;

(iii). n = n+1;
Until F(c∗

n; λn) ≤ ϵ

The Dinkelbach’s WMMSE algorithm can be applied to

any precoder. For MR precoding, wil = ĥil/
√

E{∥̂hil∥2},
we can compute the entries of the matrix {Aki}, ∀k, i ∈

[Ks] in closed form; the details are in Appendix A.
Furthermore, the interference coefficients are given by biml =

Tr(R̂ilDps-ml)/Tr(R̂il).

IV. POWER CONTROL FOR MR PRECODING AND OTHER
ALTERNATIVE METHODS
In this section, we focus on MR pecoding and develop a
power allocation algorithm with lower complexity. We also
introduce the heuristic power allocation policies. Finally,
we also provide the computational complexity of all the
algorithms.

A. POWER CONTROL FOR MR PRECODING
We start by an algorithm that is specifically applicable to
MR precoding (this algorithm was also described in [1]).
We define the following two quantities:

akil = E
{
hHklwil

}
=

Tr(R̂ilRkl)

Tr(R̂il)
,

bkil = V
{
hHklwil

}
=

Tr(qRikl)√
Tr(R̂il)

, (37)

where qRikl = E
{̂
hil ĥHkl

}
. Using this notation, we can rewrite

the numerator of the EE i.e, the sum SE, as the difference
between two concave functions, i.e.,

∑Ks
k=1 SEk = f1a(p) −

f1b(p) where

f1a(p)=
Ks∑
k=1

log2

 Ks∑
i=1

L∑
l=1

pilbkil+
Ks∑
i=1

∣∣∣∣∣
L∑
l=1

√
pilakil

∣∣∣∣∣
2

+ σ 2
k

 ,

(38)

and

f1b(p)=
Ks∑
k=1

log2

 Ks∑
i=1

L∑
l=1

pilbkil +
Ks∑
i̸=k

∣∣∣∣∣
L∑
l=1

√
pilakil

∣∣∣∣∣
2

+ σ 2
k

 .

(39)

We note that the sum SE is not a concave function of
p; however, the functions f1a and f1b are concave for MR
precoding. To approximate the sum SE with a concave
function, we start by upper bounding f1b(p) by the function
f̄1b(p) to obtain a concave lower bound on the sum SE:

Ks∑
k=1

SEk = f1a(p) − f1b(p) ≥ f1a(p) − f̄1b(p;p0), (40)

where f̄1b(p) is the first-order Taylor series expansion of
f1b(p) evaluated at the point p0.
Now to solve the modified EE problem, we define the

following two functions required to define Dinkelbach’s
subproblem:

f1(p;p0) = f1a(p) − f̄1b(p;p0),

f2(p) = ζ

Ks∑
i=1

L∑
l=1

pil + PC. (41)
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Thus, the function that we need for Dinkelbach’s subproblem
is:

F(p;p0, λn) = f1(p;p0) − λnf2(p). (42)

In the case of MR precoding, the function (42) is
concave [1], however, this is not true in general for other
precoders. The overall optimization problem that we are
solving is to maximize a lower bound on the EE (42).
In this approach, we propose an algorithm that uses the MM
approach to obtain a concave lower bound on the sum SE,
and then uses Dinkelbach’s approach to solve a fractional
problem. Therefore, we will call the algorithm in this paper
the MM-based Dinkelbach’s algorithm.

Using a similar argument as for the WMMSE-based
Dinkelbach approach, we conclude that with the MM-based
Dinkelbach algorithm the objective of the optimization
problem converges.

B. HEURISTIC METHODS
In this section, we present some alternative heuristic power
allocation policies. First, we note that all constraints in (19)
are linear. We represent the linear constraint in matrix/vector
notation as Tp ≤ s, where T and s contain the scaling
coefficients and thresholds, respectively. We now present
three different methods.

1) POWER ADAPTATION USING PROJECTION/SCALING
We can adapt any existing heuristic power allocation policy to
the systemmodel discussed in this paper using a projection or
scaling approach. One way to implement a projection-based
method is by projecting the power coefficient vector onto the
feasible set defined by the constraints in (19). Mathemati-
cally, this projection for some given p̄ can be expressed as:

p = argmin
p

∥p − p̄∥
2 , s.t. Tp ≤ s. (43)

Alternatively, we can adopt a scaling-based power alloca-
tion policy within the system model. This approach involves
iteratively scaling the power coefficient vector with a scaling
factor 0 < η < 1 to meet the constraints, that is, Tp ≤ s.
This can be achieved by iterating the following assignment:

p := ηp. (44)

The scaling process is repeated until the resulting
power coefficient vector satisfies the given constraints. This
approach enables the incorporation of any existing heuristic
power allocation policy into the system model, without
having to solve any optimization problem.

2) PROJECTED GRADIENT METHOD FOR MAXIMIZING EE
In this section, we introduce the projected gradient ascent
(PGA) method for solving the non-linear EE problem in (19).
PGA is an iterative algorithm designed to solve (19).
In iteration k , the following steps are performed:

1) Compute an intermediate update for the power coeffi-
cient vector as:

p̄k = pk−1 + αk∇EE(pk−1). (45)

2) To compute the power coefficient vector pk we project
onto the constraint set by solving the following
optimization problem:

pk = argmin
p

∥p − p̄k∥2 , s.t. Tp ≤ s. (46)

In the above equations, pk represents the power coefficient
vector at iteration k . The initial point p̄0 for the algorithm is
chosen from the feasible set. The step size αk is determined
using a backtracking algorithm [39]. The gradient of EE(p)
evaluated at the point p̄k is denoted by ∇EE(p̄k ). The
optimization problem in (46) aims to select the power
coefficient vector from the feasible set that is closest in
Euclidean distance to the power vector obtained using the
gradient ascent update in (45). We repeat these steps until the
objective converges.
Remark on complexity: Solving the convex optimization

problems in (23) and (42) is the major contributor to
the complexity of the proposed WMMSE based and MM
methods. When interior point method is employed the
complexity is of the order of O(γ 0.5

1 (γ1 + γ2)γ 2
2 ), where

γ1 = (1 + Ks)L + Kp and γ2 = LKs [40]. We note
that the WMMSE-based method has additional complexity
of outer iterations to solve for the auxiliary optimization
variables, {µk , vk} when compared to the MM based method.
The number of required iterations depends on the initial
point. Similarly, the projection-basedmethod, which involves
iteratively solving convex quadratic problems, also has the
same complexity order as the WMMSE based approach.

V. NUMERICAL RESULTS
We evaluate the performance of the proposed power allo-
cation schemes: the sequential WMMSE-based Dinkelbach
algorithm, and the sequential MM-based Dinkelbach’s algo-
rithm, through numerical simulations. We also compare the
performance with other heuristic power allocation policies
suitable for CF-mMIMO and adapt them to satisfy the
constraints. We consider a secondary CF-mMIMO network
in an outdoor square area of 125 m × 125 m, and a PN with
users distributed in an outdoor area of 100 m × 100 m. The
S-APs are placed on the border of the service area with equal
spacing, and at a vertical height of 5m above the ground. The
S-UEs are uniformly distributed in the square area. Similarly,
P-UEs are uniformly distributed in the PN area and the PN
base station is located in the center of this area with a vertical
height of 5 m above the ground. The SN and PN are placed
diagonally opposite in overall square setup of 250 m×250 m
and one instance of the simulation setup is shown in Fig. 2.
The thermal noise variance and path-loss between S-APs and
S-UEs are modeled as ς2 = −174+ 10 log10(B)+NF dBm
and the large-scale fading coefficient is modeled βkl =

−30.5+36.7 log10(dkl/1 m)+10 log10(zkl) dB, respectively,
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FIGURE 2. An instance of the simulation setup.

FIGURE 3. Comparison of proposed and equal power allocation schemes
with EE versus Pmax at S-APs for different normalized interference
thresholds IT /ς2.

where B = 20 MHz, noise figure NF = 9 dB and zkl
captures the log-normal shadowing andwe chose the standard
deviation to be 4 dB. The same path loss model is considered
between P-UEs and S-APs. We consider τc = 2000, τp = 8,
ξ = 0.25 W/(Gbit/s), ζ = 1.4, and PC = 1 W . We set
L = 6,N = 4,Ks = 4,M = 5, and Kp = 4.
In the plots, we denote the WMMSE-based Dinkelbach’s

algorithm by wmmse, the MM-based Dinkelbach’s algorithm
bymm, equal power allocation by equal, and results generated
without interference constraints by no int. constraint. The
equal power allocation policy we compare with is as follows:

pil = min

{
Pmax

Ks
,
IT
V1

, . . . ,
IT
VKp

}
, Vm ≜

L∑
l=1

Ks∑
i=1

biml .

(47)

We also assume that the P-BS employs MR precoding and
MMSE channel estimation {̂upp-i, i = 1, . . . ,Kp}. Then
D̄p can be computed as follows,

D̄p =

Kp∑
i=1

D̂pp-i

Tr
(
D̂pp-i

) , (48)

where D̂pp-i = E{̂upp-îuHpp-i} and ûpp-i is the MMSE channel
estimate of upp-i at the P-BS.

To study the affect ofM on the performance of the S-UEs:
note that M only affects the interference component, say σ̄ 2

k
of σ 2

k , in the optimization problem. From Section II-B, this is
given by

σ̄ 2
k = Tr

(
D̄pDsp-k

)
. (49)

With the uncorrelated channel model and MR precoding,

we have D̄p =
Kp
M IM (as D̂pp-i = β̂pp-iIM , with β̂pp-i being

the variance of each element of the corresponding channel
estimate vector ûpp-i) and Dsp-k = βsp-kIM , where βsp-k is the
corresponding path loss coefficient. This implies that

σ̄ 2
k = Kpβsp-k (50)

holds. Therefore, the average interference posed by P-BS to
S-UEs is independent of M . Even with correlated channel
models and other precoding schemes, we have seen through
simulations that M does not cause any noticeable change in
the performance.

In Fig. 3, we report the results of EE versus Pmax for
different interference threshold values normalized by the
noise power IT /ς2. The performances of both proposed
methods, i.e., the WMMSE- and MM-based Dinkelbach
algorithms, are plotted along with that of the equal power
allocation scheme. For the proposed algorithms, the EE
increases as Pmax increases for small values of Pmax
and saturates for large Pmax. The EE versus Pmax curve
has three regions of operation: power constrained region,
interference constrained region and EE constrained region.
In the power constrained region, the EE is constrained by
Pmax and increases with increasing Pmax; in other words,
the power constraint is active. In the EE constrained region,
the transmission with higher power is limited by the EE,
though the power and interference constraints are inactive.
We can observe this with the performance of the proposed
algorithms with no interference constraint. We see that equal
power allocation decreases after a certain Pmax because the
SE increases logarithmically and the sum power increases
linearly, i.e., the gain in sum SE is much less than the increase
in Pmax.

In Fig. 3, we observe that the proposed WMMSE- and
MM-based algorithms offer superior performance over equal
power allocation. Especially, the performance gap is larger
in the EE-constrained region. This is because the algorithms
allocate power coefficients that maximize EE and hence after
a certain threshold, the algorithms do not allocate any further
power as that would decrease the EE. On the other hand,
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FIGURE 4. Comparison of proposed and equal power allocation schemes
with EE versus IT /ς2 at S-APs for different power budgets Pmax.

the equal power allocation in the EE-constrained region has
degrading performance; for instance, this behavior can be
seen in the plot with no interference constraint. We observe
that both the proposed methods have similar performance.
Furthermore, they perform significantly better than the equal
power allocation. The figure also shows the performance with
regularized R-ZF (denoted by r-zf in Fig. 3) given by

wil =
w̄kl√

E
{
∥w̄il∥

2} (51)

where w̄kl is the kth column of the matrix

W̄l = Ĥl

(
ĤH
l Ĥl + αI

)−1
(52)

and Ĥkl ≜ [̂h1l, . . . , ĥKsl], where α ≥ 0 is regularizing
parameter. For the simulation, we set α = 5. We observe that
at low Pmax, the performance of R-ZF is inferior to that of the
MR approach. However, as Pmax increases, the performance
of R-ZF improves rapidly. Specifically, in the unconstrained
case, there is a clear EE gain at high SNR levels. Conversely,
with an interference constraint of IT /ς2 = −3 [dB], the
increase in EE is bounded.

In Fig. 4, we report the results of EE versus IT /ς2 for
different values of Pmax. We observe that with an increase
in the interference threshold IT /ς2 there is a significant
gain in the performance over the equal power allocation
policy. We also note from the plot that the EE-constrained
region is observed only with the equal power allocation
policy when the interference constraint is inactive. This plot
provides complementary insights into performance compared
to Figure 3.

In Fig. 5, we report the EE versus Pmax for different values
of IT /ς2 under pilot contamination. For this specific plot,
to obtain substantial impact of pilot contamination on the
performance, we set the simulation parameters to Ks = 10
and Kp = 8; this amounts to a total of 60 optimization
variables and 78 constraints (power budget per S-AP,
interference threshold at each P-UE and non-negativity of the
power coefficients) and as such the system is highly loaded.
For the case of pilot contamination, we considered τ1 = 5,
τ2 = 2, τ3 = 6. Further, pilots assignment to P-UEs and
S-UEs are done as described in [41]. We observe that the pilot
contamination degrades the S-UEs performance, as expected.

FIGURE 5. EE versus Pmax at S-APs for different IT /ς2 with pilot
contamination.

However, the relative performance of themethods remains the
same.

A. COMPARISON WITH STATE-OF-THE-ART POWER
ALLOCATION SCHEMES
Wewill now compare the performance of theWMMSE-based
algorithm with state-of-the-art power allocation policies. The
first one is the scalable distributed power allocation for
CF-mMIMO networks described in [42]. It is given by

pkl = Pmax
(βkl)δ∑Ks
i=1(βil)

δ
(53)

where the parameter δ ∈ [−1, 1] controls the power
allocation behavior. We will use δ = 0.5 as it is shown in [42]
that the power allocation with δ = 0.5 is a good heuristic for
maximizing the SR. When δ = 0, we get the equal power
allocation scheme.

Although the power allocation policy in (53) satisfies the
power constraint (19b), it may not satisfy the interference
constraints. In order to adapt any power allocation policy
to satisfy the constraints in (19), we use the projection and
scaling approach discussed in (43) and (44). We use the
scaling factor η = 0.99 in the simulation results.
The next algorithm we compare with is the PGA method

discussed in Section IV-B2. The final algorithm that we
will compare with is the MM-based approach without an
interference constraint. The so-obtained power coefficients
are adapted to satisfy the interference constraint by scaling
and projecting the power coefficients to the constraint space.
The algorithm is analogous to the coordinate descent-based
algorithm presented in [10].
For the simulation plot in Fig. 6, we will label the power

allocation policy (53) by projecting and scaling as cf power
(proj) and cf power (scaling), respectively. We will use pga
for the PGA method. Finally, we denote the MM-based
algorithmwithout interference constraints and adapting using
projection by modified mm (proj), and adapting by scaling
by modified mm (scaling). The reason for the label modified
mm is that the power coefficients are computed using
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FIGURE 6. Comparison of different power allocation schemes with the
proposed WMMSE algorithm through EE versus Pmax at S-APs for
IT /ς2 = −3 dB, η = 0.99.

the MM-based Dinkelbach’s algorithm without interference
constraints.

The performance of any other competing algorithm cannot
always be guaranteed to be optimal due to the non-convex
nature of the problem, unless a method to compute the global
optimum exists of which to the best of our knowledge we are
unaware. Furthermore, the proposed method depends only on
statistics, which means the optimization is carried out once or
very infrequently, as long as the statistics of the channels do
not change substantially. This optimization can be performed
at the CPU and the optimized power coefficient can then be
distributed to the APs of the secondary network. Therefore,
our approach is suitable in applications and scenarios where
the assumption of relatively constant channel statistics holds
true rendering continuous resource-intensive calculations not
a bottleneck.

In Fig. 6, we plot the EE versus Pmax and compare
the performance of the various methods. We first note that
the WMMSE-based approach performs best for all values
of Pmax. The best among the alternative algorithms is the
PGA method. For a fair comparison, the initial starting point
of both the WMMSE-based algorithm and the PGA method
are set to the same. The advantage of the PGA method is that
we only need to compute the gradient and avoid second-order
derivatives. However, the technique requires projection onto
the constraint space in every iteration of the algorithm.

Furthermore, as the objective is non-convex, the PGA
algorithmmay not converge for some initial points. The other
good heuristic power allocation policy (53) that we adapted
by projecting onto the constraint space (43) has a significant
performance gain over the equal power allocation policy.
The reason is embedded in the observation that this scheme
maximizes the sum SE [31] and thus improves EE. We notice
that heuristic power allocation schemes adapted by scaling
the power coefficients have inferior performance compared to
their projection-based counterparts, albeit better performance
than that of the equal power allocation policy. The advantage
of the scaling-based algorithms is that we avoid solving the
optimization problem in (43), which otherwise is required
for the projection. We also compare the same methods as in
Fig. 6, with IT /ς2 = −20 dB. We observe that the relative
performance remains the same. However, the performance

FIGURE 7. Maximum total power (scaled by (ζ/PC)) allocated by the
WMMSE method under different interference thresholds IT /ς2 and
Pmax = 30 dBm.

gap to the WMMSE-based algorithm is relatively larger than
when the interference constraint is stringent.We also note that
the performance of the scaling-based schemes is inferior to
that of the projection-based counterparts.

B. COMPARISON OF SUM-RATE MAXIMIZATION AND EE
FORMULATION
In this section, we discuss a few interesting parallels between
EE maximization and SR maximization, which is a widely
used utility function for communication systems. By SR we
mean bandwidth times sum SE. The first important feature
to note is how both cost functions, i.e., EE and SR, behave
with an increase in Pmax at each AP. The SR increases
monotonically with an increase in the total per-AP power
budget, Pmax. However, the EE increases with an increase in
total power only up to a certain threshold. After that, the gain
in SR is minimal, with a significant increase in power causing
the EE to decrease.

With very strict interference constraints (or when the
power budget is very low), the power allocated by the
S-APs to the S-UEs reduces, and when (ζ/PC) ∥c∥2 ≪ 1,
the total power consumed in (23) becomes P̄T (p) ≈

PC, which is approximately independent of the power
coefficients. In this situation, the optimal power coefficients
that maximize the SR also maximize the EE. Thus, depending
on the interference threshold one can reduce the complexity
of solving for the power coefficients by solving a sum
SE maximization problem instead. We can solve for the
SR as a special case of methods already proposed for EE
maximization, i.e., theWMMSE- andMM-based Dinkelbach
algorithms by substituting ζ = 0 and PC = 1.
In Fig. 7, we validate that under tighter interference

constraints, the total power allocated by all the S-APs is very
small. The plots in figure demonstrate that with IT /ς2 =

−10 dB, almost 100% of the setups have a total allocated
fractional power of less than unity i.e., (ζ/ PC) ∥c∥2 ≪ 1.
Similarly, with IT /ς2 = −5 dB, we observe that 85%
of the setups satisfy the condition. Under such operating
regimes, the solution of the SR maximization will have an
EE comparable to that of the proposed EE maximization
algorithms, which can be seen in Fig. 8.
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FIGURE 8. EE versus Pmax at S-APs for different interference thresholds
IT /ς2 to compare power coefficients of the WMMSE based algorithm and
those obtained through SR maximization.

In Fig. 8, we plot the EE versus Pmax to compare the
power coefficients computed through SR maximization with
the EE maximization. For SR maximization, we use the
proposed WMMSE based Dinkelbach’s algorithm and set
ζ = 0 and PC = 1; we denote this method by sr wmmse
in the plot. When Pmax is very small then performances
with the power coefficients obtained through maximizing SR
and EE are comparable, as the condition (ζ/PC) ∥c∥2 ≪ 1
is satisfied. After certain Pmax, with no interference con-
straint the performance of power coefficients obtained by
maximizing SR degrades in terms of EE because SE
increases logarithmically with Pmax whereas the total power
consumption increases linearly. With IT /ς2 = −3 dB, the
EE with SR maximizing coefficients reaches a peak and
then decreases as Pmax increases due to transmission with
higher power. A further increase in Pmax saturates the EE
due to limitations in the power imposed by the interference
constraint. However, with IT /ς2 = −10 or −20 dB, the
condition (ζ/PC) ∥c∥2 ≪ 1 is satisfied for all values of Pmax
that are of interest. Therefore, power allocation obtained to
maximize EE and SR performs similarly.

C. QUALITY-OF-SERVICE CONSTRAINT
The main challenge for an underlay SN is to ensure a
minimal QoS to S-UEs while maintaining the interference
to PN within permissible levels. To provide minimum QoS
to S-UEs, we can impose a minimum SE constraint as an
additional constraint to (19). We can model the minimum SE
constraint, SE◦

k , as a conic constraint as

SE◦
k ≤

τd

τc
log2 (1 + 0k (c))

ρk ≤
|cTk ḡkk |

2∑Ks
i=1 c

T
i Akici − |cTk gkk | + σ 2

k

,

∥∥∥∥[B1/2
k c
σk

]∥∥∥∥
2

≤

√
1 + ρk

ρk
cTk ḡkk , ∀k ∈ [Ks], (54)

where

ρk ≜ 2
τcSE◦

k
τd − 1 ≥ 0,

B1/2
k = blkdiag(A1/2

k1 , · · · ,A1/2
kKs ). (55)

FIGURE 9. EE versus Pmax at S-APs for IT /ς2 = −3 dB with SE◦

k = 1 bpcu.

We note that each constraint in (54) is a second-order
cone and hence is convex [43]. These constraints in
particular affect Step 3 of the coordinate ascent algorithm in
Section III-B3. Moreover, since these additional constraints
are convex, the optimization problem in (36) is convex.
Furthermore, from [43], we can cast a QCQP problem into a
second-order conic programming (SOCP). Thus, the overall
optimization problem in (36) along with the constraints
in (54) is a SOCP problem and thus, can be efficiently solved
using interior-point methods for conic problems. A proof
of convergence is given in Appendix B (in the proof Z
represents the feasible set defined by the convex constraints
defined in (32) and (54)).

We add these constraints in (54) to the optimization
problem in (23) and solve it using the proposed WMMSE
based approach. We illustrate the effect of the constraint (54)
on the performance through Fig. 9 and Fig. 10 for which
we set SE◦

k = 1 bpcu (bit/channel use), k ∈ [Ks]. In these
plots, curves labeled bywmmse noQoS show the performance
of the power allocation obtained by solving (23) without
the QoS constraint (54); curves labeled by wmmse with
QoS show the performance when we solve (23) with QoS
constraint using WMMSE based algorithm; curves labeled
by wmmse proj. (QoS) is the approach in which the solution
of (23) is projected on to the constraint space including (54);
and similarly equal proj. (QoS) represents the projection of
equal power allocation on the constraint space. In Fig. 9,
we plot EE versus Pmax, and observe that for lower values
of Pmax, the system is unable to provide minimum QoS to
all S-UEs. At high Pmax, there is a approximately a 15%
decrease in the performance with a QoS constraint compared
to the case with no QoS. Further, we observe thatwmmse with
QoS is comparable to wmmse proj. QoS and both approaches
perform better than equal proj. (QoS).

In Fig. 10, we plot a CDF of the achievable EE with and
without a QoS constraint and randomness is over different
user locations.We note that the QoS constraint has a profound
affect on the algorithms feasibility; specifically we note that
approximately 18% of setups are in outage when there is a
QoS constraint compared to the case with no QoS.

In Fig. 11, we plot Jain’s fairness for the per-user SE for
SN (average over setups),
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FIGURE 10. CDF of EE for IT /ς2 = −3 dB with SE◦

k = 1 bpcu.

FIGURE 11. Comparing SE fairness among S-UEs using Jain’s fairness
index.

FIGURE 12. EE versus Pmax at S-APs for different IT /ς2 = −3 dB with the
mixed setup.

E{(
∑Ks

k=1 SEk )
2/(
∑Ks

k=1 SE
2
k )}. We observe that the proposed

wmmse method with QoS provides better fairness among
users compared tomethods that have noQoS constraint and to
that obtained by projecting onto the constraint space. On the
other hand equal power allocation with projection achieves
the best fairness among S-UEs; however this comes at the
cost of a performance loss.

D. MIXED LOCATION SCENARIO
Finally, in Fig. 12, we demonstrate that the methodology
developed in the paper can be applied to any configurations
of PN and SN network locations. We plot the average
EE versus Pmax with locations of PN and SN networks
overlapping and P-UEs/S-UEs are uniformly distributed in a
250 m × 250 m area, while all other parameters remain the
same. While the quantitative results may vary, the relative
performance remains similar. It may be required to adjust

certain parameters such as thresholds and maximum power
budgets to get reasonable performance.

VI. CONCLUSION
In this paper, we proposed power allocation policies that
maximize the EE of a secondary CF-mMIMO network in a
spectrum sharing scenario under constraints on the transmit
powers, on the average received interference power, and
on minimum per-user rates. Specifically, we developed two
iterative algorithms, namely, a WMMSE-based Dinkelbach
algorithm that is applicable to any transmit precoder, and an
MM-based Dinkelbach algorithm for MR precoding that has
less complexity. We also provided computationally simple,
heuristic power allocation policies for the problem at hand.
Our numerical results demonstrated that the two proposed
iterative algorithms achieve a significant performance gain
over the other methods. The results also showed that having
minimum-rate constraints reduces the maximum EE but on
other hand improves fairness among users.

APPENDIX A: CLOSED-FORM TERMS FOR THE MR
PRECODER
With MR processing, we can derive close form expressions
for Aki = E{gkigHki }. Recall that qRikl = E

{̂
hil ĥHkl

}
=

√
ηs-kηs-iτpRil9

−1
tk l Rkl = qR

H
kil , also note that qRikl = R̂kl for

k = i. The parameters of theWMMSE can be computed from
parameters of the MM method

Aki = diag(bki) + akiaHki , ∀k, i = 1, . . . ,Ks (56)

where diag(bki) is a diagonal matrix with (r, r) entry being
bkir , ∀r ∈ [Ks] and aki is a vector with jth entry being
akij, ∀j ∈ [Ks].
Now the other term required for simulation is gki which is

given as ḡkil =
Tr(qRikl )√
Tr(R̂il )

Ii∈Spk for k ̸= i and ḡiil = Tr(R̂il)1/2

for k = i, where Ii∈Spk is an indicator function which is equal
to one when i ∈ Spk otherwise it is zero.

APPENDIX B: CONVERGENCE PROOF FOR THE
WMMSE-BASED DINKELBACH’S ALGORITHM
The sequence of objective function values in Algorithm 1
converges to a limit, since this sequence is non-decreasing,
and uniformly bounded from above by a constant.

In more detail, we explain this as follows. Consider the
optimization problem in (32). Let z = {c, v, µ} ∈ Z
represent single vector encompassing all the optimization
variables, whereZ is the feasibility set defined by the convex
constraints in (32). Also, note that the power coefficients
vector c is bounded. Let

f (z) =

Ks∑
i=1

−viei(µi, c) + ln vi + Ks, (57)

and recall that

f2(z) = ζ ∥c∥2 + PC, PC ≥ 0. (58)
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Note that for µ given in (33) and v given in (34), f (z) = f1(z)
(i.e., sum SE) given in (24). Also let,

F̄(z; λ) = f (z) − λf2(z) (59)

The algorithm has two loops: the outer loop, which we will
call Dinkelbach’s part, iterates over λ, and the inner loop,
which wewill call theWMMSE part, uses a coordinate ascent
method for a given λ. In the outer loop, only λ is updated,
while in the inner loop, the optimization vector z is updated.
We denote z̃mn ∈ Z as the value of z during the outer loop
iteration n and the inner loop iterationm. Similarly, we denote
λn as the value of λ during the outer loop iteration n. The
algorithm is initiated with some z̃00 ∈ Z . Moreover, we denote
zn as the value of z̃mn when the WMMSE part converges, and
then we set λ(n+1) =

f (zn)
f2(zn)

≥ 0 for the outer loop. To prove
the convergence of the proposed algorithm, we first prove the
convergence of the WMMSE part and then the convergence
of Dinkelbach’s part.

CONVERGENCE OF INTERNAL LOOP: WMMSE PART
For a given outer loop iteration n, the algorithm involves an
inner loop comprising three sub-steps. For ease of notation,
we shall drop the outer loop index n. Let z̃m = {̃cm, ṽm, µ̃m}

for the inner loop iteration m. The first sub-step for a given
{̃cm, ṽm} is:

µm
◦ = argmax

µ
F̄ (̃cm, ṽm, µ; λ). (60)

In the second step for a given
{̃
cm, µm

◦

}
is

vm◦ = argmax
v

F̄ (̃cm, v, µm
◦ ; λ), (61)

and in the third step for a given
{
vm◦ , µm

◦

}
, we update c by

cm◦ = argmax
c∈Z

F̄(c, vm◦ , µm
◦ ; λ). (62)

Thus, the following holds,

F̄ (̃cm, ṽm, µ̃m
; λ) ≤ F̄ (̃cm, ṽm, µm

◦ ; λ) ≤ F̄ (̃cm, vm◦ , µm
◦ ; λ)

≤ F̄(cm◦ , vm◦ , µm
◦ ; λ)

= F̄ (̃zm◦ ; λ), (63)

where, z̃m◦ = {cm◦ , vm◦ , µm
◦ }.

Moreover, using (27)-(31), we have F̄ (̃cm, vm◦ , µm
◦ ; λ) =

f1 (̃cm) − λf2 (̃cm). This implies, using (62), that we maximize
the difference of the sum SE, and term that is which is
directly proportional to the square-norm of the transmit power
coefficients vector. Since, the power coefficients are bounded,
F̄ (̃zm◦ ; λ) ≤ B0 is also upper bounded by some positive
constant B0. At iteration, m + 1, we set z̃(m+1)

= z̃m◦ . Thus,
we obtain a monotonically increasing sequence {F̄ (̃zm; λ)}
and at iteration m+ 1 the following holds

F̄ (̃zm; λ) ≤ F̄ (̃z(m+1)
; λ) ≤ B0. (64)

Therefore, the internal loop converges andwe terminate when
F̄ (̃z(m+1)

; λ) − F̄ (̃zm; λ) ≤ ϵ for some ϵ > 0.

CONVERGENCE OF OUTER LOOP: DINKEBACH’S PART
For the convergence of WMMSE part, we adapt the
methodology presented in [38]. For the outer loop
iteration n

F̄(zn; λn) = f (zn) − λnf2(zn). (65)

Now consider two important properties of F̄(zn; λn) that
we will use for the convergence proof.

1) F̄(λ) is continuous in λ, for a given z.
2) For λ2 ≥ λ1, F̄(λ2) ≤ F̄(λ1). Thus, F̄(λ) is a

decreasing function of λ.
3) The function in the outer loop, F̄(zn; λn) produces

nonnegative sequence of values because

F̄(zn; λn) ≥ F̄(z(n−1); λn) = 0. (66)

First inequality is due to the maximization of the
internal loop for given λn and z(n−1). The second
equality is because λn =

f (z(n−1))
f2(z(n−1))

.

Now consider the update rule of λ:

λ(n+1) =
f (zn)
f2(zn)

= λn +
f (zn) − λnf2(zn)

f2(zn)
. (67)

From (67) and (66), the following holds

(λ(n+1) − λn)f2(zn) = F̄(zn; λn) ≥ 0. (68)

Since f2(zn) > 0, this implies that λ(n+1) > λn (unless the
outer loop has converged). Hence, {λn} is a non-decreasing
sequence with each outer iteration. This implies that the outer
loop produces non-increasing valued sequence of F̄(λn) and
further this sequence is lower bounded by zero. From the fact
that this function is continuous in λ and lower bounded, the
outer loop converges and we terminate the outer loop when
F̄(zn; λn) ≤ ϵ, for some ϵ > 0.
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