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ABSTRACT Recognizing anomalies is an extremely important process in data analysis, aimed at identifying
patterns in data that deviate from known norms or typical standards. These anomalies are often indicative of
significant, and sometimes critical, issues such as fraud, network intrusions, and system failures. Traditional
anomaly detection algorithms primarily focus on the attributes of individual observations within a dataset,
typically establishing a ‘normal’ profile and flagging deviations from this profile as anomalies. This paper
introduces an innovative enhancement to the Isolation Forest algorithm, a renowned method for anomaly
detection known for its effectiveness and efficiency, especially in large datasets. The Isolation Forest
algorithm operates by randomly partitioning the data space and constructing a binary tree, where the oddity
score of a data point is ascertained based on its separation from the extremity to the base of the structure,
enabling the autonomous detection of outliers in a completely unsupervised manner. The methodology
presented in the paper is based on repeatedly building Isolation Forest models on datasets from which
individual attributes are excluded. In our research, we used the SHAP (SHapley Additive exPlanations)
method which comes from game theory and is used to determine the impact of individual features on
the result of the model. When training the Isolation Forest on the full dataset, the SHAP method is used
to obtain the coefficients of influence of model attributes on the prediction result. Both negative and
positive influences are considered significant when counting the anomaly score. On the foundations of
the results from all sub-models, a weighted average is calculated, to which weights are calculated based
on the SHAP model. The comparative analysis of evaluation metrics revealed a substantial enhancement
attributed to the implemented methodology. The metrics used for evaluation have shown improvement in
most cases from 3.5 to 6 percent point. One of the metrics have shown an improvement of 12 percent.
Obtained results demonstrate that this integrated approach not only enhances the prediction accuracy of the
Isolation Forest algorithm but also offers a more interpretable understanding of the data. This advancement
in anomaly detection methodology promises significant implications for various fields where quick and
accurate detection of outliers is paramount.

INDEX TERMS Anomaly detection, outliers detection, isolation forest, shapley index, attribution exclusion.

I. INTRODUCTION
With technological advancement, society seeks to anticipate
situations that diminish the quality of life. Early disease
diagnosis and the foresight of potential electronic equipment
malfunctions can prevent detrimental health and life risks [1].
To address such kind of challenges, computer science
researchers develop anomaly detection algorithms to identify
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outlier observations. These algorithms usually process unla-
beled data, termed as unsupervised anomaly detection. Two
primary assumptions guide anomaly detection: Anomalies
are rare in the dataset, and their features significantly diverge
from normal instances.

Several methods exist for anomaly detection, including
density-based [2], [3], [4], [5], cluster-based [6], Bayesian-
network [7], and neural network techniques [8], [9], [10],
[11]. The isolation forest method, a popular topic of
discussion, offers diverse applications, ranging from spam
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filters [12], social network spam detection, [13], and faulty
detection [15] to various applications in medicine [16], [17].
Isolation Forest (IF) [18], [19], is an anomaly detection

algorithm, utilize binary trees for detecting anomalies.
Unlike traditional outlier detection methods, which focus
on measuring distances between points or belonging to
particular areas of a dataset based on the density of
observations, Isolation Forest isolates outlier elements by
randomly selecting features and dividing the values until the
individual observations are isolated. The IFmethod randomly
selects an attribute and then chooses a random division value
from the range between the smallest and largest instances of
that selected feature. The set space is consistently segmented
into subsets based on randomized partition values. These
steps are repeated until a single observation is isolated. The
number of splits needed to isolate an observation indicates its
anomaly; fewer splits indicate an outlier observation.

This algorithm boasts linear time complexity and minimal
memory requirements, accommodating large datasets. Its rise
in popularity stems from its unsupervised nature, capable
of handling unlabeled data sets. The algorithm divides the
data space with lines parallel to the standard basis, assigning
higher anomaly scores to data points requiring fewer splits
for isolation. The Isolation Forest algorithm has been imple-
mented across a multitude of industrial sectors, affirming
its versatility and effectiveness. Its applications extend to
anomaly detection in deepwater drilling data [20], fault
identification in wind turbines [21], solar power plants [22],
[23] and nuclear power facilities [24]. The flexibility of
the Isolation Forest is further illustrated by its adoption
in blockchain technology, particularly in the detection of
cyber attacks in real-time blockchain transactions [25]. It is
also employed to pinpoint anomalies in wireless sensor
networks [26] and to undertake the expansive task of
detecting anomalous behavior and patterns [27], [28], [29].
In the medical field alone, there are some examples of
applications like predicting chronic kidney disease [30], [31],
[32], [33].

To compare our propose, we have considered popular
anomaly detection techniques such as Isolation Forest,
HDBSCAN, neural networks, and autoencoders. They offer
diverse approaches and, depending on the dataset, yield good
results. However, sometimes it is beneficial to look at the
anomaly detection problem from a broader perspective so
that a single iteration of the algorithm on the data becomes
part of a more comprehensive methodology. We sought
efficient descriptive methods that could be used to gain
insight into how anomaly detection models operate, and
consequently, which components of the analyzed data are
particularly important to the model’s outcome, while others
have no impact or a negative impact on the result. Some
known descriptive methods do not have direct application in
anomaly detection task but only in multi-class classification.
However, a method that have proven to work excellently
with tree-structured algorithms is SHAP (SHapley Additive

exPlanations). SHAP is a method for explaining models
based on game theory [34]. It uses Shapley values - a concept
in game theory for assessing the ‘value’ of a participant’s
contribution in a multiplayer game - to ascertain the
significance of features in predictive models. SHAP values
operate under the premise that every feature entered into the
model contributes to the prediction to some extent. SHAP
calculates the importance of each feature by considering
every possible combination of features and measuring the
effect of adding or removing a feature on the prediction
score. The above approach gives intuitive as well as clear
explanations of the model. In the quest for interpretable
machine learning models, the SHAP model [35] emerges.
It assigns dataset attribute values, reflecting their influence on
the final prediction during the model’s learning phase. SHAP
is now widely used in medicine [36], [37] and computer
science, including anomaly detection [38].

In the realm of anomaly detection, the SHAP model
collaborates with machine learning models [39], [40]. This
collaboration aids in understanding feature impacts on model
outputs and occasionally guides maintenance engineers on
which factors deserve keen focus to prevent future issues [41],
[42]. Some studies have even utilized the tree SHAP
explanatory model, which has also been employed in this
work to elucidate the Isolation Forest model [43].
Although Isolation Forest currently has a plurality of

applications, it is being intensively studied for possible
improvements. One avenue of development may be to
note that IF focuses on isolating individual observations of
a dataset without paying attention to attribute properties.
Several ways to enhance the effectiveness of the isolation
forest by modifying the tree structure’s construction method
have already been developed [46], [48], but to the best
of our knowledge none of them involved interfering with
the features of the observations. Some Isolation Forest
development methods try to modify the way the tree is
created, such as using trees based on the k − means
algorithm [44] or minimal spanning tree algorithm [45]
instead of binary trees. There are also innovative works
focusing on extending the isolation forest technique with
methods based on fuzzy logic and granular computing [47].
Many classic anomaly detection methods, not based on

neural networks, give good results and high efficiency when
used in modern industrial problems, but they still give room
for development by creating larger, more complex anomaly
detection systems that utilize aggregation techniques to use
data from different models to maximize the results. There-
fore, descriptive analysis methods such as SHAP presented
in this work can be an excellent tool that, in cooperation
with existing techniques, can serve as feedback, providing
‘‘positive reinforcement’’ by maximizing the impact of
positive features and minimizing the impact of negative
features.

The motivation for this work is to develop the anomaly
detection technique using binary trees, known as Isolation
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Forest, by combining it with descriptive model techniques,
exemplified by the SHAP model. The aim of the study is
to demonstrate that the feedback provided to the algorithm
by the descriptive model during the learning phase can be
utilized in a way that takes into account the impact of data
on the result, enhancing the final prediction and leading
to greater accuracy and improved algorithm performance.
Additionally, other goals that guided the creation of this work
include developing new expansions of the Isolation Forest
method characterized by higher metrics for result evaluation,
and gaining a deeper understanding of dataset properties to
advance methods that reveal significant features within the
studied field. In this work, the SHAP method is employed
to assess the impact of dataset characteristics on the Isolation
Forest (IF) model’s final output during its training phase. The
IF model is trained for each scenario where a single attribute
is omitted from the dataset. Following this, the anomaly
scores obtained from the individual models are averaged
based on the weights derived through SHAP. This approach,
where the prediction is performed on the averaged vector,
consistently yields better results compared to the standard
baseline IF method.

It is worth noting that we assume that all these methods
that modify the way of building a forest can be adapted for
use with the descriptive method based on SHAP presented in
this article, because SHAP approaches the examined Isolation
Forest model as a black box fromwhich it obtains information
about the importance of individual attributes on prediction
results using SHAP.

The structure of the article is as follows: Section II
delves into the theory of the Isolation Forest and the SHAP
INDEX operation. Section III then presents a pioneering
approach that merges SHAP and Isolation Forest to enhance
anomaly detection. Subsequently, Section IV elucidates
the experimental results and draws conclusions. The final
section, Conclusions, wraps up the findings, highlighting
potential future trajectories and the novel applications of the
proposed approach.

II. THEORETICAL FOUNDATIONS OF SHAP AND
ISOLATION FOREST
In this section, we will delve more deeply into the scientific
theory underpinning the Isolation Forest algorithm as well
as its association with Shapley values. The isolation forest
algorithm used for anomaly detection consists of two stages.
In the first stage, a set of binary trees is constructed based
on the data. In the second stage, operations are performed to
read the properties of individual trees, specifically the path
lengths from the root to the leaf. Based on this information,
the anomaly score is determined. The SHAP model is
an approach derived from game theory, which serves to
determine the influence of players on the outcome of a game.
It is based on Shapley values. In the context of machine
learning, it can be directly applied by treating the model’s
attributes as players in the game and the model’s output as the

game’s result. Additionally, the TreeExplainer model, which
is utilized for computing Shapley values, will be described.

A. THEORETICAL BACKGROUND OF ISOLATION FOREST
Consider a node T in an isolation tree. Such a node can be
categorized as either an external node, devoid of children,
or an internal node characterized by a singular condition and
precisely two child nodes, denoted as (Tl,Tr ). The defining
condition of an internal node involves an attribute q and a
corresponding split value p, orchestrating a division of data
points into Tl and Tr based on the criterion q < p.

In the construction of an isolation tree from a dataset X =
{x1, . . . , xn} comprising n instances, a recursive partitioning
strategy is employed. This involves random selection of an
attribute q and a split value p, which continues until the
emergence of one of the following scenarios:

(i) attainment of a predefined tree height,
(ii) reduction of X to a singular element,
(iii) uniformity in the attribute values within X .

An isolation tree exemplifies a proper binary tree structure,
each node of which either has no children or exactly two.
Under the assumption of distinct instances, each instance
becomes isolated in an external node upon full maturation of
the isolation tree. Consequently, the count of external nodes
equals n, while that of internal nodes is n− 1, yielding a total
node count of 2n− 1. This structure ensures a linear memory
requirement relative to n.

The primary objective in anomaly detection is to generate
a ranking reflective of anormality. An effective approach
entails ordering data points based on their path lengths or
anomaly scores, with top-ranked points signifying anomalies.
The definitions of path length and anomaly score are as
follows. The path length h(x) of a data point x is determined
by the quantity of edges traversed in an isolation tree from
the root to an external node. The challenge in anomaly
score formulation lies in the variance between the maximum
potential height of the isolation tree, which scales with n, and
the average height, which scales with log n. Consequently,
normalizing h(x) with either of these metrics presents
limitations in either bounding or comparability.

Given the structural parallel between Isolation Trees and
Binary Search Trees (BST), the estimation of average h(x)
at the termination at external nodes mirrors the unsuccessful
search scenario in a BST. Adopting analytical techniques
from BST, the average path length in an isolation tree for a
dataset of n instances is estimated as [50]:

c(n) = 2H (n− 1)−
2(n− 1)

n
(1)

where H (i) represents the harmonic number, approximated
by ln(i)+ 0.5772156649 (Euler’s constant).
Utilizing c(n) as the average benchmark for h(x), the

anomaly score for an instance x is delineated as:

s(x, n) = 2
−

(
E(h(x))
c(h)

)
(2)
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where E(h(x)) indicates the mean path length across multiple
isolation trees. In this context:
• As E(h(x)) approaches c(n), s gravitates towards 0.5.
• When E(h(x)) is minimal, s trends towards 1.
• Conversely, as E(h(x)) nears n− 1, s approaches 0.
Employing this anomaly score, s, facilitates the following

assessments:
(a) Instances yielding s values close to 1 are unequivocally

anomalous.
(b) Instances with s significantly below 0.5 can be safely

classified as normal.
(c) A uniform distribution of s around 0.5 across all

instances indicates an absence of pronounced anoma-
lies within the sample.

In the context of an Isolation Forest, which integrates
multiple isolation trees:
(a) Anomalies are identified as data points exhibiting

shorter path lengths.
(b) The ensemble of trees serves as a collective of

‘experts’, each targeting distinct anomalies.

B. SHAPLEY ADDITIVE EXPLANATIONS THEORY
Originating from game theory, the Shapley value method
is a classic technique that equitably allocates the total
payoff of a cooperative game among its participants [49].
Formally conceptualized, a cooperative game comprises a set
of players,M = {1, . . . ,M}, collectively referred to as the
grand coalition. The game is characterized by a set function,
v : 2M→ R, in which v(S) represents the payoff attributable
to any coalition S ⊆M, with the assumption that v(∅) = 0.

The computation of Shapley value for player i, denoted as
8i(v), involves a weighted mean of the player’s incremental
contributions across all conceivable coalitions:

8i(v) =
1
M

∑
S⊆M−{i}

(
M − 1
|S|

)−1
(v(S ∪ {i})− v(S)) . (3)

Notably, Shapley method is distinguished as the sole
approach that satisfies four axiomatic principles: Dummy,
Symmetry, Efficiency, and Linearity. This unique confluence
of axioms renders it a robust and equitable metric for
assessing contributions.

C. SHAP IN MACHINE LEARNING
Within the domain of machine learning, SHAP (SHapley
Additive exPlanations) values play a pivotal role in evaluating
the significance of each feature within a predictive model.
Specifically, for a feature denoted as j, the corresponding
SHAP value 8j quantifies the relative influence of the j-th
feature on the prediction outcome of a specific instance, com-
pared against the average prediction across the dataset [51].

The computation of SHAP values includes an exhaustive
analysis of the model’s predictive response across every
feasible permutation of feature combinations. As the feature
set expands, this computational task escalates in complexity,
often exponentially. In scenarios where models incorporate

a substantial number of features, the precise calculation of
SHAP values becomes impractical. Consequently, approxi-
mation methodologies are frequently adopted. [52] propose
an approximation technique employing Monte-Carlo sam-
pling. Assume that x is the data point, z is a randomly selected
data point from the dataset,M is the total number of samples,
and j is the feature index for which we are computing the
SHAP value. The vector xm

+j represents the instance where
feature j is taken from x and the remaining features are
taken from z. Conversely, xm

−j is similar to xm
+j but includes

the feature j from the sampled point xmj . using the notation
introduced above, the formula then has the following form:

8̂j =
1
M

M∑
m=1

(
f̂ (xm
+j)− f̂ (x

m
−j)

)
, (4)

where f̂ (xm
+j) signifies the prediction model’s output when

certain feature values are substituted with those from a
randomly selected data point z, with the exception of
feature j. The vector xm

−j closely resembles xm
+j, however,

it additionally incorporates the value xmj derived from
the sampled point. In essence, SHAP values, which are
extrapolated from Shapley values in game theory, offer
an intuitive and transparent framework for dissecting the
influence of individual features within a machine learning
model.

The SHAPTreeExplainer [53] is an algorithmic framework
designed to offer interpretable explanations for predictions
made by machine learning models, particularly those based
on tree structures such as decision trees, random forests, and
gradient boosting. It employs a polynomial-time algorithm to
compute SHAP values efficiently, bypassing the need for the
exponential-time computations previously required.

Fundamentally, the TreeExplainer works by tracing the
decision paths in a tree, assessing the contribution of each
feature to the final prediction by evaluating the change in
prediction probability conditioned on the feature’s presence
or absence.

This computational model operates in O(TLD2) time,
where T is the number of trees, L is the maximum number
of leaves in any tree, D is the depth of the tree. This signifies
a substantial reduction in complexity from the exponential
time that exact computation of SHAP values would require,
making it feasible to interpret even large ensemble models.

III. PROPOSED METHODOLOGY
The innovative methodology proposed in this study is
grounded in the premise that when constructing a model
for anomaly detection in a dataset, certain attributes hold
greater potential than others to yield accurate predictions.
This potential is quantifiably measured using the values
of the assessment metrics applied for the final prediction
evaluation through the model. This is confirmed by the fact
that attributes to which higher weight values have been
assigned reflect a stronger impact on the model’s outcome,
as evidenced by an increase in the values of the used
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FIGURE 1. A graph presenting the methodology used in a simplified manner.

metrics indicating higher accuracy in the detected anomalies.
Crucial to enhancing the algorithm’s performance is a deep
understanding of the processes inherent in a given field being
studied. Such comprehension not only facilitates a better
grasp of the subject area but also sheds light on the influence
of various characteristics on the associated processes.

By focusing on attributes with higher weights, researchers
can delve deeper into the nuances of these features, exploring
their interrelations and the mechanisms by which they exert
their influence. This nuanced understanding is vital for
refining the model, as it allows for the adjustment of the
algorithm to better capture the complexities of the data. As a
result, the model becomes more adept at not only identifying
anomalies but also at providing insights into why certain data
points are classified as such.

A graph illustrating the methodology proposed in this
work is presented in the Figure 1. In each dataset under
examination, the SHAP method is employed to derive a
vector that encapsulates the influence coefficients, quantita-
tively expressing how significantly each attribute affects the
operational efficiency of the model. Initially, for the main
analysis, an isolation forest model is specifically trained on a
substantial portion, amounting to 80% of the training dataset.
This model’s purpose is to identify and quantify anomalies
within the data. Following this, the trained Isolation Forest
model is directly subjected to the SHAP framework’s Tree-
Explainer, employing Tree SHAP to elucidate the model’s

decision-making processes. For the purpose of this study, the
Isolation Forest model provided by the scikit-learn library is
employed, operating with a contamination factor set at 10%.
In our experiments, it has been shown that the algorithm
performs slightly better when focusing solely on the strength
of a feature’s impact, rather than its positive or negative
direction. Consequently, the results were transformed into
absolute values and appropriately scaled so that the number
assigned to each feature reflects its proportion, i.e., the share
of each element in the total sum, which can later be directly
translated into probabilities.

Once trained on the isolation forest model, the Tree-
Explainer is capable of calculating SHAP values for new
data. Therefore, we provide it with the 20% test dataset to
generate SHAP values for this subset. This process results in
the determination of a weight vector, which fundamentally
represents the impact of each attribute on the model’s
decision-making process, with a particular focus on the test
data. This methodical approach ensures a comprehensive and
thorough understanding of the model’s behavior, particularly
highlighting how each feature influences the identification
of anomalies in new, unseen data. The next step involves
repetitively training the isolation forest model on a modified
dataset, where each iteration excludes a different attribute.
Subsequently, the decision functions that each model yields
for all observations in the set are recorded. With all the
partial anomaly scores collected, a weighted average is
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Algorithm 1 Methodology for Anomaly Detection Using
Isolation Forest and SHAP
1: Data preparation:
2: for each column Xi of the data set D do
3: Save Xi as a separate file/data frame
4:
5: Building the Isolation Forest model:
6: Model_IF← TrainIsolationForest(D)
7:
8: Using the SHAP model:
9: SHAP_Weights← SHAP(Model_IF)

10:
11: Detecting anomalies:
12: for each column Xi from D do
13: D_minus_Xi← D− {Xi}
14: Model_IF← TrainIsolationForest(D_minus_Xi)
15: Anomaly_Scores[i]←Model_IF.Predict(D_minus_Xi)
16:
17: Aggregating results:
18: Final_Scores ← WeightedAverage(Anomaly_Scores,

SHAP_Weights)
19:
20: Final prediction:
21: Predictions← DetermineAnomalies(Final_Scores)
22:
23: Evaluating results:
24: Evaluate(Predictions, metrics=[‘‘AUC’’,‘‘Accuracy’’,

‘‘Balanaced accuracy’’, ‘‘F1’’, ‘‘PRAUC’’, ‘‘Precision’’,
‘‘Recall])

calculated using the SHAP values. This process aggregates
the decision functions of models trained on the modified
datasets, resulting in a consolidated value. Based on this
aggregated value, the final prediction is conducted. The
methodology described above is also presented using pseudo
code in Alghoritm 1. n our algorithm, we scaled the obtained
anomaly scores to be within the range [-1; 1]. We then set
a threshold value at 0 to separate normal observations from
anomalies, where achieving a threshold of 0 is still treated as
a normal value, despite being on the boundary.

Instead of Tree Explainer, the KernelExplainer, another
component of the SHAP framework can be used. It requires
the decision function of the model and the training set
records as inputs rather than the constructed model itself.
While KernelExplainer is a more universal model, offering
broad applicability across various algorithms, for tree-based
structures like Isolation Forests, the TreeExplainer is more
apt due to its specialized design that ensures enhanced
interpretability tailored to the intrinsic workings of tree
ensembles.

IV. EXPERIMENTAL RESULTS
This chapter presents the results of the performed experi-
ments.

A. DESCRIPTION OF USED DATASET
In this work, we used data sets popular in the field of
data science, available publicly on the Internet, which are
specially prepared for the task of detecting anomalies. Each

TABLE 1. Details of the datasets used in experiments.

of these sets has been marked for anomalous observa-
tions by experts, adding labels indicating ‘‘0’’ for normal
observations and ‘‘1’’ for outstanding observations. These
datasets include Breastw, Cardio, Cover, Ionosphere, Letter,
Mammography, MNIST, Mulcross, Musk, Optdigits, Pima,
Satellite, Satimage-2, Seismic-Bumps, Thyroid, Vertebral,
Vowels, WBC, Wine, and Ecoli, totaling 20 distinct datasets.
Details about each of these datasets are described in the
Table 1.

The selection of 20 datasets is significant, as this number
provides a robust basis for evaluating the real-world efficacy
of the model. Such a diverse and substantial collection
of datasets ensures that the observed improvements in the
model’s performance are not confined to a narrow set of
data characteristics but are broadly applicable across various
types of data. This extensive range of datasets enhances
the reliability of the conclusion that the new methodolo-
gies applied to the classic isolation forest algorithm con-
tribute to a statistically significant improvement in anomaly
detection.

In these datasets, every observation is labeled to indicate
whether it is an anomaly or not. However, for the purpose
of training the algorithm in this experiment, these labels
were removed to simulate an unsupervised learning scenario.
This approach aligns with real-world situations where
anomaly labels are often unavailable, and the algorithm
must learn to identify anomalies without this guidance.
This methodology reflects a common practice in the field,
where the primary goal is to allow the algorithm to
independently discover patterns and irregularities that signify
anomalous behavior. By employing datasets commonly used
in the scientific community, this study adheres to the stan-
dards of reproducibility and comparability, enabling other
researchers to validate and compare the results with their own
findings.
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FIGURE 2. Metrics comparison using boxplots.

TABLE 2. Comparison of metrics used in base and improved model.

B. METHODS COMPARISON
Table 2 presents a comparative analysis of seven performance
metrics across 20 datasets, providing mean scores for both
the base and improved models. A systematic examination of
the data reveals several key findings. The improved model
demonstrates a superior mean performance in five out of
seven metrics when compared to the base model. This is
particularly evident in the AUC (Area Under the Curve)
and balanced accuracy metrics, where the improved model
exhibits a mean increase of approximately 5.1 percentage
points.

A notable increase in the F1 Score by 6 percentage
points for the improved model suggests a more balanced
performance in terms of precision and recall. This implies
that the improved model is better at managing the trade-off
between the false positives and false negatives.

While the improved model shows a slight decrease in
precision by 2.1 percentage points, it concurrently presents a
significant improvement in recall by approximately 12.9 per-
centage points. This suggests that the improved model is

more sensitive and able to identify a higher number of true
positive cases, even at the expense of a slight increase in
false positives. Table 3 compares all 7 metrics used across
20 datasets. The values in the table represent the differences in
average scores that the improvedmodel achieves compared to
the base model. Positive values signify superior performance
by the improved model, whereas negative values suggest the
base model fares better. The final two entries consolidate
these results into average and median values. Notably, the
median value is consistently positive, and the mean value also
remains positive with the exception of the precision metric.
Table 4 itemizes the four principal metrics and delineates the
corresponding values for both the baseline and the enhanced
models. The concluding records present the mean andmedian
of these metrics. The data exhibited in the tables corroborate
the premise that the adopted approach yielded significant
improvements in metric assessments. Notably, metrics such
as AUC and balanced accuracy show increases exceeding
5 percentage points for the improved model, and the F1
metric even reaches an enhancement of 6 points, while the
Recall metric registers a substantial rise of over 12 points.
Comparing the results presented in table 3 with the data
specification shown in table 1, it can be concluded that the
algorithmmore often achieves higher improvement inmetrics
in situations when there is a large percentage of anomalies in
the set. On the other hand, let’s look at the F1 metric. For
example, out of 20 sets, its values decreased in only 4 cases,
which had anomalies percentage levels of 0.96, 2.68, 6.25,
and 2.32, which are relatively small values. Of course, this is
not the only factor influencing the result, but there is some
correlation.
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TABLE 3. Difference in average metrics values for the improved and base models expressed in percentage points.

TABLE 4. Detailed results of the metrics that achieved the highest average improvement.

Table 5 contains the execution times of the various compo-
nents of the approach proposed in this work. These include:
SHAP computation, Isolation Forest model computation,
results aggregation, and total times. The calculations were
performed using Python 3.11.7 on a machine with an AMD
Ryzen 7 4800H processor.

C. GRAPHICAL PRESENTATION OF THE OBTAINED
RESULTS
The boxplot visualization of performance metrics presented
on Figure 2 yields several insights into the comparative
efficacy of the base and improved models. A key observation
is that the median values, depicted by the horizontal lines

within the boxes, are generally higher for the improved
model across the metrics of F1 score, AUC, PRAUC, recall,
and balanced accuracy. This denotes a central tendency
towards improved performance, suggesting that methodolog-
ical enhancements may have positively influenced these
metrics. For the accuracy and precision metrics, the boxplots
indicate no substantial difference in median values between
the base and improved models. The similarity in median
performance implies that the improvements introduced in the
improved model did not significantly affect these specific
metrics.

Another point of interest is the variability in results, which
can be inferred from the range of the ‘whiskers’ and the
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TABLE 5. Measurements of the processing time of a single iteration of
the method in seconds.

FIGURE 3. Comparison of various metrics for each dataset.

width of the boxes. The improvedmodel exhibits a potentially
reduced variability in metrics such as AUC and PRAUC,
as indicated by the narrower boxes compared to those of
the base model. This suggests a consistency in performance,
which is a desirable characteristic, indicating a robustness
that may translate to more reliable predictions in practical
applications.

To summarize, the boxplots provide robust evidence for the
superiority of the improved model in terms of F1 score, AUC,
PRAUC, recall, and balanced accuracy. However, in terms of
accuracy and precision, the models perform comparably. The
presence of outliers in the improved model’s PRAUC results,
along with reduced variability in certain metrics, highlights
areas where the improved model distinguishes itself from its

predecessor. These results emphasize the need for ongoing
model enhancement and point to future research avenues to
better exploit the noted advancements.

Figure 3 juxtaposes the outcomes of all metrics for the
baseline and enhancedmodels. The depicted red diagonal line
signifies the threshold of equivalence, wherein a given metric
yields identical results for both methodologies. Proximity
of data points to the y-axis indicates superior performance
of the enhanced model relative to the baseline, while a
closer alignment with the x-axis suggests the baseline model
outperforms the enhanced. It is observable that a predominant
number of points are situated above the diagonal, denoting a
trend towards the efficacy of the proposed enhancement.

Figures 4 to 10 present bar charts that compare the average
value of each metric for each of the 20 datasets, juxtaposing
them for the baseline and the improved models.

In Figure 4, the accuracy metric appears to maintain a
similar level across most cases, with minor deviations in
either direction. Figure 5 illustrates that the AUC metric
shows deterioration in only two instances for the improved
model, remains unchanged in two, while in the remaining 16,
the improved model exhibits enhancements.

Figure 6 demonstrates that, while most metric comparisons
are at a similar level, there are several instances where
the improvements brought by the enhanced model are both
significant and noticeable. Figure 7 displays the balanced
accuracy metric, whose results are very close to those of the
previously presented AUC metric.

Figure 8 showcases comparisons of the PRAUC values,
which generally assume relatively low values compared to
other metrics. For the majority of datasets, PRAUC indicates
an improvement in the enhanced method.

Figure 9 presents the Precision metric, which uniquely
favors the original isolation forest. Precision defines the ratio
of observations correctly identified as anomalies to the total
number of observations labeled as anomalous. Hence, it can
be inferred that the improved model, while augmenting the
values of other metrics, does so partly because it tends to
classify observations as anomalous more frequently, which
ultimately reduces its precision.

Finally, Figure 10 describes the Recall metric, which is
directly related to precision. Recall determines the ratio
between the detected anomalies and all anomalies present
in the dataset. A substantial increase in this metric, coupled
with a decrease in precision, indicates that although themodel
classifies more observations as anomalous, a portion of them
are correctly identified, leading to the detection of nearly all
the anomalies hidden within the dataset.

D. STATISTICAL TESTS
The statistical analysis in this study is conducted using the
Wilcoxon signed-rank test, a non-parametric test used to
compare two related samples. This test is particularly useful
when the data do not conform to a normal distribution, which
is a common scenario in real-world datasets, also occurring
in data analyzed in this study.
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FIGURE 4. Comparison of the accuracy metric value for the classic IF model and the improved model.

FIGURE 5. Comparison of the AUC metric value for the classic IF model and the improved model.

TABLE 6. Wilcoxon test results for the seven metrics used.

The Wilcoxon test operates under the null hypothesis that
the median differences between pairs of observations in the

two samples are zero. The alternative hypothesis, depending
on the direction of the test, can suggest that one median is
greater than or less than the other. The analysis conducted
adheres to a statistical significance threshold of 0.05 for the p-
value. In our analysis, theWilcoxon test is applied to compare
metrics of two models: base and improved. The test results
for various performance metrics like accuracy, F1 score,
AUC, PRAUC, precision, recall, and balanced accuracy are
as follows:

• Accuracy: With a p-value of 0.4636, the test does not
provide sufficient evidence to reject the null hypothesis,
suggesting no significant difference in Accuracy.
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TABLE 7. Comparison of the metrics for various datasets (Part 1).
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TABLE 8. Comparison of the metrics for various datasets (Part 2).
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FIGURE 6. Comparison of the F1 metric value for the classic IF model and the improved model.

FIGURE 7. Comparison of the balanced accuracy metric value for the classic IF model and the improved model.

• F1 score: The p-value of 0.0006 indicates a significant
difference, favoring the improved model.

• AUC and PRAUC: Both have very low p-values
(0.0001), strongly suggesting the improved model’s
superiority in these aspects.

• Precision: Similar to Accuracy, the higher p-value
(0.6762) implies no significant difference.

• Recall and balanced accuracy: Both metrics show
significant differences with low p-values, indicating
better performance in the improved model.

These results allow us to conclude that, except for Accuracy
and Precision, the improved model generally outperforms
the base model in the other metrics. The application of
the Wilcoxon test in this context provides robust evidence
for the effectiveness of the improved model in specific
areas.

Additional statistical tests conducted on data collected
during the experiment include the Mann-Whitney U test and
the Kruskal-Wallis test. The results of these statistical tests
are presented in tables 7 and 8. For 20 datasets and 7 metrics,
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FIGURE 8. Comparison of the PRAUC metric value for the classic IF model and the improved model.

FIGURE 9. Comparison of the precision metric value for the classic IF model and the improved model.

results are compared across 140 records. It is apparent that
in 88 out of 140 cases, the p-value indicates a statistically
significant improvement favoring the method proposed in
this study, while in 30 cases, the baseline method yielded
statistically higher metrics. In the table 9 it can be seen that
the most significant improvements are in the metrics: AUC,
balanced accuracy, F1, and PRAUC, which are statistically
better in 15 or more cases. Accuracy, precision, and recall
are slightly worse, with improvements observed in only 11-
12 cases out of 20.

V. CONCLUSION AND FUTURE WORK
This paper proposes a novel improvement of the Isolation
Forest model. In this enhanced method, the Isolation Forest
algorithm is repeatedly applied to the dataset, each time
excluding a different attribute. By assigning SHAP-derived
weights to the anomaly detection results from each version of
the dataset, we calculate a weighted average for the anomaly
coefficients of individual observations. This calculation is
tailored such that attributes deemed less significant by SHAP
are assigned lower weights, whereas attributes identified as
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FIGURE 10. Comparison of the recall metric value for the classic IF model and the improved model.

TABLE 9. The number of statistically significant improvements in a given
metric for the enhanced method compared to the baseline.

more influential receive higher weights in the final average.
This approach, therefore, not only enhances the robustness of
the Isolation Forest in identifying anomalies but also offers a
nuanced view of the relative importance of different attributes
in the dataset, leading to more insightful and interpretable
anomaly detection.

In the experiments conducted, 20 datasets are examined,
and 7 metrics are used for evaluation. The results of the
experiments show that all metrics achieve higher values for
the presentedmethod. Except for themetrics ‘‘Accuracy’’ and
‘‘Precision’’, all other metrics give statistically significant
improvement, which is tested by the Wilcoxon test. For the
evaluation, the Mann-Whitney and Kruskal-Wallis tests are
also used, both of which assess the superiority of values
for two independent samples. The tests revealed that for
20 datasets and 7 examined metrics, significant improvement
is observed in 88 out of 140 instances. Specifically, metrics
such as F1 and PRAUC indicated statistically significant
improvement in 16 out of 20 cases, while AUC and balanced
accuracy showed improvement in 15 out of 20 cases. This
suggests that the method described in this study is highly

effective at enhancing these metrics compared to the baseline
method.

The remaining metrics also indicated statistically signifi-
cant improvement in most cases, although not as frequently
as the previously mentioned metrics. Accuracy and recall
showed improvement in 12 cases each, while precision
showed improvement in 11 cases. The experiments demon-
strated that the majority of metrics exhibited significant
improvements, such as the F1 metric, which increased its
value by 6 percentage points. The proposed methodology
also identified a substantially larger proportion of anomalies
present in the datasets, as evidenced by the Recall metric,
which exhibited an average increase of over 12 percentage
points.

A potential direction for exploration could be the exam-
ination of an expanded spectrum of aggregation oper-
ations within the algorithm, including the incorporation
of fuzzy operators such as the Choquet integral and the
OWA operator. In addition to experimenting with various
explainable models to interpret the significance of attributes
in final prediction outcomes, there is also potential in
aggregating results from multiple explainability models to
achieve a more comprehensive understanding. Such inquiries
may also lead to the creation of a custom explainability
tool, providing customized and in-depth interpretations of
the model’s decision-making processes. This multifaceted
approach could significantly enhance the interpretability and
effectiveness of anomaly detection systems.
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