IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 2 July 2024, accepted 15 July 2024, date of publication 19 July 2024, date of current version 15 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3431231

== RESEARCH ARTICLE

TEEm: Supporting Large Memory for Trusted
Applications in ARM TrustZone

JUN LI““12, XINMAN LUO3, HONG LEI"“'4, AND JIEREN CHENG"3, (Member, IEEE)

ISchool of Cyberspace Security (School of Cryptology), Hainan University, Haikou 570228, China
20xford—Hainan Blockchain Research Institute, Chengmai 571924, China

3School of Information Science and Technology, Qiongtai Normal University, Haikou 571127, China
4SSC Holding Company Ltd., Chengmai 571924, China

3School of Computer Science and Technology, Hainan University, Haikou 570228, China

Corresponding author: Hong Lei (leihong@hainanu.edu.cn)

This work was supported in part by the China Computer Federation (CCF) - Huawei Populus Grove Fund,
and in part by the Research Startup Fund of Hainan University under Grant KYQD(ZR)-21071.

ABSTRACT Trusted Execution Environments (TEEs), like ARM TrustZone, are increasingly crucial in
fields like machine learning, blockchain, WebAssembly, and databases due to their robust security features.
Despite their growing importance, TrustZone-based compact TEE operating systems such as OP-TEE are
not equipped to support large memory for trusted applications. This is because TrustZone was primarily
used in embedded and mobile devices, which typically do not require large memory capacities. However, this
restriction is particularly critical as it limits TEEs’ effectiveness in processing large-scale data and conducting
memory-intensive computations. In this paper, we propose TEEm, a novel solution that enables large secure
memory support in TEEs without compromising security. To the best of our knowledge, this is the first
public method that supports large memory for Trusted Applications (TAs) to run directly within TrustZone.
TEEm designs the single-to-multiple memory mapping policy to expand virtual address space for TA, and a
parameter-based memory allocation mechanism that allows TAs to request more trusted memory from TEE.
To validate the feasibility and performance of TEEm, we build a prototype based on OP-TEE and evaluate it
using multiple memory micro-benchmarks. Security and performance evaluations demonstrate that TEEm
not only achieves a performance of 3.48 times faster than Linux in memory allocation but also maintains a
high level of security, providing substantial memory support for memory-intensive applications.

INDEX TERMS Large memory, trusted applications, TEE, ARM TrustZone.

I. INTRODUCTION Cloud [5]. Meanwhile, ARM TrustZone plays a crucial role

Trusted Execution Environments (TEESs) are a crucial secure
technology designed to protect sensitive application data,
attracting significant interest due to their strong data protec-
tion capabilities. Currently, Intel Software Guard Extensions
(Intel SGX) [1], AMD Secure Encrypted Virtualization
(SEV) [2], ARM TrustZone [3], and Keystone [4] are
considered primary TEE technologies. Intel SGX2, with
its capability to offer up to 1TB of secure memory, has
been widely adopted into cloud platforms such as Amazon
Web Services, Google Cloud, Microsoft Azure, and IBM

The associate editor coordinating the review of this manuscript and

approving it for publication was Sedat Akleylek

in mobile and edge scenarios, which typically have limited
memory resources. ARM TrustZone creates secure and iso-
lated environments within the secure world, which is distinct
from the normal world where regular applications run, specif-
ically for the execution of various Trusted Applications (TAs)
[6], [7], [8], [9], [10]. Although TrustZone is currently pri-
marily deployed on mobile platforms, the increasing demand
for cloud computing and new requirements for data center
efficiency and computational performance reveal significant
potential for ARM architecture in the server market [11].
For instance, the launch of Qualcomm’s 48-core Centriq
2400 server chip signifies a significant advancement of ARM
processors in competition with traditional x86 servers [12].

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

108584

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0000-0002-0315-2099
https://orcid.org/0000-0002-6564-1568
https://orcid.org/0000-0002-0160-0126
https://orcid.org/0000-0001-7005-6489

J. Li et al.: TEEm: Supporting Large Memory for Trusted Applications in ARM TrustZone

IEEE Access

The need to support larger memory in TEEs has become
critical for applications requiring extensive data processing
capabilities. Unfortunately, existing works [13], [14], [15],
[16], [17] neglect the memory limitation of ARM TrustZone,
lacking designs and implementations to expand large secure
memory for TA.

In this paper, we focus on ARM platforms, as they increas-
ingly play significant roles in the realms of mobile, edge,
and cloud computing [18] and when we refer to the TEE,
we are specifically referring to implementations based on
ARM TrustZone technology. Open Portable Trusted Execu-
tion Environment (OP-TEE) [19] is the most commonly used
Trusted Operating System (TOS) based on ARM TrustZone.
Due to its open source, compliance with the GlobalPlatform
(GP) TEE standard, and compatibility with a variety of ARM
processors, researchers can easily access the source code and
modify or extend it according to their research needs. Cru-
cially, the architecture of ARM TrustZone uses a three-level
page table structure for address translation, which includes
Level 1 (L1), Level 2 (L2), and Level 3 (L3) [20]. The L1
table is the top-level table, dividing the virtual address space
into large regions, each described by an L1 table entry. The L.2
table is the middle-level table, subdividing the large regions
from L1 into smaller regions, each described by an L2 table
entry. The L3 table is the bottom-level table, subdividing
the small regions from L2 into pages, typically 4KB, 16KB,
or 64KB in size, and L3 table entries directly point to phys-
ical memory pages, completing the final address translation.
This structured approach allows TrustZone to manage mem-
ory securely and efficiently, addressing both large-scale and
minute security-sensitive operations.

Although TEEs offer numerous benefits and are increas-
ingly utilized in various emerging scenarios, devices
equipped with TEEs often struggle with supporting large
memory within TAs. This limitation is largely a consequence
of constrained resources and configuration restrictions. As a
result, TEEs are not well-suited for computationally intensive
tasks that require extensive memory resources. To address
these limitations, in this paper, we propose TEEm, a design
that enables secure and efficient large trusted memory support
for TAs in ARM TrustZone. The primary idea of this work
is to design the Single-to-Multiple (S2M) memory mapping
policy to adjust the number of L2 page tables for each TA,
thereby expanding the virtual memory space. Additionally,
a Parameter-based Memory Allocation (PbMA) mechanism
is introduced, which allocates memory according to the
specific resource requirements of each TA. By implement-
ing these strategies within the OP-TEE framework, TEEm
addresses the limitations of existing TEE in supporting large
memory applications.

We implemented the prototype of TEEm on a TrustZone-
enabled device and conducted a security analysis and perfor-
mance evaluation. The evaluation results show that TEEm’s
memory allocation performance is, on average, 3.48 times
faster than that of Linux, while maintaining a high level of
security.

VOLUME 12, 2024

In summary, the main contributions of this paper include:

o A comprehensive analysis of the TEE memory manage-
ment mechanism and uncover the key factors that limit
the available memory capacity for TAs.

o A design of TEEm that can securely support large
memory TAs in ARM TrustZone. Firstly, we introduce
the S2M memory mapping policy that allows TAs to
expand and use larger virtual memory space. Secondly,
we design a POMA mechanism that adjusts the mem-
ory allocation for TAs based on their specific resource
requirements.

« An implementation of TEEm on real devices and eval-
uation with memory micro-benchmarks. The evaluation
results indicate that the performance overhead incurred
by memory expansion is negligible.

The remainder of this paper is organized as follows:
Section II presents related work of TEEm. Section III
introduces the required background information. Section IV
presents the design and implementation of TEEm. Section V
details the performance of TEEm. Then, Section VI provides
a discussion of the results. Section VII details the security
analysis. Finally, Section VIII concludes this paper.

Il. RELATED WORK

In this section, we delve into research related to ARM Trust-
Zone, focusing on the design of TEEs based on TrustZone
and the implementation of secure solutions using TrustZone
in various domains.

A. DESIGN AND OPTIMIZATION FOR ARM TRUSTZONE

We survey related systems on secure design and optimiza-
tion in TEEs, specifically focusing on ARM TrustZone.
SecTEE [13] is a software-based secure isolation archi-
tecture that does not rely on specific hardware security
features in the ARM CPU. It offers robust security attributes
such as integrity measurement, remote attestation, and data
sealing, providing a high level of security comparable to
hardware-based secure isolation architectures. However, its
hardware independence may lead to lower performance
compared to hardware-enhanced solutions. TEEp [14] intro-
duces a novel multi-threading mechanism within TEE,
aiming to enable multithreaded applications to run directly
within the TEE. Despite its advantages, the introduction of
multi-threading support increases the complexity of the TEE
system, potentially introducing new security vulnerabilities.
LEAP [15] offers a lightweight TEE solution allowing paral-
lel code execution, convenient access to peripheral devices,
flexible resource management, and automated DevOps tools
for code preparation. While it provides flexible resource
management, its efficiency may be limited in high-load or
complex applications. CRONUS [16] divides heterogeneous
computing into independent TEE enclaves, each encapsu-
lating specific computation (such as GPU), enabling spatial
sharing of multiple enclaves on a single accelerator. However,
the complexity and hardware dependence of CRONUS may

108585

IEEE Access

J. Li et al.: TEEm: Supporting Large Memory for Trusted Applications in ARM TrustZone

TABLE 1. Comparison of TEEm with existing works.

Publication it : Hardware caree Memory
Characteristics Security Features Dependency Applicable Scenarios Support

Smaug [6] Secure SQLite database ARM TrustZone, Yes Databases No

TPM

WaTZ [7] Secure Wasm runtime ARM TrustZone No WebAssembly No

TSC-VEE [8], MECAT [21] Smart contract execution ARM TrustZone No Smart contracts No
environment

DarkneTZ [9], Trusted-DNN DNN model privacy ARM TrustZone No Deep learning No

[23], T-Slices [24] protection

OMG [10] Secure offline ML ARM TrustZone No Mobile devices No

SecTEE [13] Software-based secure ARM TrustZone No General No
isolation

TEEp [14] Multi-threading ARM TrustZone No Multi-core No

environments
LEAP [15] Lightweight TEE ARM TrustZone No Intelligent mobile No
applications

CRONUS [16] Heterogeneous computing ARM TrustZone, Yes Heterogeneous No
TEE encapsulation GPU computing

RusTEE [17] Rust-enhanced TA security ARM TrustZone No General No

Xie et al. [26] Memory management ARM TrustZone No Deep learning No

SOTPM [28] Lightweight shared memory ARM TrustZone No Secure data exchange No
protection

GateKeeper [29] Operator-centric TA ARM TrustZone No ToT No
management

TEEm (Our work) Memory expansion ARM No General Yes

TrustZone

limit its applicability in other environments, and its spatial
sharing mechanism requires strict isolation policies to pre-
vent resource contention and security issues. RusTEE [17]
leverages Rust, a memory-safe language, to enhance the
security of TAs. This approach effectively prevents memory
corruption vulnerabilities but relies on the limited support of
Rust for low-level operations, potentially introducing security
risks through the use of unsafe code. Additionally, migrating
existing C to Rust involves significant engineering effort.
Although the majority of research on TEE design and opti-
mization has focused on enhancing security and performance,
a critical but largely unexplored problem is how to support
large memory capacity within TAs. Existing designs do not
adequately meet the needs of memory-intensive applications.

B. SECURE TRUSTED APPLICATIONS

Many research projects have proposed various secure appli-
cations based on ARM TrustZone. Smaug [6] proposes a
general security solution based on TEE and Trusted Platform
Module (TPM) to ensure the confidentiality and integrity of
databases like SQLite. However, integrating TPM and TEE
security mechanisms may introduce performance overhead,
especially in high-frequency database operations. WATZ [7]
designs an efficient secure runtime for WebAssembly based
on ARM TrustZone and offers a lightweight remote attesta-
tion mechanism optimized for Wasm applications. However,
its reliance on remote attestation, while enhancing security,
may impact performance. TSC-VEE [8] designs a virtual
execution environment to support the execution of smart
contracts programmed by Solidity language. Implement-
ing the Ethereum Virtual Machine (EVM) and optimization
techniques on TrustZone significantly enhances execution

108586

performance. However, this approach increases system com-
plexity and depends on the EVM implementation, which may
introduce security risks. In contrast, MECAT [21] uses Rust
to write smart contracts and execute them in the secure world
of TrustZone. This approach avoids memory safety issues
while maintaining system simplicity. OMG [10], based on
SANCTUARY’s [22] work, implements hardware-enforced
isolation using TEE on ARM platforms, providing protec-
tion for entire machine learning models and guaranteeing
the privacy of customer data privacy, the confidentiality
of models, and the integrity of algorithms. However, the
implementation of secure offline machine learning on mobile
devices may introduce performance overhead, especially
in high-frequency operations. Previous research on using
TEEs to protect Deep Neural Network (DNN) models has
primarily focused on the design of different methods to
optimize resource requirements. For instance, DarkneTZ [9],
Trusted-DNN [23], and T-Slices [24] have developed dis-
tinct partitioning techniques for the DNN models, as well as
other strategies to protect sensitive model components from
being leaked, such as SRFL [25]. While these approaches
offer strong privacy protection, model partitioning may
introduce performance overhead and compatibility issues.
Xie et al. [26] have improved DNN inference performance on
resource-constrained devices through dynamic adjustment of
memory priority and optimization of small libraries, but they
do not support large memory applications. Additionally, the
Penetralium framework [27] focuses on privacy-preserving
and memory-efficient neural network inference at the edge,
integrating privacy-preserving techniques with memory opti-
mization. SOTPM [28] presents a lightweight and secure
scheme for shared memory in TEEs. While it effectively

VOLUME 12, 2024

J. Li et al.: TEEm: Supporting Large Memory for Trusted Applications in ARM TrustZone

IEEE Access

addresses the vulnerabilities associated with shared mem-
ory, its approach of making memory read-only after writing
may limit flexibility in some applications. GateKeeper [29]
addresses the obstacle of deploying in-house security systems
in ARM TrustZone.

Although these studies provide valuable insights and tech-
niques for enhancing the security and functionality of TEEs,
they primarily concentrate on designing various TAs within
the memory-constrained environment of ARM TrustZone.
Our work focuses on overcoming the memory limitations
traditionally associated with TEE, thereby expanding their
applicability. Table 1 provides a comparison of these related
works based on their key contributions, security mechanisms,
hardware dependencies, applicable scenarios, and support for
large memory.

Ill. BACKGROUND
A. TRUSTED EXECUTION ENVIRONMENT
TEE has emerged as a promising solution to protect the
confidentiality and integrity of code and data from various
attacks [11]. ARM TrustZone, first introduced in 2004, is a
comprehensive trusted computing solution integrated into
ARM processor architectures. It establishes hardware-based
isolation by dividing physical system resources into secure
and normal worlds [21], [30]. The secure world runs a trusted
OS like OP-TEE and provides a trusted environment for TAs.
It has isolated memory, peripherals, and CPU modes from the
Rich Operating System (ROS) in the normal world [31]. The
hardware-based partitioning in ARM TrustZone establishes
a foundation of trust, rooted in the CPU’s built-in Trust-
Zone features. TrustZone has become widely deployed across
billions of devices like mobile phones, embedded systems,
Internet of Things (IoT), and increasingly servers through
ARM server chips. By providing a hardware-backed trusted
foundation, TrustZone enables use cases such as secure pay-
ments, intellectual property protection, authentication, and
more across the spectrum of smart connected devices [32].
Our work targets OP-TEE with native support for ARM
TrustZone. OP-TEE is an open-source trusted OS that com-
plies with the GP standard. It is the only TEE kernel
integrated with Linux and ARM Trusted Firmware (ATF)
[33]. OP-TEE follows the GP API [34] specifications to
enable communication between the Rich Execution Envi-
ronment (REE) and TEE through client applications, Linux
drivers, and the OP-TEE OS.

B. MEMORY MANAGEMENT

Memory management in OP-TEE revolves around the funda-
mental principles of security, isolation, and efficient resource
utilization. Within the secure world, each TA operates
within its isolated memory space, protected by hardware
features like the Memory Management Unit (MMU) and
TrustZone technology. Two translation table base registers,
TTBRO_EL1 and TTBR1_EL1, are used to store the base
addresses of the page tables for user space and kernel space,

VOLUME 12, 2024

respectively. TTBRO_ELL is responsible for translating the
virtual address space in user mode, while TTBR1_EL1 is
responsible for translating the virtual address space in kernel
mode. The processor selects the appropriate page table based
on its current privilege level.

In OP-TEE, the trusted kernel allocates a contiguous physi-
cal memory region during startup, known as the TEE memory
pool. For TAs, OP-TEE uses a simple linear memory allo-
cation mechanism, where each TA partitions its own virtual
memory space from the physical TEE memory pool. When a
TA is invoked, OP-TEE first allocates memory and loads the
TA’s binary file (code and data) into secure memory. Then,
OP-TEE allocates memory for the TA’s execution context.
This includes memory for the stack, heap, and any other
data structures required for the execution of the TA. The TA
heap is explicitly defined as a static buffer residing in the
.bss section. The configuration of this buffer is determined
by the TA_DATA_SIZE parameter during the TA completion
process. OP-TEE also sets up page tables for newly allocated
memory regions. These page tables are used to map the
virtual addresses used by the TA to physical addresses in
secure memory. Finally, during the initialization process, the
TA calls the init_instance and malloc_add_pool interface,
thereby adding ta_heap to the memory pool managed by bget.
When running a TA, the allocation and release of memory
buffers within the TA are handled by the OP-TEE kernel using
malloc-like APIs. Specifically, when the TA calls the malloc
interface to perform memory allocation, it sequentially calls
a series of functions such as raw_malloc, raw_memalign,
and bget, ultimately obtaining memory space from the TEE
memory pool.

C. THE NEED FOR LARGE MEMORY SUPPORT IN TEE

In the rapidly evolving landscape of IoT, Artificial Intelli-
gence (Al), and big data, TEE, exemplified by ARM Trust-
Zone, faces new challenges. Initially designed for mobile
and embedded devices, TrustZone is also increasingly rec-
ognized for its strong security features in cloud computing.
However, the current support for large memory TAs within
TEE OS is limited, making it difficult to meet the real-world
needs of modern applications for large-scale data processing.
This gap significantly hinders the expansion and potential
of TEE technology in emerging fields. Expanding memory
capabilities within TEE:s is vital for several reasons. Firstly,
it enables the efficient handling of large-scale, memory-
sensitive computational tasks. Secondly, enhanced memory
support can drastically reduce the overhead associated with
data transition between secure and normal worlds. Moreover,
large memory support can foster innovation in TEE applica-
tions by allowing developers to explore more complex and
memory-intensive applications without being constrained by
memory limitations.

D. GOALS
The design of TEEm has the following three goals:

108587

IEEE Access

J. Li et al.: TEEm: Supporting Large Memory for Trusted Applications in ARM TrustZone

L1 TBL
Core 0
VA bits[38:30]

VA bits[29:21]

VA bits[20:12]

4K Page
VA bits[11:0]

FIGURE 1. Constraints of the TEE OS memory page table mapping.

1) PERFORMANCE

Support for an expanded TA address space and contiguous
buffer allocation enhances allocation efficiency and meets the
demands for higher memory bandwidth.

2) SMALL TRUSTED COMPUTING BASE (TCB) SIZE

The system reutilizes existing memory management mech-
anisms, with minimal expansion to kernel memory-related
data structures, such as page tables and memory descriptors.

3) COMPATIBILITY

Maximizing compatibility with existing TAs, the system does
not require modifications to the current TEE programming
model. While introducing new features, it preserves back-
ward compatibility with legacy interfaces.

IV. DESIGN AND IMPLEMENTATION

In this section, we introduce TEEm. First, we explain the
design of TEEm. Then, in contrast to previous efforts that
primarily focused on optimizing individual modules within
TAs to accommodate limited memory, TEEm designs a novel
S2M memory mapping policy to extend the scope of a single
TA’s page table mapping. Furthermore, PbMA is provided to
address the need for large memory configurations.

A. DESIGN OVERVIEW

In OP-TEE, TA runs in a limited memory environment, typi-
cally with a few megabytes of memory. This limitation often
hinders the execution of complex tasks requiring substantial
memory and requires the user to effectively manage mem-
ory resources to ensure that TAs do not run into memory
shortages during execution. Our goal is to increase mem-
ory allocation and usage within TA while ensuring that the
security and isolation principles of TEE remain unchanged.
In OP-TEE, the memory expansion for TA depends on two
critical factors: the available virtual address space and phys-
ical memory. Firstly, TA operates within their own isolated
virtual address spaces, managed through a multi-level page
table structure. This structure includes L1, L2, and L3 page
tables. The L1 page table, as the top level, divides the TA’s
entire virtual address space into large blocks, with each
entry corresponding to an L2 page table. These L2 tables
further subdivide these blocks into smaller sections, each
pointing to an L3 page table. The MMU translates virtual
addresses accessed by a TA into physical addresses using
this hierarchy of page tables, ensuring memory isolation and
security. Secondly, the TA needs to request the TEE OS
to allocate memory resources. When compiling a TA, the

108588

TA_DATA_SIZE defines the size of a global array called
ta_heap, which is located in the TA’s .bss segment. Upon
loading a TA, the TEE OS allocates and maps memory
for this segment, guided by the TA_DATA_SIZE. Besides,
there are several core parameters used to configure different
types of memory areas in OP-TEE. CFG_TZDRAM_START
and CFG_TZDRAM_SIZE define the starting address and
total size of the physical memory pool for the secure
world, respectively. This memory area is managed and allo-
cated by OP-TEE OS to various secure world components.
CFG_TA_RAM_START and CFG_TA_RAM_SIZE define
the runtime memory area specifically for TA, which is
partitioned from the pre-provisioned secure memory pool.
OP-TEE relies on these key parameters to configure the
secure physical memory pool from the system memory; then,
it allocates different types of logical memory areas from the
secure pool, such as runtime space for TA, file system cache,
etc. The configuration of these memory parameters directly
affects the memory capacity that OP-TEE can manage and
allocate.

Figure 1 illustrates the configuration of page tables for TA.
Each entry in the L1 page table points to an L2 page table,
each entry in the L2 page table points to an L3 page table, and
each entry in the L3 page table directly maps a 4KB memory
block. This mechanism of allocating only one L2 page table
to TA limits its ability to map more than 1GB of virtual
address space. Therefore, expanding the memory of TA fun-
damentally involves enlarging its virtual address space and
requesting more memory from the TEE OS. We address these
challenges by introducing a novel S2M memory mapping
policy and PbMA mechanism. Figure 2 shows the architec-
ture and interaction steps of TEEm. The creation of the large
memory TA is initiated by the Client Application (CA) by
calling TEEC_OpenSession in libteec. S2M mapping policy
expands the virtual address space available to a single TA by
allowing it to allocate and use multiple L2 page tables. PbMA
enables dynamic and flexible adjustment of TA memory
allocation by allowing users to modify heap size parameters
according to specific application requirements.

B. SINGLE-TO-MULTIPLE MEMORY MAPPING POLICY

In OP-TEE, each TA thread is bound to a single L2 page
table, and the TA’s context is scheduled to a particular thread
before entering user space, thereby associating with the L2
page table bound to that thread. However, each thread is only
bound to a single L2 page table, which limits the virtual
address space of each TA to 1GB. Therefore, we designed the
S2M memory mapping policy, which allows each TA thread

VOLUME 12, 2024

J. Li et al.: TEEm: Supporting Large Memory for Trusted Applications in ARM TrustZone

IEEE Access

Normal World

- () open_session
Client APP =

// Untrusted

OpenSession(&s driver

ess);

®
thread_enter_

|:| User Mode

FIGURE 2. Overall TEEm architecture.

to manage multiple L2 page tables, thereby expanding the
available virtual address space for TAs. Figure 3 illustrates
the S2M design scheme.

Firstly, we use the user_va_idx to mark the starting position
of the free L1 page table entries allocated for the TA, simpli-
fying the process of locating L1 entries to map user virtual
addresses. Then, we define the CFG_NUM_TA_L2 TBLS
parameter. This parameter has a dual function: it determines
the maximum number of L2 page tables a single TA can
manage, and it also acts as a protective measure to prevent a
TA from allocating too many L2 page tables. Then, we mod-
ified how a TA stores L2 page tables, associating the thread
of TA with CFG_NUM_TA_L2_TBLS, thereby allowing a
single TA thread to manage more L2 page tables. We add the
core_mmu_get_user_l2_tbl_va to pinpoint the exact location
of L2 page tables within the virtual address space. Finally,
we restructure key data structures and functions related to
the user MMU to support L2 page table arrays, allowing
each user address space to be associated with multiple L2
page tables. Given that the L1 page table has 512 entries,
theoretically, if each entry is fully utilized, S2M can expand
the virtual address space of TA up to 512GB. S2M enables
TA to manage and utilize larger memory resources more
efficiently by increasing the virtual address space accessible
to TA.

C. PARAMETER-BASED MEMORY ALLOCATION

S2M addresses the limitation that restricted a TA to map-
ping only a maximum of 1GB of virtual address space.
However, the memory a TA can utilize still depends on
the TA_DATA_SIZE parameter. In OP-TEE, memory allo-
cation for a TA based on TA_DATA_SIZE involves three
stages: compilation, loading, and initialization. During the
compilation stage, the compiler creates a global memory
buffer array named ta_heap, whose size is determined by
TA_DATA_SIZE. The ta_heap is placed in the .bss segment

VOLUME 12, 2024

code © init_mmu >
@emd_| TEE (38300 |gecuer | 2921)
- > (@ invoke_command oo Ttk Entry 1 I 12_tbl Entry 1

Secure World

@ elf init
Init ELF Data Heap

Region 1 Stack

© vm_region Create Region2 Heap
TA Regions

Regionn Heap

user_mode >

D Kernel Mode

L1 Table L2 Table
L3 Table
[20:12]
Entry 512 Entry 512
Data Area
TA —
Stack Heap
Modification
entry 1 (L2 TBL [3mBL | 4K Page
k VA bits[29:21] VA bits[20:12] VA bits[11:0]

o

VA bits[38:30] VA bits[29:21] VA bits[20:12] VA bits[11:0]

e (T [wmL] 4K Page
k VA bits[29:21] VA bits[20:12] VA bits[11:0]

FIGURE 3. The design of S2M memory mapping policy.

of the TA’s executable file. Subsequently, when the TEE OS
loads the TA, the TEE kernel allocates and maps memory
space for various ELF segments using an interface similar to
mmap. This process assigns a virtual address to the ta_heap
array. Finally, during the initialization process of the TA, the
initialization code passes the start address and length infor-
mation of the ta_heap array to the memory allocator function
in the user-space libc library. Consequently, the memory
allocator adds this memory space to the heap memory pool it
manages, making it available for dynamic allocation during
the TA’s runtime. However, the compiler restricts variables
within the TA executable file, like the ta_heap static array,
from spanning a 4G address space. To address this, we con-
sidered two options: optimizing the compiler to remove this
restriction or design an alternative method.

We design the PbMA mechanism, introducing a large
memory configuration parameter, TA_DATA_GIBIBYTE.
This parameter is not used to configure the static array
ta_heap at the compile stage, but rather it is used to apply
for memory via a syscall interface during the TA initializa-
tion. This method was chosen over modifying the compiler
for several compelling reasons. It offers enhanced flexibility
and scalability to meet the diverse memory requirements of
different TAs. By not altering the compiler, we maintain

108589

IEEE Access

J. Li et al.: TEEm: Supporting Large Memory for Trusted Applications in ARM TrustZone

0x900000000

T
0x2000

vm_info
— next

vm_region_head regions

kernel code

Tprcv
0x900002000

R ey
0x1000
next

Tprev
0x900042000

4
0x15000
ncxti Tprcv

0x900057000

0xfa004000
next prev

0x9fa05b000
7~ vm_region9 }< TA heap
y 0x40000000
TA_DATA GIBIBYTE next| 7 |prev

Y 0xbba03b000
h ymregionto ::
0x40000000

FIGURE 4. Overview of PbMA workflow.

compatibility and simplify maintenance, avoiding the com-
plexities associated with such changes. Additionally, this
approach ensures more extensive applicability across var-
ious platforms. In the PbMA, as illustrated in Figure 4,
the TA_DATA_GIBIBYTE parameter plays a crucial role.
It allows users to modify the memory size of TA accord-
ing to their specific application requirements. The workflow
begins with the vm_info structure, each vm_region repre-
sents a specific area of memory, with vm_region0 through
vm_region8 pre-allocated for essential components like ker-
nel code, kernel data, and the TA’s stack and code. The
PbMA process is highlighted by the presence of vm_region9
through vm_region16, demonstrating the scalability of the
TA’s heap. When PbMA is engaged during TA initializa-
tion, the TA_DATA_GIBIBYTE parameter is used to request
memory blocks through the tee_map_zi interface. Each
re-quested block is efficiently mapped into the TA’s virtual
address space, significantly expanding its capacity. The next
and prev pointers in each vm_region ensure the proper link-
age and order within this linked list structure, maintaining a
coherent allocation sequence. In this case, TEEm can use this
new parameter to dynamically expand TA’s memory.

D. TIME COMPLEXITY

1) S2M

In OP-TEE, each TA is associated with only one L2 page
table. This means that memory management for a TA is
very straightforward, with a time complexity of O(1) because
memory mapping operations only need to traverse a fixed
page table path. In the S2M, however, a TA can be associated
with multiple L2 page tables. This increases the complexity
of management, especially when determining which L2 page
table to use for address mapping. This design significantly
expands the virtual address space but also involves additional

108590

complexity in page table traversal and update operations.
In theory, if a TA manages n L2 page tables, the time com-
plexity for finding the correct L2 page table for mapping in
the worst case could increase to O(n).

2) PbMA
When a TA dynamically requests memory using the
TA_DATA_GIBIBYTE parameter, it requires system calls to
allocate a specified size of the memory region dynamically.
The process determines the memory size to be allocated
based on the parameter value and then performs mapping
and permission configuration operations. Assuming that each
additional gigabyte of memory requires extra initialization
and configuration time, this time is essentially proportional
to the memory size requested, resulting in linear growth.
Therefore, we can assume that the time complexity of the
PbMA mechanism is O(n), where n represents the memory
size requested. This linear complexity is consistent with stan-
dard memory allocation mechanisms in operating systems
like Linux, where the allocation time is also proportional
to the size of the memory requested. Thus, PbOMA does not
introduce additional overhead compared to existing systems.
Although the time complexity of both S2M and PbMA is
O(n), they provide efficient support and management of large
memory requirements. Through experiment analysis and
verification, we demonstrate that this complexity is reason-
able and acceptable when dealing with large-scale memory
allocation.

V. PERFORMANCE EVALUATION

We implemented a prototype of TEEm based on OP-TEE,
which is an open-source secure TEE framework designed to
run on ARM processors. It implements the GP standardized
API between the REE and TEE. In this section, we describe
the experiment setup (including the platform and evaluation
methods) and evaluate the functionality and performance of
the prototype.

A. EXPERIMENT SETUP

On the hardware side, we implement and deploy TEEm on a
desktop computer equipped with 8 FTC663 cores and 64GB
of physical memory. We configured 32GB of memory each
for the REE and TEE. On the software side, the REE OS
was Kylin V10 with kernel version 4.19.91. All code in
REE and TEE was written in C and compiled with GCC
7.5.0. All evaluations were performed in single-thread mode.
TEEm only modifies the memory management in the TEE
kernel with about 200 lines of code, while still adopting
the original communication model between the REE and
TEE. In addition to the aforementioned setup, the configu-
ration of the TEE OS memory played a crucial role in our
experiments. Specifically, CFG_TZDRAM_START was set
at 0xC0000000 with CFG_TZDRAM_SIZE at 0 x 40000000.
For the TA memory, CFG_TA_RAM_START was config-
ured at 0 x 3000000000 and CFG_TA_RAM_SIZE at 0 x
0800000000. Additionally, we set the maximum memory

VOLUME 12, 2024

J. Li et al.: TEEm: Supporting Large Memory for Trusted Applications in ARM TrustZone

IEEE Access

0.14 4 ~

0.12 4

—&— REE
TEE

Time (s)
o
o
[e:]

0.06

0.04 4

100 200 300 400 500 600 700 800 900
Block Size (MB)

FIGURE 5. Memory sequential read/write test.

parameter that a TA can request, TA_DATA_GIBIBYTE,
to 32. This configuration of memory parameters was essential
to ensure that the expanded TA memory within TEE was
capable of handling the required workload efficiently.

B. MEMORY ACCESS PATTERN

We first investigate the impact of memory access patterns
on performance. We selected varying data block sizes within
a 1GB memory and conducted experiments encompassing
two primary access patterns: random access and sequential
access. For each block size, 10 million memory access oper-
ations were executed, and the tests were repeated 10 times to
ensure statistical rigor. Figure 5 revealed that the REE has
consistent access times across all block sizes, maintaining
around 0.136s. In contrast, the TEE demonstrates signifi-
cantly faster access times at 0.026s, regardless of the block
size. On the other hand, the random access results from
Figure 6 reveal a different pattern. The REE shows a gradual
increase in access times as the block size increases, starting
from 1.8s for the 128MB block size and going up to 2.0s
for the 896MB block size. This gradual increase suggests a
degradation in performance as the demand on the memory
system grows, which is typical due to the overhead associated
with seeking random memory locations. The TEE, however,
maintains remarkably lower access times than the REE, only
slightly increasing from 0.28s to 0.29s as block sizes increase.
The TEE’s relatively flat and low response times indicate
robustness against the block size increase, implying more
efficient handling of random memory accesses that could be
attributed to a more responsive memory allocation strategy.

C. MEMORY BANDWIDTH

We assess the memory bandwidth of TEEm using two recog-
nized microbenchmark tools, mbw [35] and stream [36], each
offering unique insights into the performance dynamics under
various operational scenarios. The mbw tool, which stands for
Memory Bandwidth, provides a comprehensive evaluation
through diverse memory copy methods. These methods are
designed to simulate different types of memory-intensive
tasks that a TA might need to handle, thereby showcasing
the effective bandwidth available within both the REE and

VOLUME 12, 2024

2.00 /’.’___.—’_‘_’_.,_’-o———o

1251 —e— REE
TEE

Time (s)

100 200 300 400 500 600 700 800 900
Block Size (MB)

FIGURE 6. Memory random read/write test.

the TEE. In Figure 7, mbw provided a multi-faceted memory
bandwidth test through different copy methods, while stream
conducted standardized memory operations (such as COPY,
SCALE, ADD, and TRIAD), offering an industry-standard
memory performance assessment. All tests were conducted in
a single thread, with each test performed 10 times. We tested
the performance of three methods (MEMCPY, DUMB, and
MCBLOCK) within REE and TEE across different memory
sizes (128MB, 256MB, 512MB, 1024MB, and 2048MB).
In the MEMCPY method, the performance range in REE
was from 3693.57MB/s to 3704.83MB/s, while in TEE,
it ranged from 3667.62MB/s to 3710.15MB/s. This indicates
that TEE’s performance in handling continuous memory
copy operations is comparable to REE. For the MCBLOCK
method, both REE and TEE maintained high and close
performances, demonstrating superior processing capabili-
ties in both environments for this method. In the DUMB
method, TEE’s performance (reaching up to 3210.92MB/s)
was significantly better than REE (with a maximum of
1165.38MB/s), especially at larger memory allocations. This
could be due to the reduced contention for memory operations
or threads within the secure isolated environment, leading to
a more efficient memory access.

During the evaluation of the expanded TA memory in
TEEm using the stream tool, we compared the performance
of REE and TEE under different memory requirements
(with individual array memories of 128MB, 256MB, 512MB,
and 1024MB, and total test memories of 384MB, 768MB,
1536MB, and 3072MB, respectively). As can be seen from
Figure 8, overall, REE slightly outperforms TEE in the tests,
but TEE still maintains high performance close to REE after
memory expansion, especially when handling larger memory
requirements. For example, with a memory requirement of
1024MB, TEE reached a best rate of 7634.0MB/s in the Copy
operation, only slightly less than REE’s 7677.5MB/s. This
indicates that TA can still effectively handle complex mem-
ory operations when executing programs with large memory.
Additionally, as the memory requirement increases, the per-
formance gap between REE and TEE gradually narrows.
Although there is still room for performance improvement
in TEE for complex memory operations (such as Add and

108591

IEEE Access

J. Li et al.: TEEm: Supporting Large Memory for Trusted Applications in ARM TrustZone

MEMCPY

Copy Speed (MB/s)

250 500 750 1000 1250 1500 1750 2000
ize (

Copy Speed (MB/s)

250 500 750 1000 1250 1500 1750 2000
M «

FIGURE 7. The results of mbw.

(a) Memory = 128MB, Total Memory = 384MB
8000 8000

ZNRZSEZ S IEIZNEZN 7? 7?

(b) Memory = 256MB, Total Memory = 768MB

6000 6000

5000 5000

4000 4000

3000 3000

2000 2000

1000 1000

Copy Scale Add Triad Copy Scale Add Triad
(c) Memory = 512MB, Total Memory = 1536MB (d) Memory = 1024MB, Total Memory = 3072MB
s000 s000
7000 AN 7 A 7000 VY v 7

6000 Y Y 6000 T T

5000 5000

4000 4000

3000 3000

2000 2000

1000 1000

0

Copy Scale Add Triad Copy Scale Add Triad

FIGURE 8. The results of stream. skyblue represents REE and orange
represents TEE.

Triad), overall, the expansion of TA memory has significantly
enhanced TEE’s performance in processing large amounts of
data.

D. MEMORY STRESS

We employ memtester [37], a widely recognized memory
reliability testing tool, to validate the functional integrity of
the newly allocated memory space. Memtester performs a
variety of stress tests on memory, including pattern-based
tests and algorithmic operations that simulate a wide range of
memory access patterns. During memory testing, we noticed
that the memtester tool employs the mlock and munlock
system calls to lock the process’s memory, preventing it from
being swapped to disk. Although the current implementation
of OP-TEE does not support these system calls within the
TEE, TA operates in a strictly protected memory address
space. In this secure setting, the sensitive data of TAs is effec-
tively isolated, inaccessible to non-secure processes, and not
subject to swapping to insecure storage mediums. Therefore,
the absence of implemented memory locking does not impact
the results of memory testing conducted by memtester. The
memtester covered a variety of categories, each tailored to
detect different potential errors. Stuck Address tests ensured
that memory cells could store and switch between 0 and 1.
Random Value tests checked the reliability of storing and
retrieving random data. A series of binary operation tests,

108592

Walking Zeroe:
Walking One:
it Fiig

Bit Sprea

Checkerboar
lock sequentia
ol Bt

seaentl increme
Compare A

Compare 0

Compare DI

Compare MU

Compare SUB]
Compare XOf
Randonm Valud

Stuck Address]

00 02 04 06
Test Result (1 for ok)

FIGURE 9. Memory stress test of TEEm.

including XOR, SUB, MUL, DIV, OR, and AND, were con-
ducted to verify data integrity. Sequential Increment tests
were performed to identify errors in incrementally increasing
memory values. Solid Bits, Block Sequential, and Checker-
board tests evaluated the memory’s sensitivity to specific data
patterns. Bit Spread and Bit Flip tests searched for interac-
tion errors between adjacent memory cells. Lastly, Walking
Ones and Zeroes tests were utilized to pinpoint failures in
individual bits by moving a single ‘1’ or ‘0’ bit through a
sea of the opposite value. The consistent positive outcome
across all test categories from Figure 9 demonstrates that
the expanded memory is stable and operates correctly under
various conditions. The absence of errors in tests that stress
different aspects of memory operations from storage of values
to execution of complex binary operations suggests that the
memory expansion not only increased the capacity but also
preserved the expected functional reliability.

E. OVERHEAD OF MEMORY ALLOCATION

To evaluate the performance of memory allocation during
TA runtime, we expanded TA’s memory from 1GB to 30GB.
As shown in Figure 10, in REE, the time required for memory
allocation without initialization always remains zero, demon-
strating a common deferred allocation strategy in the REE
system. Actual physical memory allocation occurs only when
the memory is first accessed, and merely requesting memory
without initializing it does not immediately incur any time
cost. In TEE, TA has already provided the allocated vir-
tual addresses to the user-space malloc interface at runtime.
This means that when TA requests memory, it is essentially
accessing a pre-allocated and mapped virtual address space.
Therefore, the time required for memory allocation without
initialization is zero in TEE, as the physical memory has
already been allocated and mapped at the time of TA loading.
However, when memory is initialized in TEE, the time cost
gradually increases from 65ms for 1GB to 1970ms for 30GB.
Compared to REE, the rate of increase in time for memory
initialization in TEE is significantly lower than that in REE.
In REE, initialization time increases from 226ms for 1GB to
9711ms for 30GB, indicating that physical memory alloca-
tion and initialization operations bring greater time costs in

VOLUME 12, 2024

J. Li et al.: TEEm: Supporting Large Memory for Trusted Applications in ARM TrustZone

IEEE Access

10000 A

—> REE: Allocate, Not Init
TEE: Allocate, Not Init

8000 1 —*— REE: Allocate, Init

—— TEE: Allocate, Init

6000 -

Time (ms)

4000 1

2000 A

10 15
Memory Size (GB)

FIGURE 10. Comparison of allocation and initialization time of different
memory sizes.

the REE environment. On average, TEE achieves a perfor-
mance improvement of approximately 3.48 times over REE.
Additionally, the experiment results demonstrate a consistent
linear relationship between TA memory size and allocation
time. This linear growth indicates that the memory allocation
and initialization mechanism in TEE can effectively handle
larger memory demands, with predictable costs, emphasizing
the scalability and efficiency of expanded TA memory in
TEEm.

F. TA LOADING TIME

We tested the loading times of TAs with different memory
sizes, and as shown in Figure 11, the loading time of TAs
increases linearly with the increase in memory size. Specif-
ically, in the REE, the loading time for 1GB of memory
is 0.232s, which increases to 9.05s for 30GB of memorys;
by contrast, in the TEE, loading times rise from 2.21s to
64.51s. This significant difference primarily stems from the
additional security mechanisms in the TEE, as well as the
complex interaction processes between the CA and TA. TEE
includes various security measures, such as memory encryp-
tion and decryption, and complex authentication processes,
which, while enhancing data protection, also introduce addi-
tional computational overhead. Additionally, the interaction
between CA and TA involves multiple steps, such as context
initialization, parameter passing, and secure channel estab-
lishment, which further contributes to the increased loading
time. We will consider further analysis and optimization of
the TA loading time as part of our future work.

G. MEMORY STABILITY

Memory stability is a crucial procedure to detect any potential
errors, instability, or issues that may arise during memory
allocation. In this experiment, to assess memory stability,
we selected data blocks of different sizes, ranging from 1GB
to 30GB, with a 1GB interval between each size. Figure 12
suggests that the stability test of memory allocation after
memory expansion was successful across the entire range
from 1GB to 30GB. This uniform success across a broad
range of memory sizes indicates robustness in the memory

VOLUME 12, 2024

—e— TEE
—e— REE

Load Time (s)

Memory Size (GB)

FIGURE 11. Time overhead of loading TA with different memory sizes.

Test Results

0 5 10 20 25 30

15
Memory Size (GB)

FIGURE 12. Memory allocation stability test of TEEm.

allocation mechanism post-expansion. It demonstrates that
the system’s expanded memory is reliably accessible to appli-
cations.

H. TENSORFLOW LITE

In this experiment, we conducted comparative tests on confi-
dence levels using TensorFlow Lite [38] models in both REE
and TEE. We selected a range of deep learning models of
varying sizes for evaluation, such as MobileNet V1, Inception
V1, V2, V3, and V4, and Resnet V2, ranging from 4MB
to 170MB. By comparing the model executions in REE and
TEE, we assessed the performance of TEEm’s large memory
support in practical applications. The results show that even
memory-intensive models, such as the 170MB Resnet V2,
can be run directly in TEE without any modifications to the
model. It is important to note that in the REE, we used the
OpenCV library for data processing, whereas in the TEE,
a functionally similar C++ library was employed. This dif-
ference in processing approaches directly affects the output
confidence of the models. For instance, the confidence level
of MobileNet V1 in REE is 0.98, while in TEE it is 0.87.
We leave the work of optimizing model accuracy to devel-
opers. Figure 13 provides the confidence for these models.
Through these experiments, we have verified the capability
of the TEEm framework to support TensorFlow Lite models
in large memory environments, demonstrating its advantages
in terms of security and scalability.

108593

IEEE Access

J. Li et al.: TEEm: Supporting Large Memory for Trusted Applications in ARM TrustZone

10 REE
TEE

0.8

Confidence

0.2

0.0

FIGURE 13. Performance of TensorFlow Lite on TEEm.

VI. DISCUSSION

The performance evaluation revealed notable differences
between the REE (based on the Kylin system) and TEE
(based on the OP-TEE). The reasons for these differences are
primarily due to two factors: memory allocation strategies
and memory allocators. The traditional demand allocation
strategy used in REE, which records memory requests with-
out immediate allocation, is efficient in resource utilization
but may lead to delays in actual memory usage. In con-
trast, TEE employs a pre-allocated memory strategy, loading
predetermined heap memory into the allocator before exe-
cution, which reduces latency and enhances performance.
Additionally, the choice of memory allocator also plays
a crucial role in performance differences. The REE uses
the standard GNU glibc memory allocator [39], which is
designed for general-purpose operating systems and empha-
sizes universality and flexibility. On the other hand, TEE uses
the bget memory allocator [40], [41], which is specifically
designed for secure environments and offers performance
benefits tailored to the security requirements of TEEs. The
bget allocator, therefore, aligns well with the needs of TEE
applications, providing optimized performance.

To ensure the robustness and reliability of our findings,
we have conducted statistical tests (t-tests) [42] to compare
the performance differences between TEE and REE for both
the mbw and stream across different memory sizes. The
results show that for the mbw, the DUMB and MCBLOCK
methods have statistically significant differences (p-values
of 4.738e-05 and 0.045, respectively), while the MEMCPY
method does not (p-value of 0.068). For the stream, the
Scale, Add, and Triad methods show statistically significant
differences (p-values of 4.459e-05, 0.0019, and 0.00057,
respectively), while the Copy method does not (p-value of
0.088). These results indicate that TEEm and REE perform
similarly in many cases, with significant differences in spe-
cific operations.

VII. SECURITY ANALYSIS

In this section, we delve into the security implications of
memory extension made to OP-TEE, particularly focusing
on the expanded TA memory, efficient memory allocation,

108594

and the balancing act between preserving a small TCB size.
The expansion of the TA memory space has resulted in an
enhancement of system performance. However, the increased
address space might introduce new vulnerabilities, especially
in scenarios where memory allocation and access control
mechanisms are not meticulously managed. For this, TEEm
depends on hardware-based isolation mechanisms in ARM
TrustZone. TrustZone implements memory access control
through the TrustZone Address Space Controller (TZASC),
which ensures that memory access between the secure world
and the normal world is strictly separated [3]. The Trust-
Zone Protection Controller (TZPC) is used to set peripheral
access permissions, ensuring that devices accessible by the
secure world cannot be accessed by the normal world, thereby
achieving peripheral isolation. In terms of memory, TZASC
effectively provides each of the TEE and the REE with
isolated physical address spaces by configuring memory
region attributes. Memory in the secure world can only be
accessed by the code residing on the TEE side, with this
access security enforced through the NS bit check. The
memory region configured by the CFG_TA_RAM_START
and CFG_TA_RAM_SIZE parameters is shared for TAs, but
different TAs have separate memory regions that do not affect
each other. Each TA creates the TEEC_Context (ctx) when
running, which manages the page tables. The ctx created
by different TAs are independent. TEEm builds upon these
mechanisms and has made essential software modifications
to OP-TEE’s memory management module to accommo-
date larger memory demands. Specifically, although the S2M
strategy allows TAs to manage multiple L2 page tables,
it does not introduce new security risks. In the S2M, the
TA’s page tables are still managed by ctx, and there is no
cross-access between different TA page tables since each
TA’s ctx is different. Moreover, since OP-TEE currently only
supports single-threaded, the thread is bound to the L2 page
table during memory initialization, there is no situation where
multiple threads access the same page table at the same time.

By reutilizing existing memory management mecha-
nisms and making only necessary modifications, only about
200 lines of code were added to TEE OS. Specifically, the
S2M mapping policy extended the L2 page tables to support
larger memory allocations. Traditionally, OP-TEE utilizes
fixed-size page tables that limit the maximum memory that
can be securely managed. By increasing the number of
entries in these tables and adjusting the page table handling
logic, we accommodated larger memory blocks required
by advanced applications without altering the fundamental
page table architecture used in TrustZone. We introduced
the PbMA to allocate memory based on the requirements of
each TA dynamically. This mechanism uses a configurable
parameter that determines the size of memory allocated to
each TA at runtime, rather than being fixed at compile time.
The TEE kernel will check the validity of the parameters
when loading TA. If the parameter size exceeds the memory
allocated to TA, an error will be reported. The smaller TCB
reduces the attack surface, thereby decreasing the likelihood

VOLUME 12, 2024

J. Li et al.: TEEm: Supporting Large Memory for Trusted Applications in ARM TrustZone

IEEE Access

of introducing new vulnerabilities. Additionally, these mod-
ifications were implemented based on a software approach
while strictly adhering to the security mechanism provided
by ARM TrustZone, ensuring that all memory operations
remained within the secure execution environment and were
fully isolated from the normal world.

To ensure the robustness and security of TEEm, we uti-
lized Xtest [43], a comprehensive test suite designed by
OP-TEE. The results demonstrated the success of all test
cases, indicating that the modifications made to accommo-
date larger memory have not introduced any new errors or
stability issues, thereby maintaining the system’s high sta-
bility and reliability. Therefore, TEEm achieves a balance
between performance and security. TEEm is applicable in
both mobile and cloud computing environments. In mobile
devices, TEEm provides the necessary support for large mem-
ory, enabling more complex and secure applications to run
smoothly. For cloud platforms, the large memory capacity
of TEEm is advantageous for handling memory-intensive
tasks. Essentially, TEEm’s design offers a simple and prac-
tical solution for extending the utility of TEE across various
computing environments, ranging from mobile devices to
extensive cloud infrastructures.

VIil. CONCLUSION

In this paper, we propose TEEm, the first publicly disclosed
design for extending TA memory in ARM TrustZone using
a software-based approach. TEEm leverages the isolation
mechanism of TrustZone and the security management fea-
tures of OP-TEE to protect software and physical attacks
while offering memory expansion capabilities for TAs.
We design the S2M mapping policy, which significantly
extends the virtual address space available to TAs. Fur-
thermore, the PbOMA mechanism is introduced, empowering
TAs to request more trusted memory from the TEE ker-
nel. We conducted extensive experiments to evaluate the
performance of TEEm in executing typical memory tasks.
The results show that the memory allocation performance
of TEEm is, on average, approximately 3.48 times faster
than that of REE. In future research, we aim to further
optimize the memory initialization time of TA, especially
as memory allocation scales, making TEEm more practical
for real-world applications. Furthermore, we plan to explore
new application scenarios, such as large-scale data processing
and machine learning model training, to further validate the
applicability and advantages of TEEm.

REFERENCES

[11 Software Guard Extensions Solution Brief, 2022. Accessed: Feb. 13, 2024.
[Online]. Available: https://www.intel.com/content/dam/www/central-
libraries/us/en/documents/2022-09/sgx-protect-and-isolate-confidential-
data-sb.pdf

[2] AMD Memory Encryption. Accessed: Feb. 13, 2024. [Online]. Available:
https://www.amd.com/content/dam/amd/en/documents/epyc-business-
docs/white-papers/memory-encryption-white-paper.pdf

[3] ARM Confidential Compute Architecture. Accessed: Feb. 13, 2024.
[Online]. Available: https://developer.arm.com/documentation/den0125/
0300/?lang=en

VOLUME 12, 2024

[4]

[5]

[6]

[71

[8]

[9]

[10]

(11]
[12]

[13]

(14]

[15]

[16]

[17]

(18]
[19]
(20]

(21]

(22]

(23]

(24]

(25]

(26]

D. Lee, D. Kohlbrenner, S. Shinde, K. Asanovic, and D. Song, “Keystone:
An open framework for architecting trusted execution environments,” in
Proc. 15th Eur. Conf. Comput. Syst., Apr. 2020, pp. 1-16.
SGX-Hardware Accessed: Feb. 13, 2024. [Online].
https://github.com/ayeks/SGX-hardware

D. Lu, M. Shi, X. Ma, X. Liu, R. Guo, T. Zheng, Y. Shen, X. Dong, and
J. Ma, “Smaug: A TEE-assisted secured SQLite for embedded systems,”
IEEE Trans. Dependable Secur. Comput., vol. 20, no. 5, pp. 3617-3635,
Sep. 2023.

J. Menetrey, M. Pasin, P. Felber, and V. Schiavoni, “WATZ: A trusted
WebAssembly runtime environment with remote attestation for Trust-
Zone,” in Proc. IEEE 42nd Int. Conf. Distrib. Comput. Syst., 2022,
pp. 1177-1189.

Z. Jian, Y. Lu, Y. Qiao, Y. Fang, X. Xie, D. Yang, Z. Zhou, and T. Li,
“TSC-VEE: A TrustZone-based smart contract virtual execution environ-
ment,” IEEE Trans. Parallel Distrib. Syst., vol. 34, no. 6, pp. 1773-1788,
Jun. 2023.

F. Mo, A. S. Shamsabadi, K. Katevas, S. Demetriou, I. Leontiadis,
A. Cavallaro, and H. Haddadi, “DarkneTZ: Towards model privacy at
the edge using trusted execution environments,” in Proc. 18th Int. Conf.
Mobile Syst., Appl., Services, Jun. 2020, pp. 161-174.

S. P. Bayerl, T. Frassetto, P. Jauernig, K. Riedhammer, A.-R. Sadeghi,
T. Schneider, E. Stapf, and C. Weinert, “Offline model guard: Secure and
private ML on mobile devices,” in Proc. Design, Autom. Test Eur. Conf.
Exhibition, Mar. 2020, pp. 460—465.

S. Pinto and N. Santos, “Demystifying arm TrustZone: A comprehensive
survey,” ACM Comput. Surv., vol. 51, no. 6, pp. 1-36, Jan. 2019.

Z.Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan, “VTZ: Virtualizing
ARM TrustZone,” in Proc. 26th USENIX Secur. Symp., 2017, pp. 541-556.
S. Zhao, Q. Zhang, Y. Qin, W. Feng, and D. Feng, “SecTEE: A software-
based approach to secure enclave architecture using TEE,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., 2019, pp. 1723-1740.

Z. Li, W. Li, Y. Xia, and B. Zang, “TEEp: Supporting secure parallel
processing in ARM TrustZone,” in Proc. IEEE 26th Int. Conf. Parallel
Distrib. Syst. (ICPADS), Dec. 2020, pp. 544-553.

L. Sun, S. Wang, H. Wu, Y. Gong, F. Xu, Y. Liu, H. Han, and S. Zhong,
“LEAP: TrustZone based developer-friendly TEE for intelligent mobile
apps,” IEEE Trans. Mobile Comput., vol. 22, no. 12, pp. 7138-7155,
Dec. 2023.

J. Jiang, J. Qi, T. Shen, X. Chen, S. Zhao, S. Wang, L. Chen,
G. Zhang, X. Luo, and H. Cui, “CRONUS: Fault-isolated, secure and
high-performance heterogeneous computing for trusted execution environ-
ment,” in Proc. 55th IEEE/ACM Int. Symp. Microarchitecture (MICRO),
Chicago, IL, USA, Oct. 2022, pp. 124-143.

S. Wan, M. Sun, K. Sun, N. Zhang, and X. He, “RusTEE: Developing
memory-safe ARM TrustZone applications,” in Proc. Annu. Comput.
Secur. Appl. Conf., Dec. 2020, pp. 442-453.

O. Demigha and R. Larguet, “Hardware-based solutions for trusted cloud
computing,” Comput. Secur., vol. 103, Apr. 2021, Art. no. 102117.
OP-TEE. Accessed: Feb. 13, 2024. [Online]. Available: https://github.
com/OP-TEE/

Armv8-A Address Translation. Accessed: May 13, 2024. [Online]. Avail-
able: https://developer.arm.com/documentation/100940/1atest/

S. Park, H. Kang, S. Han, J. M. Youn, and D. Kwon, “MECAT:
Memory-safe smart contracts in ARM TrustZone,” IEEE Access, vol. 12,
pp. 56110-56119, 2024.

F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and E. Stapf, “SANC-
TUARY: ARMing TrustZone with user-space enclaves,” in Proc. Netw.
Distrib. Syst. Secur. Symp., 2019, pp. 1-25.

Z. Liu, Y. Lu, X. Xie, Y. Fang, Z. Jian, and T. Li, “Trusted-DNN: A
TrustZone-based adaptive isolation strategy for deep neural networks,” in
Proc. ACM Turing Award Celebration Conf., Jul. 2021, pp. 67-71.

M. S. Islam, M. Zamani, C. H. Kim, L. Khan, and K. W. Hamlen, “Con-
fidential execution of deep learning inference at the untrusted edge with
ARM TrustZone,” in Proc. 13th ACM Conf. Data Appl. Secur. Privacy,
Apr. 2023, pp. 153-164.

Y. Cao, J. Zhang, Y. Zhao, P. Su, and H. Huang, “SRFL: A secure
& robust federated learning framework for IoT with trusted execution
environments,” Expert Syst. Appl., vol. 239, Apr. 2024, Art. no. 122410.
X. Xie, H. Wang, Z. Jian, T. Li, W. Wang, Z. Xu, and G. Wang, “Memory-
efficient and secure DNN inference on TrustZone-enabled consumer IoT
devices,” 2024, arXiv:2403.12568.

Available:

108595

IEEE Access

J. Li et al.: TEEm: Supporting Large Memory for Trusted Applications in ARM TrustZone

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]
[35]
[36]
[37]

[38]

[39]

[40]
[41]

[42]

[43]

M. Yang, W. Yi, J. Wang, H. Hu, X. Xu, and Z. Li, “‘Penetralium: Privacy-
preserving and memory-efficient neural network inference at the edge,”
Future Gener. Comput. Syst., vol. 156, pp. 3041, Jul. 2024.

D. Shim and D. H. Lee, “SOTPM: Software one-time programmable
memory to protect shared memory on ARM trustzone,” IEEE Access,
vol. 9, pp. 4490-4504, 2021.

B. Gowrisankar, D. Mashima, W. Ong, Q. Ye, E. Esiner, B. Chen, and
Z. Kalbarczyk, “GateKeeper: Operator-centric trusted app management
framework on ARM TrustZone,” in Proc. IEEE Conf. Commun. Netw.
Secur., Oct. 2022, pp. 100-108.

ARM. Building a Secure System Using TrustZone Technology.
Accessed: Feb. 13, 2024. [Online]. Available: https://documentation-
service.arm.com/static/5f212796500e883ab8e 74531 ?token=
GlobalPlatform. TEE System Architecture. Accessed: Feb. 13, 2024.
[Online]. Available: https://globalplatform.org/specs-library/tee-system-
architecture/

J.-E. Ekberg, K. Kostiainen, and N. Asokan, “The untapped potential of
trusted execution environments on mobile devices,” IEEE Secur. Privacy,
vol. 12, no. 4, pp. 29-37, Jul. 2014.

ARM Trusted Firmware. Accessed: Feb. 13, 2024. [Online]. Available:
https://www.trustedfirmware.org/

OP-TEE Architecture. Accessed: Feb. 13, 2024. [Online]. Available:
https://optee.readthedocs.io/en/latest/architecture/index.html

MBW. Accessed: Feb. 13, 2024. [Online]. Available: https://github.
com/raas/mbw

Stream. Accessed: Feb. 13, 2024. [Online]. Available: https:/github.
com/jetffhammond/STREAM

Memtester. Accessed: Feb. 13, 2024. [Online]. Available: https://github.
com/jnavila/memtester

M. Abadi et al., “Tensorflow: A system for large-scale machine learn-
ing,” in Proc. 12th USENIX Symp. Oper. Syst. Des. Implement., 2016,
pp. 265-283.

The GNU Allocator. Accessed: May 13, 2024. [Online]. Available:
https://www.gnu.org/software/libc/manual/html_node/The-GNU-
Allocator.html

The BGET Memory Allocator. Accessed: May 13, 2024. [Online]. Avail-
able: https://www.fourmilab.ch/bget/

BGET. Accessed: May 13, 2024. [Online]. Available: https://github.
com/OP-TEE/optee_os/pull/120

T-Test. Accessed: May 13, 2024. [Online]. Available: https://resources.
nu.edu/statsresources/ttest

OP-TEE Xtest Framework. Accessed: Feb. 13, 2024. [Online]. Available:
https://github.com/OP-TEE/optee_test

JUN LI received the bachelor’s degree from
Tianjin University of Technology and Education,
Tianjin, China, in 2017, and the master’s degree
from Hainan University, Hainan, China, in 2021,
where he is currently pursuing the Ph.D. degree
with the School of Cyberspace Security (School of
Cryptology). His research interests include cyber-
security, trusted hardware, and blockchain.

XINMAN LUO received the bachelor’s degree
from Xijing University, Xi’an, China, in 2019,
and the master’s degree from Hainan University,
Hainan, China, in 2022. She is currently a full-time
Teacher with Qiongtai Normal University. Her
research interests include network security and
trusted computing.

108596

HONG LEI received the bachelor’s and master’s
degrees from Beijing University of Aeronautics
and Astronautics, Beijing, China, in 2006 and
2009, respectively, and the Ph.D. degree from
Michigan State University, East Lansing, MI,
USA, in May 2015. He continued as a Research
Associate with the Smart Microsystem Laboratory,
Michigan State University. He joined the Depart-
ment of Electrical and Computer Engineering, as a
Tenure-Track Assistant Professor with Portland
State University, in July 2018. He was the Associate Dean of Oxford—Hainan
Blockchain Research Institute, SSC Holding Company Ltd. He is currently
a Professor with Hainan University. His research interests include smart
systems, trusted hardware, and blockchain technology.

JIEREN CHENG (Member, IEEE) received the
Ph.D. degree in computer science and technology
from the School of Computer, National Univer-
sity of Defense Technology, Changsha, China,
in 2010.

He is currently a Vice Dean, a Professor, and a
Ph.D. Supervisor with Hainan University, Haikou,
China. He is the Director of Hainan Provin-
cial Blockchain Technology Engineering Research
Center. He hosted three National Natural Science
Foundation of China, National Defense Key Research Projects, China—U.S.
Computer Science Research Center Open Project, Ministry of Education
Industry-University-Research Collaborative Education Project, Ministry of
Education “Tiancheng Huizhi”’ Innovation and Education Fund, Hainan
Province Key, Research and Development Innovation Team Projects, Hainan
Provincial Key Research and Development Projects, Hainan Provincial Natu-
ral Science Foundation Projects, Hainan Provincial Science and Technology
Enterprise Technology Innovation Fund Projects, and Hunan Provincial
Twelfth Five-Year Plan Projects, with a total project funding of more than ten
million. He has participated in ten national key projects as the main person
in charge, including the National Natural Science Foundation of China, the
National Defense Preliminary Research Key Project, the National Support
Plan, and the Innovation Planning Project of the Ministry of Public Security.
He has won 24 provincial-level projects and 12 school-level projects, such as
the Provincial Natural Science Foundation, the Provincial Science and Tech-
nology Plan Fund, and the Provincial Department of Education Key Project.
His research interests include cloud computing, artificial intelligence, net-
work security, and intelligent transportation. He is a Senior Member of CCF
and a member of ACM. He was awarded the “Famous South China Sea
Scholar.” He won the ICAIS 2021 Outstanding Organization Chairperson,
the ICCCS 2018 Outstanding Contribution Award, and the first prize of
ICCCS 2018 and ICCCS 2017 Excellent Papers. He has been invited to serve
as a reviewer for several journals and international conferences, e.g., Journal
of Computer Research and Development, Computer Science, and FAW, and
a PC member for several international conferences.

VOLUME 12, 2024

