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ABSTRACT Robotic exploration has long captivated researchers aiming to map complex environments
efficiently. Techniques such as potential fields and frontier exploration have traditionally been employed in
this pursuit, primarily focusing on solitary agents. Recent advancements have shifted towards optimizing
exploration efficiency through multiagent systems. However, many existing approaches overlook critical
real-world factors, such as broadcast range limitations, communication costs, and coverage overlap. This
paper addresses these gaps by proposing a distributed maze exploration strategy (CU-LVP) that assumes
constrained broadcast ranges and utilizes Voronoi diagrams for better area partitioning. By adapting
traditional multiagent methods to distributed environments with limited broadcast ranges, this study
evaluates their performance across diverse maze topologies, demonstrating the efficacy and practical
applicability of the proposed method. The code and experimental results supporting this study are available
in the following repository: https://github.com/manouslinard/multiagent-exploration/.

INDEX TERMS Cost-utility, distributedmaze exploration, multiagent, potential fields, Voronoi partitioning.

I. INTRODUCTION
Exploration of mazes has interested researchers in the recent
years, offering a window into the cognitive capabilities of
various organisms, such as mice [1], and more recently, the
artificial intelligence capabilities of robotic systems [2], [3].
While algorithms specifically designed for single-agent maze
exploration are widely utilized [4], [5], the adaptation of
these algorithms to multiagent systems [6], [7], [8] presents
persistent challenges, underscoring the necessity for novel
solutions.

The task of mapping unknown mazes for exploration
necessitates strategic methodologies. Robots traverse the
maze, documenting their journey and observations to con-
struct a map as they advance [9], [10]. By employing sensors,
they identify walls and obstacles, enabling them to make
informed decisions regarding their subsequent movements.
Upon mapping a significant portion of the maze, robots
strategize their routes towards their objectives, which could
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be reaching the exit or locating specific targets within the
maze. This process involves analyzing the constructed map
and selecting the most efficient path forward.

Using multiple agents to explore the maze expedites
the mapping process and enhances the coverage of the
resulting map. However, this approach introduces challenges,
including the need for effective agent communication to share
information and organize exploration to prevent collisions
or obstructions in their paths [11], [12], [13]. Additionally,
multiagent exploration may lead to revisiting previously
explored areas, extending total mapping time. Distributing
the maze exploration task to multiple agents offers a solution
to these problems, as robots can first explore their assigned
regions individually, reducing redundant coverage, the num-
ber of collisions, and the need for extensive communication
compared to exploring the entire maze map collectively.

There are several methods to partition a maze into sub-
areas, including clustering algorithms such as K-means,
which typically suffer from local optima and potentially
lead to higher robot dispersion [14]. Other approaches,
like the Effective Regions of Movement (ERM) [15], [16],
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are available but require additional information (e.g., agent
capacity, density, and speed), which is not easily acquired
when exploring an unknown maze. Moreover, ERM is
applied to known maps and is typically used for enhancing
and understanding networks, such as those involving cars.
In this paper, we employ Voronoi partitioning [17], [18]
centered around each agent, due to its suitability for unknown
areas. Voronoi partitioning has been proven effective for
segmenting 2D spaces, as demonstrated by García et al. [19],
who compared it with K-means for area coverage. Their
results showed that Voronoi partitioning was consistently
faster than K-means across all examined maps.

Our proposed approach, named CU-LVP, is designed to
address the distributed maze problem. Experiments detailed
in Section V showcase the method’s efficiency, low compu-
tational complexity, minimal communication, and reduced
repetitive coverage. We compare our method with other
state-of-the-art techniques adapted to the distributed maze
problem. To evaluate performance, we conduct extensive
experimental evaluations across a variety of maze topologies,
including 30 × 30 randomly generated mazes with varying
obstacle densities. These experiments prove CU-LVP’s
efficacy and provide a comprehensive assessment of each
method’s performance. They offer valuable insights into their
effectiveness in exploring distributed mazes and their practi-
cal applicability in real-world robotic systems. Additionally,
by integrating constraints on broadcast ranges across all eval-
uated methods, we aim to emulate real-world communication
limitations. By incorporating these constraints, we enhance
the robustness of the exploration strategies, making them
more applicable to real-world scenarios.

The main contributions of this paper can be summarized as
follows:

• A detailed review and classification of the recent
exploration approaches using multiple agents.

• An introduction to the novel method CU-LVP, designed
for covering distributed mazes efficiently.

• An extensive implementation of established multiagent
maze exploration techniques, applied in distributed
mazes through the integration of Voronoi diagrams.

• A comparative evaluation of the algorithms, using
various metrics that examine different aspects of the
exploration task (e.g. time, distance, computational and
communication cost).

Section II offers an overview of related work in state-
of-the-art multiagent maze and area exploration. Section III
details the proposed approach and Section IV explains the
experimental evaluation process that we applied. Section V
examines the achieved results, whereas Section VI presents
the main conclusions of this work and future work.

II. RELATED WORK
Exploring the field of multiagent maze exploration encom-
passes a variety of innovative strategies and method-
ologies. This section categorizes and reviews significant
contributions, highlighting the implementation details of

each approach. We begin with distributed area exploration
techniques, which emphasize on area/maze partition for
efficient task allocation and coordination among agents.
Next, we examine potential field methods, where agents
use potential/temperature fields for maze coverage. Finally,
we discuss frontier-based exploration, where the exploration
process is based on current frontiers—the unexplored bound-
aries of the known environment. Fig. 1 organizes the related
work in a hierarchical structure for enhanced clarity and
comparison.

A. DISTRIBUTED AREA METHODS
Lozenguez et al. [20] introduce a method for efficiently
allocating exploration tasks among multiple mobile robots.
In the context of this paper, we will refer to this method
as RMDP. The approach uses a combination of Road-Map
techniques and Markovian Decision Processes (MDPs) to
manage the exploration of areas marked by points of
interest. By representing spatial knowledge as a dynamically
adjustable graph of waypoints and partitioning this graph into
regions, the method enables optimal task assignments based
on real-time evaluations. As part of the R-Discover project,
this research supports the use of UAVs for initial mapping,
followed by ground robots for detailed exploration. Robots
operate under a hierarchical control system, with leaders
dynamically reallocating tasks to maximize efficiency during
the mission.

Yan et al. [21] proposedMUI-TARE to address the intricate
task of multiagent exploration in confined 3D spaces with
unknown initial agent poses. Their work focuses on effi-
ciently exploring these environments and effectively merging
agents’ sub-maps. Traditional strategies often struggle with
merging sub-maps due to false overlap detections, leading
to inaccuracies. To combat this, the authors propose a novel
lidar-based approach that intelligently balances sub-map
merging robustness and exploration efficiency. The approach
allows agents to adaptively repeat each other’s trajectories
based on merging quality, minimizing redundant exploration.
Additionally, it extends a single-agent hierarchical strat-
egy to multiple agents, enhancing exploration efficiency.
Experimental results demonstrate efficiency and exploration
accuracy over baselines, ensuring robust sub-map merging in
complex 3D environments.

Gui et al. [22] tackled the challenge of efficient dis-
tributed exploration for UAVs, particularly in search and
rescue scenarios. They present a novel cooperative strategy
where UAVs dynamically explore distinct regions, enhancing
efficiency while minimizing redundancy. Using a dynamic
centroid-based approach, the 3D space is partitioned for each
UAV, enabling independent target generation within their
designated zones. They propose a next-best-view method
employing a rapidly exploring random tree (RRT) to foster
cooperative exploration and navigate unknown areas. Com-
parative evaluations against three classical methods under-
score the superiority of their approach in both simulation and
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FIGURE 1. Hierarchical structure of the related work (Section II). Method in bold (CU-LVP) is our proposed method.

real-world experiments, marking a significant advancement
in swarm UAV capabilities for dynamic environments like
search and rescue missions.

Latif and Parasuraman [23] introduced CQLite, a dis-
tributed Q-learning technique tailored to address the chal-
lenges of coordinating multiple mobile robots in the
autonomous exploration of complex environments. Unlike
conventional approaches reliant on internal global maps for
navigation, CQLite prioritizes minimizing communication
and information exchange costs between robots while
ensuring swift convergence and coverage. By leveraging ad
hoc map merging and selectively sharing updated Q-values at
newly discovered frontiers, the method significantly reduces
communication overhead. Theoretical analysis and numerical
validation conducted on simulated indoor maps with multiple
robots underscore the efficiency of the proposed approach.

B. POTENTIAL FIELDS METHODS
Yu et al. [24] introduced the Multirobot Multitarget Potential
Field (MMPF), a novel approach that uses potential fields for
maze exploration. The robots operate concurrently, utilizing
a simultaneous localization and mapping (SLAM) technique
for navigation and mapping tasks. Notably, MMPF does
not initially implement any partitioning of the environment.
Instead, the research emphasizes localization, dispersing
agents across disparate areas of the environment. As agents
subsequently explore overlapping regions, localization, and
information exchange occur to facilitate comprehensive
mapping of the area.

Crnković et al. [25], [26] proposed HEDAC, a robust
algorithm designed for both area and maze exploration.
By leveraging temperature fields to compute attractive
forces, HEDAC excels in prioritizing the exploration of
unknown regions while mitigating collisions. Specifically,
it creates a strong attractive force for unexplored areas and

a weaker force for obstacles and other agents. HEDAC has
demonstrated efficacy in uncertain conditions, such as vari-
ations in sensor readings and unpredictable environmental
fluctuations, as documented in [27].

A similar approach to HEDAC that utilizes Voronoi
diagrams to divide an area into subregions is presented by
Zheng and Zhai [28], which we will refer to as HYC in this
paper. In HYC, each subregion is explored by an agent using
a temperature field-induced control strategy. For our study,
we have implemented HEDAC instead of HYC because,
although both methods use temperature fields, HEDAC is
specifically designed for maze exploration with many or
fewer obstacles, whereas HYC is not clearly implemented
for such scenarios. The tested areas in the HYC paper are
described as concave regions formed by removing small
squares from larger ones, and the agent trajectories in the
provided figures suggest that the tested areas are largely
obstacle-free. Therefore, HEDAC has been deemed a more
suitable choice for our task, given its effectiveness in both
high and low-obstacle-density environments. Additionally,
we have modified HEDAC to address the distributed maze
problem, incorporating principles from the HYC paper,
as detailed in Section IV-B.

C. FRONTIER METHODS
Exploring multiagent systems has led to a variety of methods
and algorithms, with the nearest-frontier method being
notable for its simplicity and effectiveness. Initially proposed
byYamauchi [29], this method focuses on finding the shortest
path to the closest frontier. Despite its efficiency, recent
advancements in exploration strategies have introduced more
sophisticated techniques, particularly those that use utility
functions to enhance frontier selection. Cost-utility methods,
for example, improve upon the deterministic nearest-frontier
approach by incorporating additional utility functions, thus
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FIGURE 2. Wavefront distance calculation for the entire maze. The gray
dot indicates the agent’s position, whereas each empty cell contains the
distances from the agent. The black cells represent obstacles.

optimizing both exploration efficiency and decision-making
processes.

Marjovi et al. [30] present a cost-utility approach, referred
to here as CU-MNM, which effectively explores mazes
while detecting fires. The utility function in CU-MNM is
determined by the distance of the frontier from all robots.
This decentralized approach promotes communication and
collaborative decision-making among the robots.

Another cost-utility method, introduced by Juliá et al. [31],
uses the expected information gain in goal cells as the utility
function to facilitate efficient exploration. For this paper, this
method will be referred to as CU-JGR.

Bautin et al. [32] propose a computationally efficient
frontier allocation method, referred to as CU-BSO in this
paper, which encourages a balanced spatial distribution of
robots within the environment. This method uses wavefront
propagation [33], originating from each frontier to quickly
create a distance matrix (cost matrix) for all cells, and
then selects frontiers with fewer nearby robots. The use of
wavefront propagation underscores reduced communication
requirements among robots. An example of the wavefront
algorithm applied to a maze environment is shown in Fig. 2.
Beyond cost-utility functions, Zhang et al. [34] pro-

posed the TOPO exploration method, designed to enhance
multiagent exploration in communication-constrained envi-
ronments. TOPO employs a frontier exploration strategy
with a greedy approach, calculating the center of existing
vertices whenever a new vertex is added. TOPO also
constructs topological maps as robots navigate through the
environment, reducing the data required for path planning
and communication. Unlike traditional methods that depend
on occupancy grid maps, TOPO significantly lowers data
transfer requirements, as demonstrated in both simulated
and real-world scenarios. When compared to the MMPF
method [24], TOPO was shown to be faster in exploring the
area through extensive experimentation.

Our approach (CU-LVP) contributes to the existing litera-
ture by introducing an efficient cost-utility method tailored

FIGURE 3. Abstract overview of proposed methodology. Implementation
details are provideed in Section III.

to address the challenges of distributed maze coverage.
Through rigorous experimentation, we have demonstrated
that our method outperforms comparative approaches in
terms of speed, achieving faster maze exploration while
imposing minimal communication overhead, computational
cost, and coverage overlap. Section V delves into this balance
of metrics, showcasing results that validate CU-LVP’s
effectiveness.

III. PROPOSED METHOD
CU-LVP is a cost-utility approach that enhances frontier
selection by combining modifications of previously imple-
mented utility functions. It also effectively addresses the
distributed maze problem by selecting frontiers assigned
to each agent individually through Voronoi partitioning.
Specifically, the process begins with map partitioning, where
the maze is divided into subareas using Voronoi diagrams.
Each agent is then assigned a specific subarea to explore. The
next step involves frontier finding, where the best frontier is
selected within each subarea, according to the utility function
described in Section III-C. The shortest path to each frontier is
then calculated, ensuring efficient navigation. Fig. 3 provides
a high-level overview of our methodology, illustrating its
application for distributed maze coverage. Before going into
more details of the proposed approach it is necessary to define
the main entity of our method, the agent.

A. DEFINITION OF THE ROBOTIC AGENT
In our experiments, we define an agent class that represents
the behavior of individual agents within a maze environment.
The agents are capable of moving in four directions: up,
down, left, and right. To avoid collisions, they are prohibited
from moving into cells that are already occupied by other
agents or obstacles. Each agent keeps a personal map of the
areas it has explored in the maze. This map is continuously
updated with information collected by other agents within
broadcast range in each round. By sharing information
about the explored sections of the maze, we simulate
typical multiagent communication and behavior for maze
exploration. Additionally, the agent’s map is updated as it
explores new areas within its sensor range, which, by default,
extends two blocks in all orthogonal and diagonal directions.
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FIGURE 4. Visualization of the initial Voronoi regions for a randomly
30 × 30 generated maze (top image). Agents within broadcast range
(bottom image) have merged their Voronoi regions and exchanged
information about their surroundings. Additionally, on the bottom, the
red line depicts the wavefront path (x1, x2) from an agent (x0) to its goal
(f ) within its region. The black cells represent the agents. The colored
cells depict the Voronoi regions, with each color representing a different
partition, whereas the darker gray cells denote obstacles.

This simulates the sensing capabilities of real-world robots,
which often have sensors on all sides. Moreover, the agent
maintains a list of coordinates corresponding to its assigned
Voronoi region earmarked for exploration. During each
iteration, the agent employs the utility function described
in Section III-C to choose a goal exclusively from its
unexplored Voronoi coordinates. Once the agent discovers
its designated Voronoi coordinate either autonomously or
through information exchange with other agents, it redirects
its focus to other (unexplored) Voronoi coordinates, thereby
continuing its exploration trajectory.

Fig. 4 (in the bottom) shows an agent’s explored map
at the beginning, following initial information exchange
between agents. The map is shown with a two-block view
range, as configured in our experiments. If an obstacle is
detected, the view beyond it is blocked to mimic real-sensor

behavior. The agent class also stores essential parameters for
exploration, including the agent’s goal (marked with a red dot
in Fig. 4), the next position along the shortest path to the target
(indicated by a red line), the current position, and the view
range. These parameters allow us to implement realistic agent
behavior and exploration scenarios.

B. VORONOI PARTITIONING
CU-LVP relies on Voronoi partitioning to divide the maze,
with each region centered around an agent. Consequently,
the number of maze sub-regions in our experiments matches
the number of agents. Agents are then tasked with exploring
all cells within their assigned region. As they navigate the
maze using the utility function described in Section III-C,
agents within the broadcast range share informationwith each
other, facilitating collaborative exploration. The broadcast
range is defined as 25% of the maximum dimension of
the maze. Furthermore, to expedite the exploration process,
a mechanism is implemented to merge Voronoi regions when
agents come into broadcast range. This merging facilitates
a broader scope of exploration for agents, allowing them to
explore the maze more effectively.

An example of the Voronoi partition process and broadcast
range can be found in Fig. 4. On the top image, the starting
Voronoi regions are depicted. Initially, all space in the maze is
considered as free space, in order for the agents to explore it.
The darker gray cells represent the obstacles that the agents
find along the way. Additionally, in the bottom image, the
Voronoi regions of two agents (depicted as black cells) within
the broadcast range have merged. This merging results in the
region adopting a red hue, signifying consolidation into a
single region. Furthermore, the two agents have exchanged
information about their respective surroundings within a
sensor range. It’s worth noting that the agent’s goal (depicted
as a red dot in the bottom image) lies within its Voronoi
region, signifying correct code execution.

Throughout the exploration process, agents periodically
transmit their explored maps centrally, without pulling them.
This allows for monitoring of exploration progress and
facilitates experiment termination when the maze is explored.
Upon completing the exploration of their designated region,
agents move to the nearest unexplored Voronoi region, which
is decided based on the central map.

Agents also possess the capability to traverse cells in
neighboring regions to access their next target within their
Voronoi region, overcoming obstacles that might impede
progress if they were to confine their movement solely
within their designated area. Subsequently, they update
their exploration map to reflect their progress. However,
the primary focus remains on achieving complete coverage
within the assigned region.

C. GOAL SELECTION
Initially, CU-LVP uses wavefront propagation, starting from
the agent’s position, to efficiently calculate the shortest path
lengths to the frontiers of its assigned region. Among the
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unexplored cells in the agent’s Voronoi partition, the nearest
frontier is selected based on distance. If multiple frontiers
share the same minimum distance, for each frontier ai in the
nearest frontier list, the utility function described later in this
section is computed. The frontier with the highest utility score
is chosen as the agent’s next target cell.

CU-LVP also ensures that all agents within the broadcast
range have different goals by excluding frontiers already
assigned to an agent, provided the number of unexplored
frontiers is greater than or equal to the number of agents. This
differentiation is applied when agents share the same Voronoi
region, either due to merging their regions or exploring
regions assigned to other agents once they have completed
the exploration of their initial regions. By excluding assigned
frontiers, agents avoid converging to the same goals,
spreading out efficiently across different areas. It is also
important to note that this differentiation can only be detected
when agents are within broadcast range, enabling them to
communicate and share their assigned frontiers, thus avoiding
duplication. Additionally, when agents explore the same (or
neighboring) regions, one agent may inadvertently explore a
goal intended for another. To encounter this, CU-LVP checks
at each round whether an agent’s goal has been explored
by others within its broadcast range. If the goal has been
explored, the algorithm recalculates the next optimal goal,
enhancing overall exploration efficiency.

The utility function of CU-LVP combines elements from
the cost-utility function CU-MNM [30] (later referenced as
umnm) and the CU-JGR approach [31]. Instead of merely
considering the neighboring cells (in view range) of the goal
cell in the cost-utility function, as CU-JGR does, our method
considers the neighboring cells along the whole wavefront
path from the current position of the agent to its goal cell (later
referenced as ujgr). This comprehensive calculation provides
a more accurate estimation of the expected explored cells and
improves the overall efficiency of the maze exploration task,
as demonstrated in the experimental evaluation. Specifically,
the formula for this new cost-utility function is as follows:

utility(f ) = N(umnm(f )) + λ · N(ujgr(f )) (1)

where f represents the nearest frontier cell under examination
within the agent’s Voronoi region, and N(x) denotes the
min-max normalization function, ensuring values fall within
the range [0, 1]. If cell x0 is the current position of agent x, the
pathP is the sequence x1, . . . , xi, . . . , xn of cells that the agent
has to cross in order to reach the target f , which always lies
within the agent’s assigned region. These cells of path Pmay
not all belong to the region assigned to this agent, allowing the
agent to overcome obstacles that might impede progress if it
were confined solely within its designated area. As the agent
follows path P, several unexplored cells within its view range
will be explored, enhancing the overall exploration efficiency
if the agent selects the specific frontier f .

Moreover, the method incorporates a parameter λ, which
was determined to be optimal at 0.2 after conducting
100 experiments across maze dimensions of 15×15, 30×30,

FIGURE 5. Copeland Comparison for different λ values of CU-LVP across
100 experiments in various maze sizes (namely 15 × 15, 30 × 30, and
50 × 50).

and 50 × 50. A more comprehensive comparison of the
outcomes across different λ values is shown in Fig. 5, using
Copeland’s method. Copeland’s method [35], [36], [37] is
a voting technique, which allows ranking multiple methods
that are compared on a set of experiments with varying
parameters (e.g. maze sizes, number of agents or partitions,
etc.) to provide a unified ranking. The technique involves
pairwise comparisons of the average scores obtained across
the experiments for each λ value. Based on the results, we can
determine which λ value consistently received more votes,
thereby establishing its superiority across the experiments.

The first utility score of the utility function (1), umnm, for
the (nearest) frontier cell f is defined as:

umnm(f ) =

n∑
i=1

dist[(Xf ,Yf ), (Xri ,Yri )] (2)

where, x0 = (Xri ,Yri ) represents the position of agent i, xn =

(Xf ,Yf ) denotes the position of frontier f within its Voronoi
region, and n signifies the number of agents. Also, ujgr for the
frontier cell f is defined as:

ujgr(f ) =

∑
xi∈P

Unex(xi, r) (3)

where Unex(x, r) represents the number of unexplored cells
within the agent’s view range at cell x. xi denotes the
individual elements (cells) of the wavefront path, guiding
the agent towards the target frontier f . Once again, the
frontier(s) f considered are within the agent’s currently
assigned Voronoi region.

CU-LVP also incorporates collision avoidance strategies
to navigate around other agents or obstacles. Specifically,
if an agent is unable to reach the nearest frontier due to
obstacles or blocked paths caused by other agents within
broadcast range, it remains stationary until the obstructing
agents move. However, this is a rare occurrence due to
the integration of Voronoi partitioning. As detailed in
Section III-B, agents prioritize exploring their own Voronoi
regions, which effectively prevents collisions throughout the
experiments. Consequently, collisions may occur only when
two ormore agents navigate through the sameVoronoi region.
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FIGURE 6. Randomly generated 30 × 30 mazes from the experiments. The
left maze has an obstacle probability of 15%, whereas the right maze has
an obstacle probability of 85%.

IV. EVALUATION FRAMEWORK
To evaluate the performance of the newly proposed CU-LVP
and compare it with other state-of-the-art techniques that
we adapted to the distributed maze problem, we con-
ducted experiments using randomly generated mazes and
a varying density of obstacles. Several metrics were used
to evaluate the performance of different methods under
various conditions. The experiments ran 500 times and
the average scores are reported. The code and results
of our experiments are available in a code repository
(https://github.com/manouslinard/multiagent-exploration/).

A. MAZE GENERATION
For generatingmazes, we adapted themethodology described
in [38]. This method involves moving an agent randomly
in orthogonal directions (up, down, left, and right) within
a grid to construct the maze. Also, we extended this
approach by introducing a probability factor for each obstacle
cell, determining whether an obstacle should remain or be
converted to empty space, thus allowing for the creation of
mazes with varying levels of complexity. The function also
permits the specification of maze dimensions.

The maze is represented as a 2D array with four cell states:
unexplored cells (−1), free space (0), obstacles (1), and agent
cells (2). When an agent views its surroundings, cells within
its range are marked using 0 for free space and 1 for obstacles.

For our experiments, we generated 30 × 30 mazes with
varying obstacle probabilities to create environments of
differing complexities, set at 85% and 15%. This range
enabled a thorough evaluation of the algorithms’ perfor-
mance under different conditions. An obstacle probability
of 85% simulates a complex, maze-like stage, whereas 15%
resembles a sparsely obstructed area. To ensure robustness
in our evaluation, new mazes were generated for each
experiment, providing fresh scenarios to test the efficiency
of the algorithms. Fig. 6 shows two randomly generated
30 × 30 mazes, one with an obstacle probability of 15%
and the other with 85%, demonstrating the diversity in maze
complexity examined in our experiments.

B. BASELINE METHODS
The baselinemethods used to compare CU-LVP are described
in Table 1. Each method has been implemented from scratch

TABLE 1. Methods used for comparative analysis in distributed maze
exploration.

based on the corresponding papers and adapted to the
distributed maze problem using Voronoi partitioning. The
specifics of the modifications for adapting these methods
to partitioned mazes are detailed in Section IV-B1, whereas
parameter tuning is discussed in Section IV-B2.

1) VORONOI PARTITIONING FOR BASELINE METHODS
The baseline methods were adapted to the distributed maze
problem. Specifically, frontier exploration methods like CU-
MNM, CU-JGR, CU-BSO, and Nearest Frontier follow
the same principles for Voronoi integration as CU-LVP,
as discussed in Section III-B. This is due to the fact that
they are similar to CU-LVP, since CU-LVP is also a frontier
exploration method.

HEDAC on the other hand differs in its adaptation for the
distributed maze problem. Specifically, HEDAC constrains
the agent’s movements within its designated Voronoi region,
similar to HYC [28]. This distinction arises from the
characteristic of temperature/potential field methods, which
select one neighboring cell at a time. To ensure navigation
solely within the agent’s Voronoi region, we consider
only cells within that region, treating all other unexplored
cells outside of it as obstacles for accurate potential field
calculations.

However, this approach may encounter challenges in maze
environments, where obstacles hinder progress, potentially
causing the agent to become trapped and unable to explore
its entire Voronoi region. To mitigate this, we refined
the HEDAC algorithm. Once the agent has explored all
reachable cells, we enhance the attraction force along
the wavefront path, guiding the robot toward the nearest
frontier. Consequently, the agent can navigate situations
where its Voronoi region becomes inaccessible due to limited
movement within it and the presence of obstacles, effectively
addressing the distributed maze problem.

2) PARAMETER TUNING FOR BASELINE METHODS
Certain baseline methods require specific parameter settings
to achieve optimal performance. For example, in HEDAC,
the ‘‘iterations’’ parameter, as described in the original
paper [25], determines how many times the attractive force
should be recalculated to produce the final attractive force
for each cell. Through experimentation in distributed mazes,
we found that setting this parameter to 100 yielded the
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FIGURE 7. Copeland Comparison for different λjgr values of CU-JGR
across 100 experiments in various maze sizes (namely 15 × 15, 30 × 30,
and 50 × 50).

best results. Lower values caused agents to become trapped
in local minima, impeding exploration progress, whereas
higher values significantly increased computation time.
Additionally, HEDAC includes a parameter denoted a, which
we found to perform optimally when set to 10. Furthermore,
the anti-collision (AC) condition outlined in the original
HEDAC paper is set to ON in our experiments. This means
that if an agent has information that one of the other agents is
currently standing on one of its neighboring nodes, the agent
does not consider this node for its next position. We also
extended the original HEDAC approach by setting the agent’s
view range to two blocks.

The CU-JGR algorithm also requires tuning of the param-
eter λjgr. Through experimentation in partitioned mazes,
we determined that setting λjgr to 0.8 resulted in more
efficient maze exploration. Fig. 7 shows the results obtained
for different λjgr values, using Copeland’s method.

C. EVALUATION METRICS
To compare the methods, we utilized evaluation metrics
proposed by Yan et al. [39]. Additionally, we tracked the
number of exploration rounds to measure the repetition of the
exploration process. A metric for estimating the communica-
tion cost between agents was also developed. The evaluation
metrics used in this study include: i) Exploration Time, ii)
Exploration Rounds, iii) Exploration Cost, iv) Exploration
Efficiency, v) Map Quality, and vi) Communication Cost.

1) EXPLORATION TIME
The exploration time metric measures the total time required
for a robot fleet to complete an explorationmission. The timer
starts when at least one robot begins exploring and stops when
the fleet collectively achieves 100% terrain exploration. This
metric is measured in wall-clock time, reflecting the duration
in days, hours, minutes, and seconds spent on the exploration
task.

In our experiments, exploration time measures the com-
putational time for each method, as the movement time is
instantaneous. This is because the agents move within a

simulated grid (a 2D array), where we simply change the
cell value from 0 (free space) to 2 (occupied by an agent) to
signify agent movement. Specifically, the (exploration) time
is calculated by finding the average time of each round and
multiplying it by the number of rounds. Since the agents
operate sequentially (one agent after the other performs a
step in each round), we calculate the average round time by
dividing the time needed for all agents to make a step to the
number of agents:

explorationTime(n) =

∑n
i=1 tsi
n

· R (4)

where tsi is the time needed for an agent to make a step.

2) EXPLORATION ROUNDS
Exploration rounds (R) represent the iterative cycles of the
exploration process, including both information exchange
among agents and the algorithm’s repetition until maze
completion. These iterations measure the number of times the
agents have communicated with each other, as information
sharing occurs in each round for agents within broadcast
range. Exploration iterations conclude when the entire maze
has been fully explored.

3) EXPLORATION COST
The exploration cost is based on user specifications, including
factors such as energy consumption by computational
resources (e.g., CPU, RAM, and network bandwidth) and
robot-related expenses like acquisition, handling, and main-
tenance costs. Their definition of the exploration cost metric
requires summing the distances traveled by each robot during
the collaborative maze exploration. This metric can also be
utilized to measure repetitive coverage, as it is calculated
using the following formula:

explorationCost(n) =

n∑
i=1

di (5)

where n is the number of robots in the fleet, and di is the
distance traveled by robot i.

4) EXPLORATION EFFICIENCY
Exploration efficiency relates to the amount of environmental
information acquired, inversely proportional to the costs
incurred by the robot fleet. It is described by the following
formula:

explorationEfficiency(n) =
M

explorationCost(n)
(6)

where n is the number of robots in the fleet andM is the total
explored cells.

5) MAP QUALITY
The map quality is defined as the overlap of the explored map
and the ground truth map as a ratio to the total area of the
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ground truth map P:

mapQuality =
M − A(mapError)

P
(7)

whereM are the total explored cells, P is the total area of the
ground truth map, and A(mapError) is the area occupied by
error cells. Error cells are those in the exploredmap that differ
in value from the corresponding cells in the ground truth
map. In our experiments, the mapQuality metric consistently
reaches 100% due to the efficiency of the algorithms and the
design of the mazes, which facilitate agents’ access to all
areas for exploration.

6) COMMUNICATION COST
The communication cost refers to the cells transferred from
one agent to others within range during communication
intervals. During each (exploration) round, an agent shares
its entire explored stage with other agents within its
communication range. Considering the four possible cell
states (−1, 0, 1, and 2), we require 2 bits to represent
each cell. Additionally, since each communication exchange
occurs bidirectionally between two agents, the equation for
calculating the communication cost is formulated as follows:

commCost = 4 · rows · columns (8)

Here, the factor of 4 accounts for the 2 bits needed per cell
multiplied by 2, representing the number of communicating
agents. The variables rows and columns denote the dimen-
sions of the maze, as the agent transmits its entire explored
stage during each communication cycle. For instance, in a
30 × 30 maze, both the number of rows and columns is 30.

D. HARDWARE DESCRIPTION
The final experiments were conducted on a PC running Linux
equipped with an Intel(R) Core(TM) i5-1235U CPU. To opti-
mize computational efficiency, the Python multiprocessing
library was employed, utilizing all available processing
cores. Detailed results of these experiments are presented in
Section V.

V. EXPERIMENTAL RESULTS
The results consist of 500 experiment repetitions conducted
with varying numbers of agents; specifically 1, 2, 4, 6, 8,
10, 15, and 20. Each agent configuration explored mazes of
dimensions 30 × 30 with obstacle probabilities set at 85%
and 15%. These experiments included both baseline methods
and the newly proposed CU-LVP, as depicted in the resulting
plots. Fig. 8 (refer to Section IV-C for details on the metrics)
shows the average scores and standard deviations obtained
from the experiments for each agent group and exploration
method.

For the final evaluation, we employed the Composite
Index Scoring method [40], [41]. This method is a powerful
and popular tool for providing an overall measure of a
subject (in our case, a method) by summarizing a group of
measurements (component indices) of different aspects of

FIGURE 8. Results of 500 experiments, utilizing the metrics described in
Section IV-C for CU-LVP and baseline methods.

the subject/method. It is widely used in economics, finance,
policy evaluation, performance ranking, and many other
fields. According to [40], the most widely used approach is
to use a linear combination of the component indices with
specified weights. In our case, the components are the metrics
defined in Section IV-C, and the weights are all set to 1, as all
metrics are equally important.

Specifically, we produced the Composite Index Scoring
plot by normalizing all the metrics for each agent group using
min-max scaling. Thismeans, for example, that themaximum
value of the min-max scaling for a setup with N agents is the
largest (average) metric value (for the 500 repetitions) for the

VOLUME 12, 2024 101415



M. Linardakis et al.: Distributed Maze Exploration Using Multiple Agents and Goal Assignment

N-agents’ setup only (and similarly for the minimum value).
We ranked each method in each agent group for all metrics
based on these normalized values. Then, we summed these
rankings using equal weights to create the final Composite
Index Scoring plot. The resulting Composite Index plot is
displayed in Fig. 9 and detailed in Section V-B. Greater
values in the Composite Index Scoring denote better method
performance.

A. RESULTS OF METRICS
The results of the metrics showcase the overall efficiency
of CU-LVP. The first row of plots in Fig. 8 displays the
Exploration Time results on a logarithmic scale for better
visibility. CU-LVP is among the least computationally expen-
sive methods across both maze topologies, comparable to
Nearest-Frontier, i.e. the simplest baseline method. CU-JGR,
another computationally efficient method, performs similarly
to CU-LVP in complex mazes (85% obstacles). However,
in simpler mazes (15% obstacles) and with more than
4 agents, CU-LVP proves to be more efficient. Other
methods like CU-MNM, CU-BSO, and HEDAC are more
computationally expensive, leading to longer exploration
times. This efficiency is attributed to CU-LVP’s use of
wavefront propagation to find the nearest frontiers, resulting
in faster utility function calculations and overall algorithm
performance.

The second row of Fig. 8 shows the Exploration Rounds
Metric. In mazes with dense (i.e. 85%) obstacles, CU-LVP
performs comparably to other methods except for CU-JGR,
which has the highest number of exploration rounds. Inmazes
with few (i.e. 15%) obstacles, CU-LVP generally ranks
second to HEDAC when there are fewer agents. As the
number of agents increases, performance across methods
becomes similar, except for CU-JGR, which consistently
performs the worst, exhibiting the highest exploration rounds
in both maze scenarios.

The third row presents the Exploration Cost results, which
can also be interpreted as repetitive coverage results. CU-JGR
again performs the worst in both scenarios. Similarly,
HEDAC falls short compared to other methods in the dense
obstacle setting, gradually ranking as the second-worst in
exploration cost as the number of agents increases. CU-
LVP remains competitive in complex mazes, improving its
performance as the number of agents increases. In simpler
mazes, CU-LVP typically ranks second toHEDACwith fewer
agents, but this disparity diminishes as the number of agents
rises, eventually achieving parity with HEDAC.

The fourth row displays Exploration Efficiency perfor-
mance. CU-JGR has the lowest efficiency in both maze
conditions, followed by HEDAC in 85% obstacle proba-
bility mazes. CU-LVP’s efficiency is comparable to other
cost-utility methods in dense mazes. In simpler mazes,
HEDAC is the most efficient, followed by CU-LVP, with both
methods performing equally well as the number of agents
increases.

FIGURE 9. Composite index scores across different methods.

The fifth and final row shows Communication Cost results.
CU-JGR consistently has the highest communication cost in
all maze topologies. Communication costs increase for all
methods as the number of agents rises. CU-LVP maintains
one of the lowest communication costs overall, especially in
simpler mazes where it consistently ranks first. This is likely
due to the effective dispersion of robots by CU-LVP, reducing
communication overhead.

B. COMPOSITE INDEX SCORING
Examining the Composite Index depicted in Fig. 9,
it becomes evident that CU-LVP achieved the highest overall
score in both maze topologies. Particularly, it outperforms
all other methods in complex mazes (with 85% obstacle
probability) and excels when more than 4 agents are used
in the exploration of simpler mazes. However, for 1 and
2 agents in less complicatedmazes, HEDAC exhibits superior
performance. The advancement of CU-LVP over other
baselines stems from its competitive results across all maze
settings in metrics such as Exploration Rounds, Exploration
Cost, Communication, and Efficiency, while maintaining
significantly lower computational complexity compared to
other baselines, except Nearest Frontier, i.e. the simplest
frontier exploration method.

VI. CONCLUSION
This work introduced CU-LVP, a novel method formultiagent
maze exploration in distributed mazes, which demonstrates
competitive results across various metrics. Notably, CU-
LVP exhibits exceptional performance in Exploration Time
(computational complexity), showcasing its efficiency by
requiring minimal computations to explore mazes effectively.
The effectiveness of CU-LVP is further evidenced in the
Composite Index plot, where it emerges as the top per-
former across both complicated and simpler mazes, striking
a balance between swift exploration, low computational
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overhead, minimized communication between agents, and
reduced coverage overlap.

Moving forward, our research endeavors will focus on
conducting additional experiments to ensure robust results
and integrating successful elements from other method-
ologies, such as HEDAC, into the utility function to
enhance performance in simpler mazes with fewer agents.
Additionally, we plan to incorporate cutting-edge techniques
in the baseline methods, such as the recently introduced
reinforcement learning method CQlite [23], which shares
similarities with CU-LVP in emphasizing frontier exploration
in distributed mazes. Furthermore, we aim to enhance the
reward function of these reinforcement learning methods by
incorporating penalties for broadcast limitations, coverage
overlap, and communication cost. Moreover, the application
of this work’s methods in real-world settings holds promise
for providing invaluable insights into their performance and
efficiency when confronted with practical complexities. This
will also necessitate the implementation of algorithms in a
distributed fashion, such as distributed Voronoi partitioning
using agents’ relative positions. Such insights will fuel
further advancements and adaptations, enabling broader
applicability.
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