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ABSTRACT Electric vehicles (EVs) are essential to the modernization of transportation systems. However,
optimizing EV charging to align with grid stability and renewable energy availability remains a challenge.
To address this challenge, this study introduces a machine learning-based framework to optimize EV
charging by considering driver satisfaction—a novel approach quantifying this multidimensional construct
through socio-demographic attributes, State of Charge (SoC), proximity to charging stations, and variable
charging fees. Driver satisfaction is defined as the extent to which the EV charging experience aligns with
drivers’ expectations, integrating these key factors to influence decision-making and overall happiness with
the charging service. Trained on a dataset from Hungarian EV users, the developed model predicts outcomes
with high accuracy (87.9%), leading to an optimization algorithm that maximizes driver satisfaction while
minimizing grid power purchase costs. Our results from a simulated smart grid demonstrate the model’s
effectiveness, achieving an average charging satisfaction score of 98.5% compared to 69.54% from a
traditional method. Additionally, the proposed method maintained the SoC of the EV fleet at a stable average
around 50%, optimizing energy use and grid stability. By dynamically assigning EVs to charging stations
and leveraging photovoltaic sources, our solution not only boosts driver satisfaction but also aids in the
sustainable growth of smart grids. This research marks a significant step forward in the smart management
of EV charging by introducing a driver-centric optimization model, filling a critical gap in current literature
and offering insights into its application in enhancing urban mobility solutions.

INDEX TERMS Electric vehicle, charging satisfaction, machine learning, optimization, driver behavior.

I. INTRODUCTION for aggregators and EVs. However, the critical element of

Electric vehicles (EVs) are known for their dynamic inter-
actions with smart grids, presenting unique opportunities
to enhance both functionality and operational efficiency.
However, integrating EVs into the grid also introduces sig-
nificant challenges, particularly regarding the coordination
of charging and the development of grid infrastructure.
Without effective charging coordination, the electrical grid
may experience severe stress, leading to instability and
increased operational costs.

A proven method to prevent this issue is smart charging,
which aims to optimize benefits for various stakeholders.
Most research on EV smart charging has primarily focused
on the technical parameters of grids and the financial aspects
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driver satisfaction has often been overlooked. This presents
a unique opportunity to propose a smart charging algorithm
that places the charging satisfaction of EV drivers (EVDs) at
its core. To achieve this, we investigate the human aspects
of charging behavior, examining socio-demographic factors
that influence charging decisions. By doing so, we aim to
create a more user-centric approach to enhance the overall
EV experience and promote wider EV adoption.

A. USER BEHAVIORAL RESPONSIVENESS IN ELECTRIC
VEHICLE CHARGING

Our research aims to present an Al-supported smart charging
solution that takes into account the charging satisfaction of
users. Understanding consumer behavior within electrical
systems, particularly in the context of EV charging, is crucial
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as it directly influences the effectiveness of grid management
strategies and the adoption rate of smart charging solutions.

Studies have shown that factors such as convenience, cost,
and charging time significantly impact an EVD’s decision-
making process regarding when and where to charge their
vehicle [1]. For instance, the availability of charging infras-
tructure and the perceived reliability of these services are
key determinants that influence consumer attitudes towards
EVs and their charging habits [2]. Additionally, economic
incentives, such as reduced tariffs during off-peak hours,
have been effective in motivating EV owners to charge their
vehicles at times that benefit grid management and energy
efficiency [3]. These behavioral responses to economic
incentives can be integrated into Al-driven charging systems,
optimizing charging schedules based on grid load forecasts
and adapting to the individual preferences and patterns of EV
users.

B. SOCIO-DEMOGRAPHIC FEATURES IMPACT ON ENERGY
CONSUMPTION

In our study, we consider various socio-demographic factors
of EVDs and their effect on charging decisions. Understand-
ing these variables is crucial for optimizing energy use and
achieving broader environmental and economic goals.

Research shows that income and education levels signifi-
cantly affect household energy consumption [4]. Electricity
usage is heavily influenced by the ownership of energy-
intensive appliances, which is linked to income and house-
hold composition [5].

Higher education levels, often associated with awareness
and responsible consumption, do not necessarily lead to
energy savings. Instead, higher education correlates with
greater energy use due to higher incomes [5], [6].

Short-run demand elasticity studies show that immediate
electricity demand is influenced by household appliances,
with high price elasticity for energy-intensive devices like
heating and air-conditioning [7]. Lower-income households
are more price-sensitive, while wealthier ones show less
elasticity due to owning more appliances [8]. This highlights
the challenges in managing household energy use effectively.

Exploring energy consumption behaviors and social fac-
tors is crucial as global energy demand rises. Authors in [9]
study socio-technical systems, emphasizing daily energy use
and policy changes. Despite slow evolution in consumer
habits, there is growing focus on how social norms, routines,
and networks shape energy consumption [10], [11].

Energy efficiency is influenced by home attributes and
resident behaviors. Newer homes, despite energy-efficient
features, may not reduce overall consumption due to more
appliances [7]. Larger homes require more energy for heating
and cooling, using about 70% more electricity than smaller
units [12], [13]. Pricing strategies show households respond
to electricity price changes, with higher-income households
being less sensitive [14], [15].

Interventions to enhance energy efficiency often combine
financial incentives with educational measures, helping shape
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effective energy policies [16]. Providing consumers with
adequate information significantly alters their response to
electricity pricing [17], [18].

Recent studies focus on non-price factors for optimiz-
ing energy conservation without significant investments.
Authors in [19] explore how informational interventions
like behavioral nudges and energy-saving advice influ-
ence household energy use. This approach, particularly
relevant in regions like Serbia with low electricity costs
but high efficiency potential, uses Randomized Control
Trials (RCT) to gain new insights into consumer energy
behavior [20], [21].

C. DATA-DRIVEN ELECTRIC VEHICLE CHARGING

This study aims to incorporate socio-demographic factors
into the EV charging problem, addressing it as a data-driven
challenge. Integrating data-driven strategies into EV charging
systems significantly advances our understanding of the
practical and behavioral dynamics of EV usage. Researchers
have analyzed user preferences and behaviors to optimize EV
charging station placement and functionality, emphasizing
strategic location choices, initial battery levels, and socio-
economic factors.

For instance, user preferences for strategic locations
like motorway service areas and shopping centers for
fast-charging stations are emphasized by [22]. The proximity
of charging stations and initial SoC significantly influence
route and charging station choices for battery electric vehicles
(BEVs), as discussed by [23]. Specific needs, such as
battery level at the start of a journey, dictate route choices,
with socio-economic factors influencing preferences for fast
charging availability, as noted by [24].

In [25], a system is presented that collects in-use EV and
driving data to measure and estimate energy consumption,
highlighting a trade-off between minimizing travel time and
optimizing energy consumption. The use of travel surveys
for EV charging modeling is validated by [26], which
indicates that enhanced simulation techniques can predict
power demands and infrastructure requirements. Consumer
charging patterns, particularly the preference for evening
charging, which challenges peak grid load management, are
examined by [27]. This highlights the need for effective
pricing strategies.

The importance of activity-based modeling to capture
detailed interactions between transportation and electricity
networks is emphasized by [28]. A stochastic model to
evaluate EV impacts on residential electric load profiles, con-
sidering socio-economic and behavioral factors, is developed
by [29].

Machine learning (ML) methods have also been employed
in various aspects of EV data analysis. For example, [30]
propose a grey wolf optimizer-based ML algorithm to predict
EV charging duration times, reducing inconvenience for
drivers. Additionally, [31] utilize real-time data to evaluate
US EV charging infrastructure performance, applying ML to
user-generated content. The heterogeneity in EVDs’ charging
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behaviors in China, highlighting user satisfaction and risk
attitudes, is explored by [32].

Building on these diverse applications of ML in the EV
domain, our study further explores the potential of these
techniques in enhancing driver satisfaction. We extend the
application of ML by focusing on the classification of
EV charging satisfaction, a crucial aspect often overlooked.
In the next section, we will present our method, where
we employ various ML models such as Long Short-Term
Memory (LSTM) ([33]), Feed-Forward Neural Network
(FFNN) ([34]), Gradient Boosting (GB) ([35]), Random
Forest (RF) ([36]), and Support Vector Machine (SVM)
([37]) to predict and enhance the charging satisfaction of
EVDs. This approach aims to integrate technical optimization
with human-centric considerations, ensuring a more holistic
improvement in EV charging infrastructure.

D. CHARGING SATISFACTION

In this study, we define charging satisfaction as the degree
to which EVDs are content with the charging time and
location offered to them. Initially represented as a binary
variable in our dataset (0 for not satisfied and 1 for satisfied),
satisfaction is transformed into a continuous variable ranging
from O to 1 through our predictive model. This continuous
value represents the predicted probability of satisfaction,
effectively quantifying how likely an EVD is to be satisfied
with their charging experience. By translating satisfaction
into this measurable quantity, our model not only facilitates
the optimization of EV charging station algorithms but also
introduces a novel metric within the context of EV research.
This metric bridges the gap between human behavioral
complexities and technical system requirements, paving the
way for smarter, more user-centric EV charging solutions.
Subsequently, we develop charging coordination strategies
based on these insights.

In literature, satisfaction is a broad concept encompassing
various dimensions depending on the context. Generally,
satisfaction refers to the fulfillment of an individual’s
expectations, needs, or desires [38]. It measures how well a
product, service, or experience meets the user-set standards.
In our study, satisfaction specifically relates to the charging
experience of EVDs. Charging satisfaction is influenced by
factors such as the availability and convenience of charging
stations location, the cost of charging, and the time required
to charge their vehicles. This tailored definition allows for
a precise measurement and understanding of what drives
satisfaction in EV charging, thereby providing actionable
insights for improving the EV charging infrastructure and
enhancing user experiences. The body of literature on
satisfaction with charging is not extensive, and most studies
investigate satisfaction with the charging infrastructure.
By introducing this continuous measure, we provide a
more granular understanding of satisfaction, enabling the
development of more effective and user-centric EV charging
solutions.
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Studies on charging infrastructure satisfaction primarily
focus on key factors affecting the overall experience of
EVDs. One major aspect is the availability and accessibility
of charging stations. Research indicates that a significant
proportion of potential EV buyers hesitate to switch from
traditional internal combustion engine (ICE) vehicles to EVs
due to concerns about the current availability of charging
points [39]. For instance, a study found that over 80 percent
of respondents considering an EV purchase believe that
the existing public charging network is insufficient [40].
Similarly, another study highlighted that public charging
access satisfaction has declined, with many EVDs citing poor
access as a major drawback [41]. These findings underscore
the critical need for expanding the charging infrastructure to
match the growing number of EVs on the road [42].

Another crucial factor is the convenience and efficiency of
the charging process, including the speed of charging and the
cost associated with using public chargers. According to the
McKinsey survey [40], 42 percent of respondents indicated
that charging speed is their most important consideration
when selecting a public charge point, with many expecting
charging times of 30 minutes or less. Cost is also a
significant factor, with drivers willing to pay more for
faster, more convenient charging options. Additionally, the
integration of green charging solutions, such as the use of
renewable energy, is becoming increasingly important to
consumers. About 70 percent of survey participants expressed
willingness to pay a premium for green charging options,
reflecting a growing environmental consciousness among
EVDs. Addressing these factors—availability, convenience,
speed, cost, and sustainability—can enhance overall EVD
satisfaction and support broader adoption of electric vehicles.

In the study presented in [43], key mechanisms influencing
consumer satisfaction, such as perceived control and expec-
tation mismatch were identified. Consumers with higher
perceived control over their charging experience and those
whose expectations aligned more with reality reported higher
satisfaction levels. These findings highlight the importance
of managing consumer expectations and enhancing their
perceived control over the charging process.

In this article, factors such as SoC, distance to the charging
station, and charging fees are considered the most influential
on satisfaction. Based on our methodology, the satisfaction
of EVDs in charging will be quantified and translated into
a numerical measure. This will be a key contribution of this
study, proposing a charging plan that considers EVD charging
satisfaction not only based on grid and technical parameters
but also by incorporating the socio-demographic features
of the drivers. This approach ensures that the charging
infrastructure meets the diverse needs of all users, promoting
a more efficient and user-centric EV charging ecosystem.
Given these objectives, the major contributions of this article
can be summarized as follows:

1) Novel Satisfaction Quantification: We propose a

method to quantify and translate EVD charging
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satisfaction into a numerical measure, integrating
socio-demographic features.

2) Innovative Charging Plan: We introduce a charging
plan that optimizes both grid parameters and driver sat-
isfaction, considering technical and socio-demographic
factors.

3) Human-Centric Optimization: Our approach ensures
the charging infrastructure considering the diverse
needs of users, utilizing an efficient and user-centric
EV charging ecosystem.

Continuing from the discussion of our novel human-centric
approach to EV charging optimization, the structure of this
paper is laid out as follows: Section II investigates the
development of the ML model for satisfaction classifica-
tion, detailing the innovative techniques used to accurately
quantify driver satisfaction. In Section III, we describe the
optimization algorithm, including its formulation and imple-
mentation, and highlight how it dynamically incorporates the
participation of various actors in the EV charging process.
Section IV presents the results from applying our approach
within a simulated smart grid environment, demonstrating the
practical effectiveness and potential real-world applicability
of our model. Finally, Section V concludes the paper,
summarizing our key findings and offering suggestions
for future research to further enhance the integration and
optimization of EV charging systems.

Il. DEVELOPMENT OF THE METHOD FOR CHARGING
SATISFACTION CLASSIFICATION

In this section, we develop a ML algorithm for the
classification of EVDs’ charging satisfaction using a dataset
that was prepared based on a survey of questions asked
to 225 Hungarian EV users. We refer to them as EV
users rather than EV owners because ownership was not
a requirement; some participants regularly use EV rental
systems and thus need to charge the vehicles. The dataset
includes detailed socio-demographic features such as age,
gender, education level, income, EV adoption year, and
driving experience. It also incorporates specific EV-related
attributes, including the SoC of the vehicle, the distance to
the charging stations, and the charging fee. Each record in
the dataset represents a unique combination of these features,
with the target variable indicating the user’s charging decision
(1 for satisfied, O for not satisfied). The framework of the
developed algorithm is shown in Figure 1. As illustrated,
the model processes these input features to predict the
likelihood of an EV user being satisfied with charging their
vehicle under specific conditions, effectively classifying their
charging satisfaction. The developed model will be used in a
higher-level optimization model, which will be explained in
detail in the next section.

In order to create the model, we defined nine parameters as
inputs for the dataset. The demographic characteristics of the
drivers were included in the survey in order to gain a greater
understanding of their charging habits. Plus, there were three
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FIGURE 1. lllustration of EV charging classification method.

levels of SoC, three levels of charging fee and three levels of
distances. In the survey, each driver was asked 27 questions
about different scenarios built upon different SoC levels,
charging fees and distances, making in total 6075 rows of
data in total (225, the number of drivers time 27 questions).
As the response for each question, they had to answer if
they would charge their vehicle in a certain scenario or not.
In our previous paper, we analyzed deeply the distribution
of parameters and effects of each parameter on the charging
decisions [44]. It is worth mentioning that in our dataset,
out of 6075 observations, 2587 responses were labeled as
‘satisfied’ (coded as 1). This represents approximately 42.6%
of the data, while the remaining 57.4% were labeled as ‘not
satisfied’ (coded as 0). This class distribution highlights that
the dataset is not heavily imbalanced, which is important for
evaluating the model’s performance.

A. IMPORTANCE OF THE FEATURES

It is crucial to know which factors influence the charging
satisfaction more. Therefore, Figure 2 shows the importance
of each feature based on the charging decision, calcu-
lated with a Keras-based model. Specifically, we used the
Sequential model from the Keras library in Python, with
a dense layer architecture suitable for classification tasks.
The feature importance scores were obtained using the
permutation_importance method from the sklearn.inspection
module, which calculates the importance of each feature by
measuring the change in the model’s accuracy when the
feature values are randomly shuffled. At the forefront is
the SoC with a substantial importance score of 34.9%. This
highlights the pivotal role played by the current battery charge
level in determining whether drivers choose to charge their
EVs. Following closely is the charging fee feature, with an
importance score of 21.7%, indicating that the cost associated
with charging also weighs heavily in the decision-making
process. Additionally, the distance to be covered holds
notable importance 17.8%, reflecting its impact on drivers’
choices. The analysis further highlights the relevance of
factors such as the EV adoption year (7.3%), income (5.9%),
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FIGURE 2. Importance of each feature based on the impact on the
charging decisions.

age (5.6%), education (3.8%), gender (1.6%) and driving
experience (1.3%) in influencing EV charging preferences.

B. CHARGING SATISFACTION PREDICTION METHOD
Predicting the charging satisfaction of EVDs involves
complex variables that range from the technical speci-
fications of charging infrastructure to the personal and
socio-demographic characteristics of the drivers. To navigate
this complexity, our study introduces an ensemble method
designed to leverage the collective strengths of several
ML models, thereby enhancing prediction robustness and
accuracy. Initially, we explored different models, including
SVM, FFNN, RF, GB, and LSTM, each chosen for its unique
ability to capture different aspects of the data set.

Given the vast potential of these models, we hypothesized
that an ensemble approach could offer superior predictive
performance by integrating the diverse insights provided by
each model. This hypothesis is grounded in the ensemble
method ability to aggregate outputs from the RF and GB
models, selected for their balanced efficiency in terms
of training and inference times, as well as commendable
accuracy, meaning the share of true responses the algorithm
can predict correctly.

The foundation of our ensemble approach is the mathemat-
ical combination of probability predictions from the RF and
GB models. The ensemble prediction (Pepsemble) is calculated
using the equation:

Prr + PGB

Pensemble = T (1)

where Prr and Pgp are the vectors of probability predictions
for the positive class from the RF and GB models,
respectively. We apply a threshold 7 = 0.5 to these
averaged probabilities to classify predictions as ‘satisfied’
or ‘not satisfied’. Key parameters for both models include
n_estimators, set to 100 to balance model complexity
and performance, and random_state, used to ensure
reproducibility of results by controlling the random number
generation process. These parameters help manage the
trade-off between model accuracy and overfitting while
maintaining consistency across multiple runs.
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The examination of the six predictive models presented in
Table 1 reveals a detailed landscape of trade-offs between
accuracy, training time, inference time per sample, F1
score (the harmonic mean of the precision and recall of
a classification model), and precision. SVM achieves an
accuracy of 87.3%, demonstrating the model’s robustness in
handling complex classification tasks, but it has a relatively
higher training time of 3.03 seconds. The SVM also achieved
a precision of 81.9% and an F1 score of 85.7%. FFNN, while
more accurate at 88.1%, has a significantly longer training
duration (19.26 seconds), suggesting a computational inten-
sity that might not be ideal for rapid deployment scenarios.
It also shows a precision of 82.1% and an F1 score of 86.7%,
which are comparable to the SVM.

Both RF and GB models offer a compelling balance, with
quicker training times (0.88 and 0.60 seconds, respectively)
and quick inference times (0.035 and 0.006 milliseconds,
respectively) and competitive accuracies (87.3% and 86.0%,
respectively). The RF and GB models also demonstrate
the same precisions (81.9%) and F1 scores (85.7% and
83.9%). LSTM’s longer inference time (0.671 milliseconds)
and lower accuracy (85.3%) indicate its suitability for
scenarios where temporal dynamics are critical, despite the
computational overhead. Its precision and F1 score (83.4%
and 82.5%) reflect its ability to capture complex temporal
patterns.

Given these considerations, developing an ensemble model
based on RF and GB provides a suitable balance of time
and accuracy. This method also achieves a precision of
82.2% and an F1 score of 86.5%. The ensemble’s operational
efficiency is further highlighted by its inference time per
sample of 0.037 milliseconds, showcasing its feasibility for
deployment in dynamic, real-time environments. This is
particularly relevant in the context of smart grids, where
timely decision-making can greatly influence overall system
efficiency and user satisfaction.

Ill. CHARGING OPTIMIZATION ALGORITHM

The ensemble prediction model developed in the previous
section is used to predict the charging satisfaction of EV users
if we have information such as their socio-demographics,
location, SoC of their vehicle, and charging fee at the
charging station. This way, we can coordinate the charging
of EVs, taking into account the satisfaction of EVDs.

Figure 3 shows the participants in the algorithm and the
type of data received from each one of them. There are
three main actors involved in our system: EVs (and EVDs),
charging station operators, and the utility company. The
system is assumed to be controlled by an aggregator, whose
responsibility is to coordinate all actors and bring the system
to an optimized point where all actors benefit in some way,
which will be investigated. As mentioned, from each actor,
a set of data is received, which will be used in the optimization
problem.

The information regarding the maximum allowed pur-

chased power from the grid at each hour (PtG’max), data
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TABLE 1. Model performance comparison.

Method Accuracy (%) | Training Time (s) | Inference Time per Sample (ms) | F1 Score (%) | Precision (%) | Recall (%)
SVM 87.3 3.03 0.111 85.7 81.9 89.9
FFNN 88.1 19.26 0.003 86.7 82.1 91.8
Random Forest 87.3 0.88 0.035 85.7 81.9 89.9
Gradient Boosting 86.0 0.60 0.006 83.9 81.9 86.0
LSTM 85.3 14.94 0.671 82.5 83.4 81.7
Ensemble 87.9 N/A 0.037 86.5 82.2 91.3

Combined dataset

5 | « charging station ID
; # driver ID
3 « driving experience
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| « gender Arrays
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« income level 44@/\ {/‘\
dmlal 9ELlal
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| Residential
load
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FIGURE 3. The sources of data with the dataset of all actors.

regarding the power generated by PVs at each hour (P;V, j),
and predicted data regarding the residential load (Pﬁe, j) are
received frim the grid and residential actors. From the
charging stations, information such as the location of the
charging station (Lcs ), the number of available charging
points (Av]’-), and charging price (Céh’j) are received. The
main actor is the EV, which gives us information regarding
the driver’s age, gender, driving experience, education level,
EV adoption year, income level, SoC level, location (Lgy ;),
and EV battery maximum capacity (PEy capacity,)-

From all this information, a unified dataset of I x J rows is
created, consisting of a combination of each EV user (indexed
by i) for each charging station (indexed by j). Specifically,
the letter i corresponds to individual EV users, j corresponds
to charging stations, and ¢ represents the time index. The
constants / and J represent the total number of EV users
and charging stations, respectively. The required features to
predict whether an EV user will be satisfied with charging at
a charging station are obtained here. Distance is calculated as
a function of the location of the drivers and charging stations:

Dij=f(Lgv.i, Lcs.j) 2

In this equation, D;; represents the shortest distance
between the i-th EV and the j-th charging station. The
function f(Lgy ;, Lcs,j) computes the road distance, which
reflects the actual driving distance. This approach takes into
account the practical considerations of EV users who are
driving to the charging stations and represents real-world
travel paths.

Then, Based on our ensemble model developed in the
previous section, for all combinations of each EV user for
each charging station, a satisfaction factor Sf,j e [0,1] is
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determined, which shows how satisfied each EV user will be
if assigned to the corresponding charging station.

A. ELECTRICAL SYSTEM CONFIGURATION

Figure 4 shows the system configuration under study. The
network is considered a residential area consisting of five
buses with residential loads, public charging stations, and
EVs. Apart from the main actors, there are PV panels on each
bus to support the grid whenever possible. The main objective
is to place the EVs at charging stations while maximizing the
satisfaction factor of individual drivers and minimizing the
cost of power purchased from the main grid.

B. OBJECTIVE FUNCTION

The main objective is to place the EVs on charging stations
while maximizing the satisfaction factor of individual drivers
and minimizing the cost of power purchased from the main
grid. Therefore, the objective function is defined as follows:

1

J J
Maximize |« Z Z X;;Si;—B Z PG,Cq &)
=1

i=1 j=1

In this equation, Xf] is the binary decision variable that
determines if driver i is assigned to charging station j at
time ¢. Each Sf,j represents the satisfaction factor for driver
i at charging station j. The coefficients « and § are positive
real numbers that serve as weights assigned to the terms of
the objective function, allowing the optimization to balance
between maximizing driver satisfaction and minimizing
power purchase costs. The specific values of @ and 8 can be
adjusted based on the desired emphasis on either objective.
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The second term of the objective function seeks to
minimize the cost of purchasing electrical power from
the main grid and encourages the efficient use of energy
resources. In this context, PIG’ j denotes the power drawn from
the grid to supply bus j, and Cf; is the cost per unit of
purchased power. As all buses are supplied from the same
grid, this cost parameter is universal for all. By adjusting
the values of o and B, the optimization algorithm can be
fine-tuned to prioritize one objective over the other or to
find a balanced compromise between maximizing driver
satisfaction and minimizing power purchase costs.

C. CONSTRAINTS
The power balance constraint, ensuring that the total power
purchased from the grid and the PV system is sufficient to
meet the combined demands of residential loads and EV
charging, is expressed as:
1
PG+ Poy ;= Pri+ D Xi Py, Vie{l,....J} ()
i=1

The power required by each EV, denoted as P%v, i
is computed based on the SoC and battery capacity of the
vehicle:

t t
PEV,,' = SOCEV,,' X PEV,capacity,i (5)

where SOC%V) ; represents the SoC of the i-th EV at time 7, and
PEV capacity,i 18 the maximum capacity of the i-th EV battery.

Each EV can be assigned to only one charging station at a
time. This constraint ensures that no EV is assigned to more
than one charging station:

J
ZX;JSI Vie{l,...,I} (6)
j:l

Additionally, the number of drivers assigned to each
charging station must not exceed the number of available
charging points at that station (AV]’-):

1
ZX]’.JSAV; vie{l,...,J} (7
i=1

The total power drawn from the grid by all charging
stations must not exceed the grid’s maximum power capacity:

J
ZPtG,j = PlG,max (8)
Jj=1

To ensure that drivers are assigned to charging stations
where they are likely to be satisfied, a minimum satisfaction
threshold must be met:

). URHAED. UKW

i,j i) = “i,j*i,j,min

Vief{l,...,I}, Vje{l,....,J} 9)

Sl.t j,min is the minimum satisfaction of drivers charged,
which we define as the lowest acceptable level of satisfaction
that ensures the driver’s experience at the charging station
is positive. By setting this threshold, we aim to guarantee a
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certain standard of service quality and optimize the allocation
process to maintain driver satisfaction. In the simulations,
we set this parameter to 0.5.

The placement matrix, shown in Equation 10, represents
the assignment of EVs to charging stations at time ¢. Each
element Xf] in the matrix indicates whether the i-th EV
is assigned to the j-th charging station (1 if assigned,
0 otherwise). This matrix is crucial for achieving the highest
value of the objective function defined earlier, with a greater
weight o and a smaller weight B used in the optimization to
balance between satisfaction and cost.

t t t

x%’l _x%,z e x}"]
x x PR x

2,1 2,2 2,J

t ; ) ,

X! = o ) (10)

t t t

1 X2 I

Figure 5 illustrates the complete optimization algorithm,
which is divided into three main phases: Classification,
Optimization, and Data Update.

IV. RESULTS AND DISCUSSION

The algorithm’s effectiveness was evaluated in a simulated
smart grid environment, designed to mirror a small-scale
urban setting. This simulated network encompasses five
distinct neighborhoods, each serviced by a separate bus
network as depicted in Figure 4. These buses link residential
areas, PV power sources, and public EV charging stations,
creating an integrated model of a smart urban grid. During
a comprehensive 24-hour simulation period, we monitored
a variety of data points including residential demand for
each bus, PV output, charging fees for EVs at public
charging stations, as illustrated in Figure 6 through Figure 8.
Notably, the charging fees were set artificially to emulate a
dynamic pricing environment that reflects a feasible future
scenario. While these fees were crafted for the purposes of
our simulation, they were designed to stay within realistic
bounds, aiming to provide insights into the system’s capacity
to adapt to and accommodate future pricing models. This
approach allows us to explore the implications of varying
charging fees on EV charging behavior and grid performance,
offering a glimpse into a future where dynamic pricing plays
a pivotal role in optimizing smart grid operations.

The algorithm’s operation throughout a 24-hour cycle
dynamically assigns EVs to charging stations. Notably, the
data from the first hour, as presented in Table 2, showcases
high ‘Charging Satisfaction’ scores with an average of 98.5%,
indicating the algorithm’s effectiveness in aligning with
driver preferences. This high level of satisfaction, achieved
despite the variations in distances and fees, suggests that
the model balances multiple factors to optimize the charging
experience. Such a balanced approach is crucial for the
successful integration of EVs into the grid and demonstrates
the proposed method’s superiority in accommodating drivers’
needs. In contrast, we also explored a more traditional
method of charging coordination for comparison, which
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FIGURE 5. The algorithm of the proposed method, including three stages, classification, optimization and data update.
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FIGURE 6. The residential load on different buses during 24 hours.

prioritizes EVs based solely on their proximity to the charging
station and considers vehicles with SoCs up to 50%. While
this method is simpler and may be less computationally
demanding, it misses the complete set of variables that can
influence charging satisfaction. Consequently, this traditional
approach resulted in a lower average satisfaction score of
69.5%, illustrating the potential for less reliable satisfaction
outcomes. This stark difference in satisfaction scores—
98.5% for the proposed method versus 69.5% for the random
method—underscores the importance of employing multi-
faceted decision-making frameworks in EV charging station
allocation. By doing so, it is possible to satisfy more
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FIGURE 7. PV power on different buses during 24 hours.

effectively the needs of EVDs and the power grid, thereby
enhancing the overall charging infrastructure.

Figure 9 represents the average SoC of the EV fleet over
a 24-hour simulation period. The SoC mean oscillates with
minor fluctuations, maintaining a relatively stable average
close to 50%, suggesting a balanced charging strategy.
Starting at 49.27%, the SoC mean peaks at 51.20% towards
the end of the day, indicating a gradual increase in charge
levels as the algorithm adapts to the vehicles’ requirements
and grid conditions. This consistent SoC maintenance across
the fleet signifies an efficient management of charging
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TABLE 2. EV placement and charging satisfaction in the first hour.

CSID Proposed Method Random Charging
EVID Fee SoC Dist.  Sat. (%) EVID Fee SoC  Dist. Sat. (%)
1 121 Avg. Low Close  99.9% 4 Avg. Low  Close 98.9%
1 86 Avg. Low Close  98.5% 20 Avg. Med. Close 77.4%
2 45 Avg. Low Close  99.9% 77 Avg. Low  Close 96.6%
2 83 Avg. Low Close  98.9% 89 Avg. Low  Close 92.5%
3 103 Avg. Low Close  94.6% 138 Avg. Med. Close 36.4%
3 104 Avg. Low Avg.  99.2% 40 Avg. Med. Close 82.9%
4 17 Blw. Avg.  Low Close  99.4% 80 Blw. Avg. Low  Close 93.2%
4 18 Blw. Avg.  Low Close  99.4% 94 Blw. Avg. Med. Close 94.8%
5 13 Abv. Avg.  Low Avg.  97.7% 3 Abv. Avg. Med. Close 17.1%
5 150 Abv. Avg.  Low Close  98.4% 119 Abv. Avg. Med. Close 5.6%
Hourly Price for Each Bus Hourly Purchased Power from Main Grid by Each Bus
— 1
22.5 | Bus 1 Z 2000 — Busl
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FIGURE 8. Charging fees on each bus during 24 hours. FIGURE 10. Hourly purchased power at each bus at each hour by the
optimization algorithm.
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FIGURE 9. 24-Hour average SoC trends for all EVs.

schedules, ensuring that vehicles are adequately charged
while mitigating the risk of overloading the grid during
peak hours, thus contributing to the overall reliability and
sustainability of the smart grid system.

Figure 10 stages a power allocation across the five buses
over a 24-hour period. Notably, Bus 2 consistently registered
higher purchased power values, peaking at 2135 kW at 19 0’s
clock. Conversely, bus 5’s has the lowest purchased power
from the grid with a peak of 1457 kW at 22 o’s clock,
potentially indicating areas with lower power demands. The
temporal purchased power trends align with the expected
load profiles, demonstrating the algorithm’s ability to adapt
power distribution in real-time. This responsiveness ensures
the optimization of the grid’s performance, balancing the
complex dynamics between EV charging demand, renewable
energy input, and grid stability.

Additionally, the alignment of purchased power P’G’ ;
with the grid’s maximum power capacity PtG,max is crucial
for maintaining the constraint in Equation 8. Figure 11
illustrates the sum of hourly purchased power across all
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Hour of the Day

FIGURE 11. Hourly comparison of optimized purchased power sum and
maximum grid capacity over a 24-hour period.

buses and the maximum allowed power that can be purchased
from the grid. Throughout the 24-hour period, the P’G’ j
values consistently approach but do not exceed the prescribed
PtG,max thresholds, showcasing the algorithm’s effectiveness
in optimizing power distribution. Particularly noteworthy is
the algorithm’s responsiveness during peak hours (around
8 and 9 AM), where it shifts the purchased power to avoid
overloading the grid, hence maintaining a stable and reliable
energy supply. This balance is critical to integrating EVs
into the smart grid, ensuring that the charging demand does
not compromise grid integrity. Mid-day solar effects further
influence this dynamic.

Figure 12 illustrates the comparison between the sum of
total power purchased from the grid and power generated by
photovoltaic sources (37, PG+ Zf:l Ppy ;) and the total

resi.dential power consumption (Zle Pﬁe, j) over a 24—hour
period. The grey area represents the EV power consumption,
which is the difference between the power injected to all
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FIGURE 12. Hourly comparison of generation and demand powers over
24 hour period.

buses (by the grid and PVs) and the residential consumption,
indicating the surplus energy available for EV charging. The
figure displays the dynamics of energy production and usage,
which is a key consideration in optimizing charging schedules
to ensure grid stability and efficient use of renewable energy.

V. CONCLUSION

In this study, we presented a novel smart charging approach
to optimize EV charging by incorporating machine learning
algorithms to predict driver satisfaction and integrate these
predictions into an optimization framework. Our method-
ology emphasizes not only the alignment of EV charging
strategies with grid stability and renewable energy availabil-
ity but also places a significant focus on the human aspect of
EV charging —driver satisfaction. Through the development
of a classification model based on driver satisfaction,
we achieved a high accuracy of 87.9% in predicting charging
behaviors. This high accuracy facilitated the creation of an
optimization algorithm that balances energy supply, demand,
and user preferences. Additionally, the ensemble method
achieved an F1 score of 86.5% and a precision of 82.2%,
indicating a balanced performance in precision and recall
metrics.

The simulation results within a smart grid environment
demonstrate the effectiveness of our approach in enhancing
grid efficiency, maximizing the utilization of PV sources,
and improving driver satisfaction. Key findings reveal that
the SoC and charging fees are pivotal factors influencing
charging decisions, with the model achieving an average
charging satisfaction score of 98.5% compared to 69.5% from
atraditional method. The algorithm maintained the SoC of the
EV fleet at a stable average of 50.26%, optimizing energy use
and grid stability.

However, it is essential to acknowledge the limitations
of our study, primarily the reliance on a dataset limited to
Hungarian EV users, which may affect the generalizability
of the findings. Future research should aim to validate
the model across different demographics and geographic
regions, as well as incorporate real-time data feeds to
further enhance the model’s accuracy and applicability.
Additionally, exploring the integration of V2G technologies
and assessing the economic and environmental impacts of
widespread adoption of our optimization strategy could
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provide valuable insights for policymakers, grid operators,
and EV manufacturers.

In conclusion, this research marks a significant step
forward in the smart management of EV charging, offering
a scalable and adaptable solution that supports the transi-
tion towards sustainable transportation while aligning with
broader goals of energy efficiency and grid stability. The
broader adoption of our algorithm could have far-reaching
effects on EV acceptance, traffic management, and the
economic landscape of energy consumption. Future research
should aim to further explore these implications, offering
concrete strategies for stakeholders in the transition towards
more sustainable and efficient transportation and energy
systems. By bridging the gap between technical optimization
and user satisfaction, we pave the way for a more integrated,
responsive, and user-friendly EV charging infrastructure.
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