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ABSTRACT Urinary albumin is an excellent marker for the diagnosis of chronic kidney disease. Smartphone
assisted accessory-free analyzers are gaining popularity in the quantification of urinary albumin in point-of-
care settings, though, presently, they are widely used as a screening tool. Application of smartphone-based
colorimetry systems are limited because they suffer from several operating problems such as camera settings
and illumination conditions, that can change the colorimetric values. In addition, they suffer from the problem
of domain shift i.e. extreme performance degradation when tested data (source) was captured in a setting
different from that of the training (target) data. In this work, the problem introduced due to smartphone
camera settings and illumination conditions, has been addressed by applying a domain adaptation deep
learning method. It is the amalgamation of a generative model and convolutional neural network. Images
captured using an iPhone under 3500K light conditions were used as the target dataset and other domains
including different smartphones and light conditions were utilized as source datasets. Given test data from the
source, its ‘closest clone’ was derived using generative model-based Pix2pixGAN and mapped to the target
data. Further, a customized CNNmodel was used for the classification of the closest clone data. The proposed
method yields an accuracy of ∼88% for inter-phone repeatability on test data. The efficacy of the proposed
model was also evaluated under different illumination conditions.

INDEX TERMS Point-of-care (PoC) diagnosis, urinalysis, smartphone, domain adaptation, CNN.

I. INTRODUCTION
Chronic Kidney Disease (CKD) has become a leading cause
of mortality in the older population due to diabetes mellitus
and hypertension, and in the younger population as well due
to various reasons such as obesity and lifestyle [1]. Various
studies in recent years have shown a drastic increase in
the total number of patients, and worldwide an estimated
843.6 million individuals are affected due to CKD [2], [3],
[4]. Hence, diagnosis, screening, and monitoring of CKD
have become of utmost importance. CKD diagnosis is gener-
ally done in laboratory settings, and various diagnostic tools
such as glomerular filtration rate (GFR), or the presence of
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albumin or creatinine or their combination are tested in urine
samples [5]. However, GFR, a tool to measure kidney func-
tion, is often normal or partially elevated in the early stages
(stages 1 and 2). Although several studies have shown that
microalbuminuria is a strong marker for the detection of early
kidney damage, its detection is limited to laboratory settings
only [6], [7]. Early-stage kidney disease diagnosis is essential
for better healthmonitoring of diabetic patients as this disease
is asymptomatic in stage one and stage two of its progression.
There are standard methods to determine the concentration
of albumin using immunoturbidimetry, nephelometer, flow
injection analysis (FIA), and sequential injection analysis
(SIA) yielding accurate results [8]. However, these systems
are not portable and are typically used in central laboratory
facilities. Studies have shown that traces of albumin in the
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urine can be detected using the dipstick method which is a
very cost-effective solution and can be very helpful, espe-
cially in remote settings [9], [10]. Urine dipsticks contain
multiple sensor/ detection pads impregnated with different
chemicals/reagent, that exhibit the change in their color when
subjected to a specific analyte [9]. In colorimetry, the color
of the sensor pads on urine dipstick changes with the con-
centration of analytes present in the sample. Changes in
color values are assessed to estimate the concentration of the
analyte. Typically, the color change is visually compared to
the reference chart as shown in Fig. 1. Concentration of the
albumin in the sample is accordingly labeled depending upon
the color intensity of the detection pad. However, dipsticks
are less sensitive at lower concentrations (<300mg/L), which
are clinically significant for the early diagnosis of CKD [9].
In addition, the interpretation of color using a reference color
chart is subjective due to variation in visual perception of
individuals. In addition, low sensitivity and specificity of
dipstick methods impose a major hindrance to its widespread
adoption [10].

There has been significant development in the field of
smartphone-based optical readers for the quantitative estima-
tion of analytes in urine due to their portability and ease of
deployment in low-resource settings. Several research groups
are working towards the development of smartphone-based
sensing platforms for biomarker detection [11], [12], [13],
[14], [15]. In most smartphone-based systems, the images of
the urine dipsticks are captured using the camera of the smart-
phone, and color features are extracted. The change in the
color values is quantified and categorized in multiple groups
and analyte concentrations are estimated and classified using
different image processing tools and classifiers [15], [16].
Despite many advantages of the smartphone-based systems,
change in their performancewith ambient lighting conditions,
camera settings, and spectral sensitivity of the sensor, hinder
their applicability [15]. Few research groups had addressed
the issue of ambient illumination by using and an add-on
device to the smartphones to illuminate and capture the
images of urine dipsticks [16], [17], [18], [19]. Lee et al.
demonstrated a smartphone app ‘NutriPhone’ that comprises
a smartphone accessory, and a lateral flow test strip that
quantifies vitamin B12 levels [17]. Srinivasan et al. integrated
a smartphone with a disposable test strip to quantify the
concentration of serum ferritin using fingertip blood [18].
Kim et al. used a smartphone camera to capture microfluidic
channel images to quantify blood haematocrit [19]. These
studies utilized customized ‘black boxes’ to avoid ambient
light conditions and image blurring. However, these ‘add-on’
devices are smartphone-dependent and require customizing
based on smartphone models.

To address this problem, researchers have implemented
various approaches to quantify analyte concentration based
on the accessory-free method. Table 1 outlines diverse
methods employed for system calibration, encompassing:
1) Utilization of a reference color chart with image processing
algorithms [20], 2) Application of color space transforma-
tion [21], [22], and 3) Incorporation of machine learning

and deep learning classifiers [23], [24]. Researchers have
used reference charts and color space transformations for
calibration to render these systems accessory-free [21], [23].
However, it is important to note that these systems require
calibration at every stage, taking into account fluctuations
in lighting conditions specific to each type of smartphone.
Additionally, uniform illumination across the strip and the
control object is not guaranteed and further contributes to
varying mean color values for both the control object and
the strip [15], [24]. However, the performance of such sen-
sors may differ with changes in illumination conditions
and the smartphone models due to changes in the camera
sensors and their settings such as focus, shutter speed, expo-
sure, image signal processing (ISP), pipelines, and color
temperature [25].
Emerging research has shown that machine learning has

the potential to solve issues associated with ambient light
conditions and camera settings [15], [28], [29]. Solmaz
et al. Proposed SVM and Random Forest for the quantifica-
tion of hydrogen peroxide using colorimetry test strip [24].
Bhatt et al. demonstrated different machine learning mod-
els: logistic regression, KNN, Random Forest, and Support
vector machine (SVM) to quantify albumin in urine sam-
ples using paper-based strips [29]. Thakur et al. used a
deep learning-based CNN model for automatic segmenta-
tion and quantification of albumin concentrations using urine
strips [15]. In the studies, researchers have demonstrated
machine learning models to mitigate ambient light condi-
tions. However, when the same models were used for testing
instead of training, accuracy decreased drastically. In addition
to ambient light conditions, a shadow of the smartphone over
the image was identified as a contributing factor to the sub-
optimal performance of the classification models [29]. In our
study, this factor was taken care of using ‘Flash on’ mode
of the smartphone that mitigates the shadow of a smartphone
over the images [15].
Additionally, the spectral sensitivity of the camera may

vary with smartphone models and therefore can affect the
colorimetric value of images. Also, the pictures taken with
diverse smartphone cameras may not faithfully represent
the actual colors in the image, attributed to fluctuations in
the light source’s power distribution that alter colorimetric
values. In interesting studies, the human ability of color
perception was mimicked using a camera, one of the stud-
ies utilized a statistics-based algorithm wherein statistical
algorithms impose priors [31]. In the second study, a learning-
based algorithm was employed that relies on a training
set [32]. It employsmachine learning and Convolutional Neu-
ral Networks (CNN) for the classification and quantification
of analytes [33].

This model performs well when CNN models are trained
under controlled conditions (target), for example, the data
was captured using a single camera sensor in specific
illumination conditions. However, the classification perfor-
mance degrades when confronted with diverse conditions
(source) involving different camera sensors and illumina-
tion conditions. The shift in the domain from source to
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TABLE 1. Smartphone-based point-of-care devices.

target causes a severe performance degradation in terms of
accuracy which can be solved using the domain adaptation
approach [34], [35]. These models, learns domain-invariant
representations by employing the principles of adversarial
learning. In pix2pixGAN model, pixel-wise learning was
employed to learn pixel-wise transformation. The primary
objective is defined as training a model that can take an input
image and generate a corresponding output image with a
desired attribute.

In this study, the authors propose a customized GAN con-
catenated CNN i.e. pix2GCNN model to classify albumin
concentrations ranging from 1280 mg/L to 5 mg/L. The
images of the urine dipstick were captured using four differ-
ent smartphone cameras. Images captured using the iPhone
SE smartphone model were served as targets. In the source
dataset, images captured using other smartphones i.e. Redmi,
Realme, and Samsung were utilized. Effectiveness of the
model was also investigated under different illumination con-
ditions using two different light sources i.e., a tungsten bulb

FIGURE 1. Reference color chart which comes with a commercially
available urine dipstick that is used for protein concentration
measurement; neg, trace, 300, 1000, and 20000 mg/L respectively.

corresponding to a color temperature of 3500K and compact
fluorescence light having a color temperature 6500K. Here,
the images captured at 3500K color temperature were used as
the target dataset and images captured at 6500K were used as
source dataset.

The pix2pixGAN model performs an image-to-image
translation to learn the mapping between the source image
and the target image. The pix2pixGAN was used to find the
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‘closest clone’ images for source images that were arbitrarily
close to the target images. The source images that belong to
different spectral distributions (i.e. different domains) were
replaced with its ‘closest clone’’ images. Finally, customized
CNN was used to obtain the classes of albumin analytes.
Dependence of the proposed model for different smart-
phone cameras was also investigated. A customized dataset
generated using four different smartphones was used. Here,
the images were captured at different illumination conditions
and also at different color temperatures. All the images were
captured in ‘‘Flash ON’’ mode of the camera to mitigate the
effect of ambient light conditions. Issues related to domain
shift were addressed using pix2GCNN technique that com-
putes the ‘closest-clone’ of the source data for a given image
and has been used for the classification of albumin concentra-
tions. Performance of the proposed method was evaluated on
various datasets obtained using different smartphone models
i.e. iPhone SE, Redmi 8A Dual, Samsung Galaxy M01, and
Realme C11 under various light conditions. The proposed
model was also tested al lower concentrations (up to 5mg/L)
as they are clinically significant but challenging to detect due
to extremely less variation in the color values. These finding
were also validated on the same dataset using Nephelometry,
the gold-standard technique.

II. MATERIAL AND METHODOLOGY
This section outlines the stages involved in the classifica-
tion of albumin concentration on a urine dipstick, including
solution preparation, methodology, a customized generative
pix2GCNN model, and assessment metrics. First, the human
serum albumin was used to prepare the solution of albumin at
different concentrations, ranging from 1280 to 10mg/L, using
serial dilution approach. Images were acquired using four
different smartphones (iPhone, Redmi, Realme, Samsung)
at two different color temperatures: 3500 K and 6500 K,
to realize two different illumination conditions. The color
parameters were extracted from these images. To mitigate
the effect of the variations in the illumination conditions
and the smartphone variability, ‘closest clone’ images were
generated using the pix2pix model. Further albumin concen-
trations were classified using a customized CNN model. The
complete image processing algorithm has been discussed in
the methodology section.

A. SAMPLE PREPARATION AND DATASET
The standards used in the present study were synthesized
at AIIMS, New Delhi under the supervision of a medi-
cal expert. The stock solution was prepared by dissolving
3.2 mg of solid powder of human serum albumin (HSA)
in 2.5 ml of water, yielding the albumin standard solution
of 1280 mg/L concentration, termed as C1. The albumin
solutions at eight other concentrations C2, C3, . . .C9, cor-
responding to 640 mg/L, 320 mg/L, 160 mg/L, 80 mg/L,
40 mg/L, 20 mg/L, 10 mg/L, and 5 mg/L were prepared
using the serial dilution approach by adding the propor-
tionate amount of deionized water to the stock solution.
The urine dipsticks were dipped in these solutions and

FIGURE 2. A bar plot has been added to show the variation of color
parameters in RGB color space channels for nine different concentrations
of albumin ranging from C1 (1280 mg/L) to C9 (5 mg/L).

respective images were captured using the smartphone cam-
era to quantify the color changes corresponding to different
albumin concentrations. The color variations at nine differ-
ent concentrations are shown in Fig. 2. Concentrations of
these standard solutions were validated on the same day
using Nephelometer and immunoassay-based methods. Solu-
tions within concentration range of 5 to 200 mg/L were
validated using a nephelometer whereas immunoassay-based
method was performed to validate the concentrations
>200 mg/L.

To conduct this study, we have used nine different con-
centrations of albumin. Four different smartphones (Redmi,
Realme, Samsung and iPhone) were used to capture the
images at two different light source corresponds to color
temperatures; 3500 K and 6500 K. At each color tempera-
ture, six different illuminance conditions; 500 Lux, 400 Lux,
300 Lux, 200 Lux, 100 Lux, and 50 Lux at the sample plane
were realized by changing the angle of incidence of the light
source. Four images were captured at each concentration
using a specific smartphone camera leading to a total of
36 images, corresponding to 9 different concentrations, using
a single smartphone at a specific illuminance value (e.g.
500 Lux) at the sample plane at a specific color temperature
(e.g. 3500K). In thismanner, total of 1728 images (36∗6∗4∗2)
were captured at all the 6 illuminance values at the sample
plane using 4 different smartphone cameras at two different
color temperatures. In each study, the entire dataset was split
into 80:20 for training and validation purposes. Further, the
model was used to test an unseen dataset. For training the
model, data augmentation was performed through flip, rota-
tion, and zoom operations to increase the volume of the data
for the robust learning of the model. Total 27648 images were
created by applying the data augmentation operation which
further split into 80:20 ratios for train and validation i.e.
22119 and 5529 images respectively. Further, the 216 images
that were captured at 6 different illuminance values, using
single smartphone at the color temperature of 3500 K,
that belongs to unseen data, were used for testing the
model.

B. METHODOLOGY
The colorimetric value of any image/object is affected due
to the following factors: 1) Change in image sensing device
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such as smartphone, 2) Variation in light conditions such as
illumination and color temperature, 3) Angle introduced in
image or sensor. Here, we have used smartphones to capture
images of urine dipsticks. Albumin samples were introduced
onto the chemically impregnated dipsticks for 10 seconds
leading to change in color value of the sensor pad at the
strip. Images of dipsticks were captured using a smartphone
camera after 60 seconds, allowing the chemical reaction to
complete. The ambience color temperature was maintained
at 3500K using a tungsten bulb. The illumination at the strip
was varied by changing the angle of the light source leading
to resultant luminance in the range of 500 Lux to 50 Lux.
Four images of individual concentrations were taken for the
repeatability of the process. The above process was repeated
for all albumin concentrations ranging from C1 to C9. These
studies were repeated using different smartphone cameras i.e
iPhone SE, Redmi 8A Dual, Realme C11, Samsung Galaxy
M01. The colorimetry values of images are affected due to
variations in the spectral sensitivity of the smartphone camera
and changes in the intensity of the ambient light condition as
shown in Fig.3. Here, this problem was addressed using the
domain adaptation method i.e. the pix2pixGAN model [37],
[38], [39]. This model consists of two parts: a generator and
a discriminator, which is simultaneously trained, as shown in
Fig. 4. The generator produces synthetic data that is cloned
to the real data, while the discriminator tries to distinguish
between the real data and the synthetic data. Fig. 5 presents
the proposedmethodology to classify albumin concentrations
using GAN model. Here, the images acquired in all the
studies using an iPhone were labeled as the target domain.
The pix2pix model acquires detailed pixel-level information
to effectively translate images from the source to the tar-
get domain. Once the domain shift problem was mitigated,
customized CNN model was used for the classification of
concentrations as discussed in section C. Here it was noticed
that the CNN model was trained only using target images
and tested on ‘closest-clone’ images that belong to different
source domains (different smartphone models). The perfor-
mance of the model has been discussed in detail in section III.
To ensure the robustness of the model, a series of studies
were conducted using different smartphone models: Realme
and Samsung. In addition, the effectiveness of the model was
also evaluated by introducing different light conditions i.e.
compact fluorescent lamp (CFL, color temperatures: 6500K).

C. GENERATIVE PIX2GCNN MODEL
In this study, we have demonstrated the utilization of a
generative model equipped with a deep classifier. The gen-
erative model (pix2pixGAN) has been concatenated with
customized CNN model. In pix2pixGAN model, a genera-
tor is based on U-net network with convolutional layers to
extract the features from input images [39]. Convolution and
pooling layers progressively decrease the spatial dimension
which follows the expansion path where convolution and
up-sampling layers amplify spatial dimensions while reduc-
ing feature maps. In addition, skip connections are employed
for high-resolution information preservation from the input
images. The generator is designed to adhere to a discriminator

FIGURE 3. Albumin sensor pad of nine different concentrations
(1280 mg/L to 5 mg/L) showing the variation in color with different
domain images captured using smartphone sensors using ‘Flash on’
mode.

FIGURE 4. Block diagram of Pix2pixGAN architecture. Input is an albumin
detection pad captured using smartphone models.

FIGURE 5. Block diagram of proposed methodology to classify albumin
concentration ranging from C1 to C9 using Domain Adaptation method.

which was trained to differentiate between real and generated
image pairs [40]. During training, the generator is trained to
minimize the difference between the generated output image
and the ground truth output image, while the discriminator
is trained to differentiate between real and generated image
pairs. Here, we computed the final loss as a combination of
adversarial loss and L1 function as given by equation 1. The
reason for using L1 loss instead of L2 loss was based on the
observation that it resulted in less blurred output images.

G∗
= argminmaxLcGAN (G,D))+λL l1(G) (1)
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Algorithm 1 Customized CNN
Input: Group of images

Output = class of input image

for train data:
Compute feature maps for input image using
kernel filter w as below
X = xl−1

∗W l , where 1 is no of filters.
High dimension images follow max pooling for
down sampling as
y = maxh,wi,j=1X i,j
The probability of output class will calculate
using the Softmax function

σ (y) =
ey∑
ey

end for
Predict output based on the trained model on test data

where, λ is a hyperparameter that specifies the weight of L1
error (λ = 100), and l1 loss applied on the generator as the
difference between the generated image and the ground truth
image defined in equation 2. LcGAN is an adversarial loss
which is based on the sigmoid cross-entropy loss. It measures
the ability of the generator to fool the discriminator into
classification of the generated image as real images.

Ll1 = Ex,y,z[|y− G(x, z)|1] (2)

where, x is input data, y is target data, z is random vector, and
G (x, z) is Generated output image.

The generated image produced by the Pix2pixGAN model
was used for feature-wise normalization and sample-wise
normalization and passed to the CNN architecture to classify
nine different concentrations of albumin analyte. The CNN
model consists of five convolution layers, three max-pooling
layers, one fully connected layer, and a softmax layer as the
output layer as shown in Fig. 6.
Each image was resized to 128×128 × 3 pixels, to reduce

the computational burden, and input features as RGB color
space. The kernel size was set as 3× 3. After the convolution
layer, the max pool layer with kernel size 2 × 2 was used
to select feature values with nine classes. For weight ini-
tialization ‘‘random-normal’’ was used along with ‘‘Adam’’
optimizer with a learning rate of 0.001. The proposed model
is smaller with less convolution layer which consumes less
time and can be easily integrated with smartphone devices.
The pseudo-code for the proposed CNN model is given in
algorithm 1.

D. EVALUATION METRICS
The performance of the pix2pixGAN model was evaluated
using two parameters 1. Structure Similarity Index (SSIM)
and 2. Root Mean Square Error (RMSE). In calculating
the SSIM score, it is considered that the human visual
system is highly adapted to extract structural information
from an image [41]. It follows that a structural information

FIGURE 6. The proposed customized Convolution Neural Network (CNN)
for the classification of all nine concentrations of albumin.
A pre-processing layer was added to extract most prominent feature from
input images.

measurement change can provide a good approximation for
image quality. It compares local patterns of pixel intensities
for luminance and contrast. It is defined as:

SSIM =

(
2µxµy + c1

) (
2σ xy + c2

)
(µ2

x + µ2
x + c1)((σ 2

x + σ 2
x + c2)

(3) (3)

where µx and µy are average of x and y, σ 2
x and σ 2

y are
variance of x and y, σxy is the covariance of x and y. c1
and c2 are constant defined as; c1 = (k1L)2 and c2 =

(k2L)2, L is known as dynamin range and k1, k2 are con-
stants (k1 = 0.01, k2 = 0.03). The RMSE is a well-known
image quality estimator that is used to calculate the differ-
ence between the predicted value and the ground truth value.
A value close to zero is referred as a better-quality image. The
RMSE between two images is defined as:

RMSE =

√
1
NM

∑N

i=1

M∑
j=1

(xij − yij)2 (4)

The CNN performance of classification was evaluated using
four metrics i.e. accuracy, precision, recall, and f1-score.
These functions are defined as follow:

Accuracy =
(TP+ TN )

D
Precision =

TP
(TP+ FP)

Recall =
(TP)

(TP+ FN )
F1 − score =

2(
1

Precision +
1

recall

)
where, TP: True Positive, TN: True Negative, FN: False
Negative, FP: False Positive, D: Total data points. In addition,
confusion metrics were depicted for all experiments. These
metrics demonstrate how accurately the model predicts the
data points.

III. RESULT AND DISCUSSION
In this study, customized pix2pixGAN model was used for
domain adaptation. Source data, referred as input data, was
collected using different smartphones. The target data was
collected using iPhone. Pairwise data from the source and
target were fed to the model. Performance of the proposed
model was evaluated using the source data from different
smartphone models; Redmi 8A Dual, Samsung Galaxy M01,
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FIGURE 7. The change in RGB color values of GAN generated images at
different epochs such as 10, 30, 60, and 100. Redmi and iPhone images
were used as source and target data respectively (left to right).

FIGURE 8. Loss functions with 100 epochs to train pix2pixGan for
source(iPhone) and target (Redmi) data captured at all nine
concentrations.

and Realme C11. A total of 100 epochs with 216 batch
sizes were optimized to train the model. The ‘closest clone’
of the target corresponding to the source was achieved at
the output of the model. The R, G, and B color values of
outputs at discrete epochs such as 10, 30, 60, and 100 epochs
were collected as shown in Fig. 7. It was observed that at
100 epochs the RGB value (126, 148, 116) of the ‘closest
clone’ closely resembles the desired target image value of
(126, 149, 116). Since the discriminator learns faster than
the generator, the loss corresponding to the discriminator
was lower than a generator. Also, at 100th epoch, both the
losses exhibit saturation, indicating a plateau in individual
progression as shown in Fig. 8. Images of the albumin patches
at all nine concentrations, corresponding to source, ‘closest
clone’, and target are shown in Fig. 9. Significant difference
was observed in the color values between the source and
target data which was minimized using the proposed model.
RGB values for these images were calculated after training
the pix2pixGANmodel. The calculated RGB values of ‘clos-
est clone’ images closely matched with those of the target
images, as shown in the comparison chart in Fig. 10.
There was a noticeable similarity in color values between

the closest clone and the target images. In addition to color
value, performance of the model was also evaluated by com-
puting the RMSE and SSIM scores for all concentrations
as shown in Fig 11 (a, b). Originally, the RMSE value was
high as the data distribution between source and target was
different. It was observed that the RMSE value for source
and target data gets drastically reduced after applying the
proposed model.

FIGURE 9. Albumin detection patch from urine dipstick for all nine
concentrations i.e. C1 to C9 for three different domains.

On the other hand, the SSIM value between source and tar-
get images significantly increases after applying the proposed
model. Therefore, it can be inferred that the pix2pixGAN
model can be used to mitigate the problem of domain shift.
Further, concentrations were classified into corresponding
classes; C1 to C9 using a CNN model.

To train the CNNmodel, target data that was captured using
iPhone and was split into 80:20 ratio as train and validation
dataset. The loss for both train and validation decreases to
0.08 at 100 epochs. The train and validation accuracy were
found to be∼0.95 at 100 epochs. The trained CNNmodel was
tested using unseen data that belongs to different domains.
Both images; ‘closest clone’ and source data were utilized
to evaluate the robustness of the model. Performance of the
proposed CNN model was evaluated by computing different
parameters on the original image (without pix2GCNN) and
the one obtained after applying pix2pixGAN model. Table 2
shows the CNN performance between these twomodes ‘‘with
pix2GCNN’’ and ‘‘without pix2GCNN’’ model.

A total of 216 images, corresponding to all 9 concen-
trations were included in this study. It was observed that
the accuracy of the proposed model gets enhanced drasti-
cally from 0.28 to 0.88 using ‘‘closest-clone’’ images. Other
parameters such as precision, recall and f1-score also support
this claim. The recall and f1-score parameters were found
below 0.5 and 0.3 respectively for ‘‘without pix2pixGAN’’
mode which were improved using ‘‘with pix2pixGAN’’
mode. On the other hand, the performance of the model using
‘with pix2GCNN’was significantly high for all images corre-
sponding to different classes. The confusion matrix, as shown
in Fig. 12, was derived to visualize the classification of the
proposed model for all classes. The concentrations ranging
from C1 to C9 correspond to 0 to 8. The diagonal elements
represent the correct classes of data points corresponding
to individual concentrations whereas off-diagonal elements
represent the misclassified data points. It was found that
almost all classes for ‘‘without pix2GCNN’’ were misclas-
sified in Fig. 12(a) whereas, they were correctly classified
for ‘‘with pix2GCNN’’ as shown in Fig. 12 (b). This demon-
strates the effectiveness of pix2GCNN model in domain
shifting problem, wherein the performance of model was
enhanced without using source data during classification.
Therefore, domain shift issue can be addressed effectively
using pix2GCNNmodel, wherein, classification accuracy can
be improved without the knowledge of source data.
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FIGURE 10. Color value comparison between input, ‘closest clone’, and target images. RGB value was calculated for the albumin
detection pad after training the pix2pixGAN model for all nine classes.

FIGURE 11. Performance evaluation of pix2pixGAN model using two parameters: (a) RMSE and (b) SSIM. Parameters were
calculated between source data (Redmi) and target data (iPhone), ‘closest-clone’ (GAN generated) and target data.

FIGURE 12. Confusion matrix for CNN classifier of all nine different classes using (a) source images, (b) ‘closest-clone’
images. In label, 0 to 8 denote the concentration from C1 to C9 respectively.

A. PERFORMANCE EVALUATION OF PIX2GCNN MODEL
FOR VARYING SENSORS AND ILLUMINATION
CONDITIONS
Performance of the proposed model (Pix2GCNN) was
also evaluated on different smartphones and under dif-
ferent ambient illumination conditions to assess its
robustness.

1) PERFORMANCE USING DIFFERENT
SENSORS/SMARTPHONES
As discussed above, study of domain shift was performed
by mapping the data from one camera sensor (Redmi smart-
phone) as the source to another camera sensor (iPhone) as
the target. This study was further extended by using two
more sources (smartphones); Realme and Samsung, while
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FIGURE 13. Performance evaluation of GAN model using two parameters: a) RMSE and b) SSIM. Values were calculated
between target data (iPhone) and source data captured using sensor A and B, ‘closest clone’ (GAN generated) and target data.

FIGURE 14. Performance evaluation of GAN model using two parameters: RMSE and SSIM. a) RMSE values calculated between
target data (3500K) and input data captured under 6500K, closest clone (GAN generated) and target data. (b) SSIM comparison
between all domain data.

TABLE 2. Comparison between ‘Without pix2GCNN’ and ‘With pix2GCNN’
dataset using evaluation parameters i.e. precision, recall, F1-Score,
F1-Score and accuracy.

keeping the target (iPhone) fixed. Here, the images cap-
tured using the camera of the iPhone were used as target
data which was trained for the classification of nine dif-
ferent classes. The images captured using the cameras of

smartphones Redmi, Realme, and Samsung were used as
the test data. The performance of the model using Redmi
as the source data has been discussed in section III. Here,
we present the feasibility of the model tested on Realme
(sensor A) and Samsung (sensor B) smartphones after gen-
erating ‘closest clone’ images. Color values i.e. R, G, and B
for input, ‘closest clone’, and target images were calculated
for both sensors. Spectral sensitivity of sensors changes the
colorimetric values of images. The change in color values
were minimized using ‘closest clone’ images for all nine con-
centrations/classes. Performance matrices SSIM and RMSE
were calculated using input, ‘closest clone’, and target data
for camera sensors A and B at all concentrations, as shown
in Fig. 13. The pixel-wise differences or errors were higher
between source and target images as shown in RMSE which
was further reduced using ‘closest clone’ data for both sensors

VOLUME 12, 2024 104865



S. Bhatt et al.: Mitigation of Colorimetric Variabilities

TABLE 3. Comparison between ‘Without pix2GCNN’ and ‘With pix2GCNN’ dataset using evaluation parameters i.e. precision, recall, F1-Score, F1-Score
and accuracy for both sensors ‘A’ and ‘B’.

FIGURE 15. Confusion matrix for CNN classifier of all nine different
classes using (a) source, and (b) ‘closest clone’ images.

A and B. It was noticed that there is a high SSIM between
the ‘closest clone’ and target data. This demonstrates that
the proposed model could address the issue of domain shift
across the camera sensors. Further, the CNN model, which
was already trained on the target data, captured using iPhone,
was applied on the ‘closest clone’ data. The robustness of the
model was evaluated by applying it on the original images
(source images) and the closest clone images, captured using
camera sensors A and B. It was observed that parameters;
precision, recall, f1-score, and accuracy; were enhanced after
applying the pix2pixGAN on the source data. For example,
accuracy got changed from 0.41 to 0.88 and 0.30 to 0.81 for

camera sensors A and B respectively, as shown in Table 3.
Precision, recall, f1-score, and accuracy corresponding to all
nine concentrations were calculated. A confusion matrix was
computed to study the performance of the proposed model
for all nine classes. It can be inferred that the proposed model
is not limited to a specific smartphone camera sensor but
works well across various smartphone models and therefore,
its performance is nearly invariable to smartphone model.

2) DIFFERENT UNDER DIFFERENT AMBIENT LIGHT
CONDITIONS
The above study was performed at two different color tem-
peratures; 6500K and 3500K to understand its performance
under different illumination conditions. Both source and tar-
get data were captured using the same smartphone camera.
The model was trained on the target data captured using
iPhone SE at 3500K color temperature and tested on the
source data which was also captured using the camera of the
same iPhone, but at different illumination conditions where
the color temperature was kept at 6500K. The ‘closest clone’
of the target data corresponding to the respective source data
was created using the pix2pixGAN model. The R, G, and
B color values were extracted, and a comparison was made
among the source data, the closest clone and the target data.
As the intensity of the light varies with the color tempera-
ture, variation is perceived in the reflected colors from the
albumin strips. Therefore, SSIM value was calculated for
all the images i.e. source, closest clone and the target data,
which is shown in Fig. 14. The CNN model was applied on
both source and ‘closest clone’ data separately to classify
the concentrations. Classification accuracy for ‘closest clone’
and source dataset was 87 % and 37 % respectively. The per-
formance of the CNN model has been presented in confusion
matrices in Fig. 15. In source data, almost all classes were
misclassified, whereas they were correctly classified using
‘closest clone’ data as shown in Fig. 15 (a) and Fig. 15(b)
respectively. Thus, the proposed model is robust enough to
classify the concentrations in corresponding classes without
the requirement of training the data every time.

IV. CONCLUSION
In the present study, concentrations of urinary albumin
were estimated and classified using a smartphone-assisted,
colorimetry-based diagnostic reader, using readily available
urine dipsticks. Despite consistent illumination and ambi-
ent light conditions significantly influence the color values,
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thus making it difficult to classify at lower concentrations.
Variations in color temperature of light source can also
alter the appearance of objects, potentially affecting col-
orimetry value of an image. In concentration analysis based
on colorimetry, such variation in color value due to exter-
nal factors can lead to misclassifications of concentration
values. Further, significant variations are observed across
different color spaces for different smartphone cameras that
exhibit variations in spectral sensitivity. These variations
may lead to incorrect interpretations of albumin concentra-
tion levels in urine samples. These colorimetric variabilities
have been addressed using pix2pix generative model based
on domain adaptation. The ‘closest clone’ images were
generated using pix2pixGAN that mitigates the variability
introduced using different sensors and light conditions. Quan-
tification of albumin was done using a customized CNN
model. The pix2pixGAN concatenated with CNN model
yields the maximum accuracy of 88% as compared to 83%,
reported in literature, on the test data, captured using dif-
ferent smartphone models at a fixed color temperature of
3500K. In addition, the proposed model exhibits a remark-
able improvement in the classification accuracy on the test
data captured at two different color temperatures; 3500K
and 6500K. Performance of the proposed model was also
studied by deriving the confusion metrics. The usefulness of
the proposed method has been experimentally demonstrated
on multiple modalities covering different smartphone sensors
under different ambient light conditions. The proposed model
has the potential to be incorporated into a mobile application
that can be used for quantification and classification of differ-
ent analytes in low-resource settings. As a future scope, it is
planned to explore the feasibility of the proposed model on
the clinical samples.
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