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ABSTRACT This paper proposes a high-throughput application-specific integrated circuit (ASIC) designed
for bridging Ethernet packets and RS485 data, featuring a transmission control protocol (TCP) and static
random-access memory (SRAM). The bridge ASIC complies with a 1-gigabit media-independent interface
(GMII) and media-independent interface protocol standards. As the Ethernet receiver (RX) receives an
Ethernet packet from GMII, it stores the TCP header and payload data in the SRAM. Next, the RS485
module reads the data stored in the SRAM for transmission to a computer through an RS485-to-universal
serial bus cable. The Ethernet transmitter (TX) reads the TCP header and payload data from the SRAM and
forms a complete Ethernet packet by adding the source address, destination address, and Internet protocol
header. Passing through the GMII device, the complete Ethernet packet is sent to the Ethernet port, which is
connected to a computer with an RJ45 network cable. This study was validated using NC-Verilog software
and a field-programmable gate array board (DE10-Standard). After successful verification, the ASIC was
fabricated using the Taiwan Semiconductor Manufacturing Company 0.18-µm complementary metal–oxide
semiconductor process. The simulated and measured results indicate that the throughput, processing latency,
power consumption, gate count, and chip area are 844.88 Mbps, 139.31 µs, 134.79 mW, 69287, and
1.19 × 1.19 mm2, respectively, under an operating frequency of 125 MHz, on-chip SRAM of 256 bytes,
and power supply voltage of 1.8 V. The key contribution not only reduces the size of the RS485-to-Ethernet
module but also improves the performance and saves the chip cost.

INDEX TERMS Ethernet packet, RS485 data, transmission control protocol, static random-access memory,
media-independent interface (MII), FPGA board, ASIC.

I. INTRODUCTION
The rapid development of Industry 4.0, the Internet of Things,
and car networking have elevated the role of Ethernet as
a reliable protocol suite. In industrial networks, specialized
communication interfaces such as RS-232 and RS-485 serve
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as the media for data transmission in the absence of stan-
dardized communication protocols. Ethernet is a popular
communication protocol that integrates these sensing devices
in industrial networks. The primary objectives of industrial
Ethernet include not only enhancing the stability of a network
but also ensuring compatibility with existing communication
protocols such as Modbus TCP/IP, Ethernet/IP, EtherCAT,
PROFINET, POWERLINK, and SERCOS III [1], [2], [3].
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More stringent and detailed planning is necessary for network
reliability and information security during data transmission
and production line control.

In industrial applications, Ethernet is commonly deployed
as the communication system to integrate various sensing
equipment. However, most industrial communication sys-
tems and linear accelerators rely on serial communication
interfaces such as RS-232, RS-422, or RS-485 for control and
monitoring [4]. Among these, RS-485 is most frequently used
in remote control communication systems. These systems
often encounter difficulties in transmitting sensing signals
over transmission lines due to the multiplicity of commu-
nication protocols tailored for specific sensing devices [5],
[6]. A technology of RS485 over Ethernet developed in [7]
enables the transmission of multiple serial TCP/IP data pack-
ets over Ethernet, thereby establishing wired connections
between computers on a network. Consequently, packet con-
version and transmission between Ethernet and RS-485 have
gained prominence. They both contribute to an increase in
the communication rate and an improvement in the reliability
of data communications. The Ethernet-to-RS485 converter
application-specific integrated circuit (ASIC) proposed in
this paper not only improves communication features but
also maintains compatibility with multiple protocols without
necessitating changes to the original RS485 topology.

Conventional software-based protocol stacks require sub-
stantial CPU processing time when operating at full transmis-
sion rates, resulting in performance bottlenecks such as high
latency and low throughput. Hardware design can be used
to increase communication rates and shorten application-
to-application latency. Hardware-based TCP offload engines
(TOEs) have been proposed in [8] and [9] to improve
throughput while maintaining support for TCP features. The
flexibility and extendibility of field-programmable gate array
(FPGA) implementations further augment these capabilities.
Using TOE and kernel bypass techniques reduces latency to
one-tenth of the latency between a Linux host without TOE
and a Windows host. In addition, Ethernet-based embedded
systems are required for a variety of applications that require
high-speed data transmission over long distances. FPGA
is a potential solution for the development of customized
Ethernet-based embedded systems [10]. An FPGA-based
W5500 Ethernet controller interface was developed as an
alternative to TCP/UDP software stacks. This design con-
stitutes a cost-effective FPGA-based TCP/UDP module,
offering an alternative to commercially available TCP/UDP
IP cores. Further development can be achieved by incorpo-
rating TCP mode support into the W5500 Ethernet controller
interface. One study [11] proposed an Ethernet architecture
for packet transformation and transmission between Modbus
transmission control protocol (Modbus/TCP) and universal
serial bus (USB) 3.0 using an FPGA development board.
The bridge mentioned above achieves high throughput and
low latency using the FPGA development board, which
provides an ASIC solution with low power consumption.

The robustness and convenience of the proposed ASIC are
particularly advantageous [12]. This proposed architecture
holds potential applications in plant automation.

FIGURE 1. Proposed communication architecture of the bridge ASIC
between ethernet and RS485 modules with SRAM cells.

Fig. 1 illustrates the proposed architecture for communica-
tion between Ethernet and RS485 modules. This architecture
includes the gigabit media-independent interface (GMII);
which is an interface between the medium access control
(MAC) device and the physical layer (PHY); Ethernet RX,
Ethernet transmitter (TX); SRAM; and RS485module.When
data must be transmitted from the RS485 port to the Ethernet
port, the RS485 module receives the transmitted data, writes
them to the SRAM, and calculates the data length. After
the transmitted data have been fully stored in SRAM, the
calculated data length is sent to the Ethernet TX, which waits
for a transmission signal. Upon receiving this signal, the
Ethernet TX sends the preamble in sequence, followed by the
source and destination MAC addresses. A cyclic redundancy
check (CRC) value is calculated simultaneously. Next, the
IP checksum is calculated and verified. If the checksum is
verified, the IP header is sent. Afterward, the stored data is
sequentially read from the SRAM, the CRC value is checked,
and a complete Ethernet packet is successfully transmitted
from SRAM to the Ethernet port through the GMII module.
Two SRAMs are used to address the frequency incompat-
ibility between Ethernet (125 MHz) [13] and RS485. The
classic cable communication standard RS485 allows the con-
nection of simple devices to the TCP/IP network through an
intermediary node. It connects multiple nodes over a twisted-
pair bus, using differential signaling to reach distances of
up to 1 km, with typical transmission rates between 9.6 and
115.2 kbps [14]. The remainder of this paper is organized as
follows: Section II describes the system architecture of the
proposed Ethernet and RS485 modules. Section III presents
the simulated results and functional validation. Section IV
provides the ASIC implementation and measurement results
of the proposed bridge system with TCP and SRAM. Finally,
Section V presents conclusions.

II. SYSTEM ARCHITECTURE OF THE PROPOSED
ETHERNET AND RS485 MODULES
The GMII provides multiple independent TX and RX com-
munication channels between the proposed bridge ASIC
and the physical layer (PHY) chip, with two reference
clocks designated for transmitting and receiving. The GMII
uses 8-bit metadata transmission with an operating clock of
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125 MHz, enabling a transmission rate of up to 1000 Mbps
but retains compatibility with the 10- and 100-Mbps trans-
mission rates as specified by the media-independent inter-
face [15]. Notably, the GMII is responsible for several
connected signals, including GTXCLK (clock signal for
gigabit transmission at 125 MHz), TXCLK (clock signal
for 10/100 Mbps), TXER (transmitter error), TXEN (TX
enabled), TXD[7..0] (data transmitted), RXCLK (clock sig-
nal of receiver), RXER (receiver error), TXEN (RX enabled),
and RXD[7..0] (data).

A. ETHERNET TX MODULE
The Ethernet TX module reads the data stored in the SRAM
received from the RS485 RX and packages it into an Ethernet
packet for transmission to the GMII module at an operating
frequency of 125 MHz. Fig. 2 depicts a block diagram of
the proposed Ethernet TX mode, which is composed of an
Ethernet TCP/IP module, an Ethernet MAC module, and a
CRC module.

Fig. 3 provides a flowchart detailing the operational
sequence of the Ethernet TX module. When the Ethernet
TCP/IP module is started, both the data received from the
RS485 RX and the corresponding data length are stored in
the SRAM. The calculated data length and the IP checksum
in the IP header are computed based on these received data.

After the Ethernet TXmodule receives both the data stored
in SRAM and the trigger signal, the Ethernet MAC module
starts its transmission function. First, a 7-byte preamble, a
1-byte start frame delimiter (SFD), a TXEN signal set to high
(1), and a TXER signal set to low (0), are sent. Next, the
destination address (6 bytes) and the source address (6 bytes)
are sent simultaneously to calculate the frame check sequence
(FCS) and to activate the Ethernet TCP/IP module using the
trigger signal. In the Ethernet TCP/IP module, the IP header
and IP checksum are calculated and sent to the subsequent
Ethernet MAC module. The TCP header and data stored in
the SRAM are also sent to the Ethernet MAC module. Upon
complete reception of those values from the Ethernet TCP/IP
module, the Ethernet MAC module calculates a 4-byte FCS
and appends it to the Ethernet packet. If the calculated FCS is
incorrect, the TCP header is retransmitted by Ethernet TCP
module. If the calculated FCS is corrected, then the Ether-
net packet is sent with control flags, SYN and ACK. Next,
a retransmission is initiated with an uncorrected ACK signal.
If the received ACK signal is corrected, then the TXEN
signal is set to low (0), finalizing the Ethernet packet. Finally,
a complete Ethernet packet has been successfully sent from
the Ethernet TCP/IP module to the Ethernet MAC module.
After the transmission of the packet is finished, the packet
must be stored until it is acknowledged by the recipient [15].

B. ETHERNET RX MODULE
The Ethernet RXmodule receives and decomposes the Ether-
net packets transmitted through the GMII module. Next, the
decomposed TCP header and transmitted data are stored in

FIGURE 2. Proposed ethernet TX module.

FIGURE 3. Operational flowchart of ethernet TX module.

the subsequent SRAM at an operating frequency of 125MHz.
Because the RX_DV and RX_ER signals, which are trans-
mitted from the GMII module, are set to high (1) and low (0),
respectively, the Ethernet RX module receives the RXD[7..0]
data and ends the receiving process when the RX_DV signal
becomes low (0). If the RX_ER signal changes to high (1),
the Ethernet RX module receiving process is interrupted, and
the incomplete packet is discarded.

The Ethernet RX module starts to receive the data of
RXD[7..0] by capturing the preamble. If the first 8 bits of
data of the preamble match the SFD of the incoming Ethernet
packet, the Ethernet TXmodule receives the destinationMAC
address. If the received destinationMAC address matches the
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preset destination, it continues to receive the source MAC
address. After the received source MAC address is verified,
the Ethernet RX module receives the IP header data and
calculates the IP checksum. If the IP checksum matches the
calculated value, the RX module is ready to receive the TCP
header and data. Simultaneously, the SRAM write signal
is started, and the data are stored in the SRAM. After the
stored data are completely received, the RX module captures
the FCS and deactivates the SRAM write signal. When the
RX_DV signal is set to low (0), the receiving process is
stopped, and the next Ethernet packet is ready to be received.
In other words, a retransmission is initiated when those
control parameters, namely RX_DV, RX_ER, Count, and IP
Checksum, do not meet the specified criteria. Fig. 4 provides
a flowchart detailing the operational sequence of the Ethernet
RX module.

C. SYSTEM ARCHITECTURE OF RS485 MODULE
Fig. 5 illustrates a block diagram of the proposed RS485
module, which is composed of an RS485 TX module and
an RS485 RX module. The baud rate of the RS485 mod-
ule is 115,200 bps, enabling the transmission or reception
of 1 bit of data every 8600 ns. To receive or transmit all
11 bits of data, appropriately 9640 ns (11 × 8600 ns) are
required. The operating frequency of the Ethernet mod-
ule is 125 MHz. Using a counter to count the required
cycles for 1-bit data transmission or reception, approximately
1075 cycles (8600 ns× 125MHz) are required. Thus, a 16-bit
counter is used to complete the counting for 11 bits.

The function of the RS485 TXmodule is to convert parallel
data, which are stored in SRAM, into serial data by using
the universal asynchronous receiver/transmitter (UART) pro-
tocol. Fig. 6 is a flowchart outlining the operational sequence
of the RS485 TX module. Initially, the RS485 TX module
receives the RS485 TX enable signal, denoted as RS485_EN,
from the SRAM. If RS485_EN signal is high (1), the RS485
RX module begins its operation. First, the counter is reset,
and the initial parallel data are read from the SRAM.Next, the
read parallel data stored in the TX module are converted into
serial data according to the counter’s value. That is, the RS485
TX module sends 1 bit of data every 1075 cycles, requiring
a total of 11,825 cycles for 11 bits. When the counter’s value
reaches 11,825, the conversion function is complete. The
final step involves verifying that the length of the transmitted
serial data aligns with the length of the received parallel data
from the SRAM. If the lengths do not match, the counter
is reset, and the subsequent SRAM data are retransmitted
for conversion. This conversion process continues until the
lengths align, signifying the successful transmission of data
by the RS485 TX module.

The RS485 RX module receives the serial data encoded
with the UART protocol and converts them into 8 bits of
parallel data, which are subsequently stored in the SRAM.
Fig. 7 is an operational flowchart of the RS485 RX module.
When the RS485 RX module receives serial data encoded
with UART from a personal computer (PC), it sequentially

FIGURE 4. Operational flowchart of ethernet RX module.

FIGURE 5. Block diagram of proposed RS485 module, which is composed
of RS485 TX and RX modules.

assembles the bits into an 11-bit frame, a process akin to
that of the RS485 RX module. As the counter reaches 2150,
3225, 4300, 5375, 6450, 7525, 8600, and 9675, the RS485
RX module receives the first bit (0), second bit (1), third bit
(2), fourth bit (3), fifth bit (4), sixth bit (5), seventh bit (6),
and eighth bit (7), respectively. Next, the RS485 RX module
writes the assembled 8 bits of data to the SRAM when the
counter value lies between 9676 and 11,825. Simultaneously,
the module calculates the length of the written data to confirm
all 8 bits have been successfully written to the SRAM. If the
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transmission is not completed, the counting procedure is
restarted by resetting the counter’s value.

FIGURE 6. Flowchart of the operation of RS485 TX module.

The SRAM considered for the proposed design is an
on-chip memory fabricated using the TSMC 0.18-µm com-
plementary metal–oxide–semiconductor (CMOS) process,
offers storage of approximately 256 × 8 bits, and operates
at a frequency of 125 MHz. The Ethernet RX and RS485
RX modules write received data to the SRAM, whereas the
Ethernet TX and RS485 TX modules read the data stored
in the SRAM. Several input and output signals are integral
to this operation, including: 8-bit data received (data[7..0]),
write address (Wraddress[7..0]), write enabled (Wr_en), read
address (Rdaddress[7..0]), read enabled (Rd_en), system
clock (CLK), and 8-bit output data (Q[7..0]).

D. THROUGHPUT ANALYSIS
The proposed bridge ASIC can handle a maximum packet
length that comprises an 8-byte preamble, a 14-byte MAC
address, a 20-byte IP header, a 20-byte TCP header, a
236-byte maximum data, and a 4-byte FCS. The maximum
length of a packet is 302 bytes. For a single data packet,
which comprises a 20-byte TCP header and a maximum of
236 bytes of data, the total length amounts to 256 bytes.
Fig. 8 presents the simulated propagation time required
for transmitting the TCP header and data in Ethernet RX
mode. The propagation time is approximately 2424 ns at

FIGURE 7. Operational flowchart of RS485 RX module.

an operating frequency of 125 MHz. The data through-
put in this mode is calculated to be 844.88 Mbps (256 ×

8 bits/2424 ns). In RS485 RX mode, the data throughput is
roughly 0.0975 Mbps (2048 bits/21,006,898 ns) at an RS485
baud rate of 115,200 bps.

III. SIMULATED RESULTS AND FUNCTIONAL VALIDATION
The designed functions were simulated and validated
using the NC-Verilog software. Two blocks are simulated
to meet the design requirements: data transmission from the
GMII module to the RS485 TXmodule and data transmission
from the RS485 RX module to the GMII module.

FIGURE 8. Simulated propagation time for transmitting TCP header and
data.

A. FROM GMII MODULE TO RS485 TX MODULE
The Ethernet RX module receives an Ethernet packet trans-
mitted from the PHY. Fig. 9 illustrates the reception of an
Ethernet packet transmitted from the GMII module. The
clock signal (phy_clk) operates at 250 MHz, the driving
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FIGURE 9. Ethernet RX module receives ethernet packet transmitted from GMII module with NC-Verilog software. (a) First section; (b) second section.

signal (rxdv) is set to high (1), the error signal (rxer) is
set to low (0), and each received data unit (rxd) comprises
8 bits. As illustrated in Fig. 9(a), the Ethernet RX module
first captures a 7-byte preamble and a 1-byte SFD, which
are represented as the hexadecimal values ‘‘55’’ and ‘‘d5,’’
respectively. Next, a 16-byte data string is received, consist-
ing of a 7-byte destination MAC address, a 7-byte source
MAC address, and a 2-byte type field. Specifically, the des-
tination MAC address is ‘‘ab:cd:01:02:03:04,’’ the source
MAC address is ‘‘40:16:7e:02:68:83,’’ and the type field
reads ‘‘08:00.’’ As illustrated in Fig. 9(b), upon receiving
the IP header, the Ethernet RX module starts to calcu-
late the IP checksum (‘‘b7:68’’) in the data signal (rxd).
The calculated IP checksum (‘‘b768’’) appears in the check
data signal (ip_check_data) and matches the value in the
data signal. Next, the module captures a 4-byte source IP
address (‘‘c0:a8:01:05’’) and a 4-byte destination IP address
(‘‘c0:a8:01:06’’).

Fig. 10 illustrates the process wherein the Ethernet TX
module receives the TCP header and stores the TCP data
in the SRAM. When the Ethernet RX module receives the
TCP header, the write signal (SRAM_W_EN) is activated
and changes to high (1). The received data (tcp_data) are
then stored in the SRAM at locations specified by the
SRAM_ADDRESS. After TCP data transmission is com-
plete, the write signal is terminated by setting SRAM_W_EN
to low (0). Simultaneously, the system prepares to transmit
the FCS and to activate the RS485 TX module by setting
RS485_EN to high (1). Afterwards, the start signals of the
RS485 TX module (RS485_start) transitions to high (1),
triggering the counter.

In the RS485 TX module, data retrieval from the SRAM
is initiated by setting the read signal of the SRAM

(SRAM_read) to high (1). The selected SRAM data (DI) are
serially transmitted to the RS485 TXmodule according to the
selected SRAM address (SRAM_read_add). When the quan-
tity of data read from SRAM matches that stored in SRAM,
both the start signal of RS485 TX module (RS485_start)
and the read signal of the SRAM (SRAM_read) transition to
low (0). The counter is stopped and awaits the next Ethernet
packet. Fig. 11 illustrates the read and transmission functions
between the RS485 TXmodule and the SRAM. The read data
comprise 11 bits: a 1 start bit (0), 8 bits of data (D0−D7),
a 1 parity bit (1), and a 1 stop bit (1). For instance, if the
read address of the SRAM is set to ‘‘1,’’ the selected data
‘‘fa (1111,1010)’’ are serially transmitted to the RS485 TX
module as ‘‘0, 01011111, 1, 1.’’

B. FROM RS485 RX MODULE TO GMII MODULE
When the RS485 RX module receives the RS485 serial data
(RO) transmitted by the client, the data are stored in an
8-bit register according to the counter signal (counter). How-
ever, the start bit, parity bit, and stop bit are ignored during
this process. When the writing signal (SRAM_WRITE) of
SRAM is set to high (1), the register data are transferred to
the SRAM (SRAM_DATA) according to the SRAM address
(DATA_counter) and the length of stored data (TCP_len) is
calculated. If the serial data are transmitted completely, the
writing signal (SRAM_WRITE) of the SRAM transitions to
low (0), thereby terminating the write function. Then the
calculated length of stored data is sent to the Ethernet TX
module. Fig. 12 illustrates the reception of the serial data
transmitted from the RS485 RXmodule, which is then stored
in the SRAM, with the NC-Verilog software.

Next, the Ethernet TX module is started by setting the
trigger signal (inv_top_tcp_tx) to high (1). The Ethernet
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FIGURE 10. Ethernet TX module received TCP header and stores TCP data in SRAM.

FIGURE 11. Read and transmission functions between RS485 TX module and SRAM. Data comprise a 1-bit start bit, 8 bits of data (D0−D7), a 1-bit
parity (1), and a 1-bit stop bit (1).

FIGURE 12. RS485 RX module transmits the RS485 serial data and stores them in SRAM.

MAC module starts to send a 7-byte preamble, a 1-byte
SFD, a 6-byte destination MAC address, a 6-byte source
MAC address, and a 2-byte type field. When the Ethernet
MAC module sends the destination MAC address, the CRC
module calculates the FCS, starting with an initial value of
‘‘32’hFFFFFFFF.’’ Then a trigger signal (tcp_trig) is started
by the Ethernet MAC module to engage the Ethernet TCP/IP
module for the calculation of the IP header and IP checksum.
If the IP checksum is correct, the Ethernet TCP/IP module
sequentially sends the source IP and destination IP to the
Ethernet MAC module. After completing the transmission
of the IP header, the Ethernet TCP/IP module receives and
transmits the TCP header and associated data—stored in the
SRAM—to the Ethernet MAC module. Fig. 13 depicts the
received TCP header and data in the Ethernet MAC module.
Finally, a 4-byte CRC is calculated by the Ethernet MAC
module, and the data transmission is completed by setting
TX_EN to low (0).

FIGURE 13. Ethernet MAC module receives TCP header and data. (a) Start;
(b) stop.

C. FUNCTIONAL VALIDATION WITH FPGA BOARD
Fig. 14 illustrates the system architecture of the data transfer
bridge and its corresponding validation environment. The
data transfer bridge includes two computers—a desktop and
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FIGURE 14. System architecture of data transfer bridge and its validation
environment.

FIGURE 15. Ethernet packet received from notebook computer (PC_A)
with Colasoft Packet Builder software.

FIGURE 16. TCP header and data received from RS485 via USB cable on
the desktop computer (PC_B) with AccessPort software.

a notebook, an optical fiber converter, an Ethernet PHY,
an MAX485 transceiver for RS485, and an FPGA devel-
opment board (DE-10 Standard) [16]. The FPGA board
incorporates three custom-designed modules: the Ethernet
module, the RS485 module, and the SRAM module (Reg-
ister). Initially, Host B (PC_B) transmits the RS485 data to

FIGURE 17. Transmitted TCP header and data on a desktop computer with
RS485 signal monitoring software (AccessPort) and a notebook computer
with packet monitoring software (Wireshark).

FIGURE 18. ASIC of the Ethernet−−RS485 data transfer bridge with TCP
and SRAM. (a) Chip layout; (b) chip photograph.

the FPGA development board (DE-10) through an RS485-
to-USB cable and a MAX485 transceiver. The FPGA board
(DE-10) receives these data, assembles them into a com-
plete Ethernet packet, and stores the packet in the SRAM
(Register). Next, the assembled Ethernet packet is transmit-
ted to Host A (PC_A) through the Ethernet PHY, an RJ45
network cable, and an optical fiber converter. Conversely,
Host A (PC_A) transmits an Ethernet packet to the FPGA
board (DE-10) through an RJ45 cable and the Ethernet PHY.
The on-board Ethernet and RS485 modules disassemble the
received Ethernet packet and convert it into RS485 format
data. The resulting serial TCP data are then transmitted to
Host B (PC_B) through an MAX485 transceiver and an
RS485-to-USB cable. Notably, Ethernet packets are parallel
data structures, whereas RS485 data are serial. In the verifica-
tion environment, Host A (PC_A) uses a notebook computer,
and Host B (PC_B) uses a desktop computer. The length of
the optical fiber in this configuration is approximately 5 km.

Fig. 15 presents an Ethernet packet generated by the Cola-
soft Packet Builder software on Host A’s notebook computer
(PC_A). The MAC address of the notebook computer is
40:16:7E:02:68:83 (source), and the IP address of the note-
book computer is 192.168.1.5. The destination MAC address
(RS485 terminal device) is AB:CD:01:02:03:04, and the IP
address is 192.168.1.6. Following packet generation, the Eth-
ernet PHYmodule receives this Ethernet packet and forwards
it to the FPGA development board (DE-10). Upon successful
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FIGURE 19. Post-layout simulated waveforms transmitted from GMII module to RS485 TX module.

FIGURE 20. Measured waveforms of designed bridge ASIC, which are transmitted from GMII module to RS485
TX module.

FIGURE 21. Post-layout simulated waveforms transmitted from RS485 TX module to GMII module.

conversion from the Ethernet module to RS485 modules,
the RS485 TCP header and data are sent to the MAX485
transceiver. The TCP header and data are then received by
the desktop computer (PC_A) using an RS485-to-USB cable.
Fig. 16 illustrates the TCP header and data received by Host
B’s desktop computer using the RS485-to-USB cable with
AccessPort software (RS485 signal monitoring software).

The received TCP header and data match those transmitted
by Host A’s notebook computer, confirming the accuracy of
the transmission and conversion processes.

Fig. 17 illustrates the TCP header and data as transmit-
ted and monitored on a desktop computer (PC_B) using
RS485 signal monitoring software (AccessPort) and on a
notebook computer employing packet monitoring software
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FIGURE 22. Measured waveforms of designed bridge ASIC, which are transmitted from RS485 to GMII module.

(Wireshark). When RS485 data transmission is initiated
by a click of the ‘‘Send Data’’ icon, the RS485 mod-
ule (DE-10) receives the data through an RS485-to-USB
cable and an MAX485 transceiver. The transmitted RS485
data are a 32-byte serial packet. Upon passing through
the FPGA development board, a complete packet is gen-
erated and displayed on the notebook computer running
packet monitoring software (Wireshark). This display occurs
through the Ethernet PHY and an RJ45 network cable.
The destination MAC address is 40:16:7E:02:68:83, and
the destination IP address is 192.168.1.5. The source MAC
address is AB:CD:01:02:03:04, and the source IP address
is 192.168.1.6. The protocol governing this data transfer is
TCP. A comparative analysis of the TCP header and data
monitored in AccessPort (PC_B) and those in Wireshark
(PC_A) confirms the accuracy of data transmission and con-
version processes between the desktop (PC_B) and notebook
computers (PC_A).

IV. ASIC IMPLEMENTATION AND MEASURED RESULTS
OF THE PROPOSED BRIDGE SYSTEM
We evaluated the performance of the bridge ASIC, incorpo-
rating SRAM for protocol conversion and data transmission.
For the ASIC, debugging and verification were conducted
using the NC-Verilog simulator and Verdi/nWave waveform
viewer. After the functional verification of the bridge ASIC,
we synthesized the bridge ASIC at a clock frequency of
125 MHz by using a TSMC 0.18-µm CMOS cell-based
process. The Synopsys IC Compiler was used to plan the chip
layout of the Ethernet-to-RS485 data transfer bridge ASIC.
After the ASIC passed the design rule check and layout versus

TABLE 1. ASIC specifications of the proposed bridge system.

schematic verifications, the chip was imaged, as shown in
Fig. 18.

A complete packet was transmitted from the GMII module
to the RS485 TXmodule.When the driving signal of Ethernet
RX module (RX_DV) is set to high (1), the parallel data
RXD [7:0] are received in sequence. If the parallel data are
fully collected, the driving signal RX_DV transitions to low
(0), terminating the transmission function. Fig. 19 shows
the post-layout simulated waveforms transmitted from the
GMII module to the RS485 TX module, captured using the
NC-Verilog simulator and Verdi/nWave waveform viewer.
Fig. 20 depicts the measured waveforms of the designed
bridge ASIC, which were transmitted from the GMII module
to the RS485 module and measured with the SoC/SiP ATE
Tester (PS1600) from Advantest Corporation. The measured
waveforms matched the simulated waveforms.
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TABLE 2. Performance comparisons of the proposed bridge ASIC with that of other ethernet and RS485 communication systems.

Conversely, serial RS485 data were transmitted from the
RS485 RX module to the GMII module. When the enable
signal of the Ethernet TX module (TX_EN) changes from
low (0) to high (1), the parallel Ethernet data TXD [7:0] are
transmitted to the GMII module. If the parallel Ethernet data
are fully transmitted, the enable signal TX_EN is set to low
(0) to end the transmission. Fig. 21 displays the post-layout
simulatedwaveforms transmitted from the RS485 TXmodule
to the GMIImodule, captured using the NC-Verilog simulator
and Verdi/nWave waveform viewer. Fig. 22 illustrates the
measuredwaveforms of the bridgeASIC transmitted from the
RS485 to the GMII module. The measured waveforms were
captured using the Advantest SoC/SiP ATE Tester (PS1600).
The measured waveforms are consistent with the simulated
waveforms. The chip layout was correctly fabricated as indi-
cated by the waveforms. Table 1 presents the specifications
of the bridge ASIC.

Table 2 summarises the performance of the proposed
bridge ASIC with SRAM and compares it with the perfor-
mance of other Ethernet and RS485 communication systems.
Operating at a frequency of 125 MHz, the bridge ASIC
addresses the demand for gigabit Ethernet. The design incor-
porates 256 bytes of on-chip SRAM to reconcile speed
disparities between Ethernet and RS485 modules. The maxi-
mum throughput of 844.88Mbps is sufficient for transmitting
a 20-byte TCP header and 236-byte data in a propagation time
of 2,424 ns. As indicated in Table 2, this throughput achieved
with DSP and server-based (PC or workstation) develop-
ment processes is lower than that achieved with FPGA and
ASIC [21], [22]. The processing latency of this study is
139.31 µs, which is the lowest among the studies listed
in Table 2. This is because the proposed bridge ASIC per-
forms with a small delay. The proposed ASIC-based solution

may be regarded as a substantial contribution. Moreover, the
256-byte on-chip SRAM is optimized for maximum data
transfer. Unlike the referenced studies, which did not inte-
grate their proposed architectures into a digital chip, this
study successfully implemented the architecture in an ASIC
and made sure that it worked correctly. The proposed ASIC
not only exhibits low power consumption and a small chip
area but also performs with low processing latency and high
throughput.

V. CONCLUSION
This study designed and implemented a bridge ASIC for Eth-
ernet packet to RS485 data transfer, incorporating TCP and
SRAM. Modules were designed with the Verilog hardware
description language and verified on an FPGA development
board (DE-10 Standard). After the functional verification
was completed with the FPGA development board, the
bridge ASIC was synthesized and fabricated using the TSMC
0.18-µm CMOS cell-based process. To achieve gigabit Eth-
ernet functionality at an operating frequency of 125 MHz,
the on-chip SRAM was set to 256 kB, enabling successful
data transmission up to a maximum of 256 kB and compat-
ibility with the RS485 module operating at a baud rate of
115,200 bps. The processing latency of 139.31 µs and the
throughput of 844.88 Mbps are surpassed those of the studies
referenced in Table 2, (except for [18]). Unlike the referenced
studies, this study integrated the proposed architecture into an
actual ASIC. The throughput of the proposed bridge ASIC
is higher than that of the referenced studies developed with
DSP or a server (PC or workstation). The proposed ASIC
exhibited low power consumption, registering at 134.79 mW,
and occupied a small chip area of 1.19 × 1.19 mm2. These
advantages—low power consumption, high throughput, small
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size, and reduced latency—enhance the industrial applicabil-
ity of the proposed bridge ASIC. In future work, recognizing
and distinguishing between useful and duplicated packets will
be important issues.
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