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ABSTRACT Proper surveillance and maintenance of photovoltaic (PV) systems are crucial to
ensure continuous power generation and prevent operational downtimes. However, manual analysis of
electroluminescence (EL) images is subjective, time-intensive, and requires significant expertise. To address
this issue, a comprehensive deep learning architecture has been developed for the semantic segmentation
of 29 different features and defects within EL images of PV panels. The SegNet architecture encoder
has been replaced with the VGG16 encoder, which incorporates pre-trained weights to leverage transfer
learning during the feature extraction stage. A Convolutional Block Attention Module (CBAM) block has
also been introduced to enhance the decoder’s ability to generate fine-grained segmentations. Additionally,
the suggested architecture has been evaluated through the application of three different loss functions:
weighted categorical cross-entropy loss, categorical cross-entropy, and focal loss. The Attention-Based
SegNet architecture proposed with a weighted categorical cross-entropy loss exhibits superior performance
in terms of accuracy, F1 score, intersection over union (IoU), precision, recall, mean IoU (mloU), specificity,
Jaccard index, and Dice coefficient. It achieves a Dice coefficient of 0.9408 and an mloU of 0.9101,
outperforming the state-of-the-art SEiPV-Net trained on the same dataset by 8.77% and 4.97%, respectively.

INDEX TERMS PV, electroluminescence images, solar cells, semantic segmentation, SegNet, CBAM,
SEiPV-Net.

I. INTRODUCTION monocrystalline and polycrystalline silicon. Polycrystalline

In recent years, there has been a widespread transition
to renewable energy on a global scale [1]. Compared
to conventional energy sources like oil, natural gas, and
coal, the solar cell sector had expanded greatly by the
end of 2015 [2]. Worldwide, the amount of electricity
generated via solar photovoltaic (PV) systems has risen
significantly. International PV installations were 623.2 GW
(GW) by the end of 2019 [3]. PV systems are expected
to become the primary global electricity source by 2050,
according to the International Energy Agency [4]. Based on
the materials used in their manufacture, solar cells found
in PV modules are generally divided into two categories:
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cells are made up of several silicon sections fused together
during the manufacturing process, whereas monocrystalline
cells are made up of a single silicon crystal [5]. Companies
usually face ongoing trade-offs to provide high-quality
PV modules at reduced costs. Over time, the capacity of
crystalline silicon cells used in PV modules to generate power
decreases due to the susceptibility to cracks, inactive areas,
gridlines, and other various defects. Various environmental
factors such as snow, wind, thermo-mechanical pressures,
as well as human activity during shipping, routine operations,
fabrication, maintenance, and installation procedures also
have the potential to induce cracks in PV modules [6].
In a competitive market, manufacturers can account for solar
panels’ quality and reliability by employing two different
methods during the production process: electroluminescence
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(EL) testing and flash testing. In the flash test, a short,
high-intensity light pulse is used to assess a panel’s output
performance. The current-voltage (I-V) curve determines
the panel’s maximum performance. Conversely, PV module
defects are detected using EL imaging. During EL testing,
photons are produced by solar panels when they come into
contact with electricity; the resulting images are examined
using infrared or near-infrared cameras to detect and describe
different shortcomings. Cracks and other defects appear as
dark grey lines or areas in EL images.

Visual inspection of EL images is expensive and time-
consuming. Additionally, it is a labor-intensive procedure that
requires knowledge in addition to its restricted applicability
to a small scale. The application of automated detection
techniques is required in order to expand the scope of visual
inspection. [7]

The automatic defect detection in EL images of PV
modules has been demonstrated to be reliable with computer
vision and deep learning approaches. [6]. Deep learning
technology has made substantial advances in the last few
years in the areas of object detection, image segmentation,
and image classification. [8]

Image segmentation is a comprehensive image analysis
procedure that involves partitioning a digital image into
multiple segments and categorizing the data within each
segment. The three primary types of image segmentation
tasks encompass semantic segmentation, instance segmenta-
tion, and panoptic segmentation. semantic segmentation is a
computer vision technique that tries to classify every pixel in
an image, assigning a particular label to each pixel based on
its content. With this fine-grained comprehension, computers
can identify the boundaries and connections between various
objects or regions, resulting in a more comprehensive and
contextually rich analysis of visual input. [5] The main
findings of this research are listed below:

1. The SegNet architecture’s encoder was replaced with the
VGG16 encoder, incorporating pretrained weights to exploit
transfer learning within the feature extraction phase.

2. A Convolutional Block Attention Module (CBAM)
block was incorporated to enhance the decoder’s ability to
produce detailed segmentations.

3. The traditional categorical cross-entropy loss was
replaced by the weighted categorical cross-entropy loss.
Weighted categorical cross-entropy is beneficial for address-
ing class imbalances, allowing the model to effectively handle
varying class distributions and improve overall performance.

4. The suggested framework is evaluated by applying three
distinct loss functions: weighted categorical cross-entropy
loss, categorical cross-entropy, and focal loss.

5. The proposed framework performs better than the state-
of-the-art SEiPV-Net trained on the same dataset, with a Dice
coefficient improvement of 8.77% and an mIoU improvement
of 4.97%, respectively.

The structure of the paper is as follows: Section II offers
a review of the relevant literature and the contemporary
advances in the detection of defects in PV solar cells,
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encompassing models based on deep learning. Section III
delineates the architecture of the suggested model and the
key techniques employed in its development. Section IV
offers a detailed description of the dataset. It also discusses
and analyzes the experimental results. Lastly, Section V
encapsulates the study’s essential conclusions and outlines
potential avenues for future research.

Il. RELATED WORK

Numerous scholarly studies have been carried out on the
automated detection of defects in solar cells; however,
a minority have integrated the use of semantic segmentation
in EL imaging. Semantic segmentation involves the process
of classification at pixel-level, enabling the identification and
categorization of multiple objects within an image. In their
work referenced as [6], Pratt et al. pioneered the development
of the initial semantic segmentation model utilizing the
UNET architecture for the detection and classification of
24 defects in PV modules. The suggested model was
trained and tested by the authors using PV modules made
up of multicrystalline and monocrystalline silicon cells.
The images from the EL dataset and their corresponding
ground truth masks were adjusted to a size of 512 x
512 pixels. The evaluation revealed superior performance
of the model on monocrystalline silicon cells compared
to multi-crystalline silicon cells. A benchmark dataset was
presented by Pratt et al. [9] for the purpose of semantically
segmenting 24 distinct features and defects of PV modules.
EL images and related ground truth masks with pixel-level
annotations for every defect and feature were used to create
this dataset. The researchers then used equal, inverse, and
custom class weights to train four different deep learning
models. They then used a subset of three faults and two
features to evaluate the model’s performance using the
median recall (mRcl) and median intersection over union
(mIoU). Ultimately, the DeepLabv3+ model, implemented
with custom class weights, demonstrated the most favorable
performance in terms of evaluation metrics. The authors
concluded that significant performance degradation could
result from deviations among the ground truth masks and the
EL images. As a result, they provided alternative versions of
the dataset to address this challenge.

In a recent study, Eesaar et al. [10] devised a lightweight
encoder-decoder architecture termed SEiPV-Net for the
semantic segmentation of defects and features within PV
modules. The SEiPV-Net model underwent training and
evaluation utilizing the dataset introduced in [9]. To tackle
the problem of micro-defects occupying a minimal number
of image pixels, the researchers employed various class
weight assignment strategies. Additionally, they employed
three distinct loss functions during the model training
process. Notably, the proposed SEiPV-Net performed better
than cutting-edge techniques such as U-Net, PSP-Net, and
DeepLabv3+ across multiple evaluation metrics. For real-
time crack segmentation in complicated scenes, the authors
in [11] presented a novel semantic transformer representation
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network (STRNet). A focal-Tversky loss function, a multi-
head attention-based decoder, coarse upsampling, a squeeze
and excitation attention-based encoder, and a learnable
swish activation function are among the key components of
the STRNet’s meticulously constructed architecture. With
91.7%, 92.7%, 92.2%, and 92.6%, respectively, the network
notably demonstrates strong performance in precision, recall,
F1 score, and mloU. In order to verify the efficacy of
STRNet, the authors carried out a performance comparison
study between it and other cutting-edge networks, including
Deeplab V3+, FPHBN, Unet++, Attention U-net, and
CrackSegNet. A deep learning encoder—decoder framework
was developed by the researchers in [12] with the express
purpose of semantically segmenting droplets and shunt-type
defects in thin-film copper indium gallium selenide (CIGS)
solar cells. A collection of 6000 images of identical CIGS
modules was used to evaluate their model. Data augmentation
approaches were applied to improve the recognition of
droplets, specifically to address the lack of annotated images
in the droplet class. Various semantic segmentation criteria,
including the Jaccard index, Precision, and Recall, were uti-
lized to appraise the model’s performance. Fioresi et al. [13]
introduced the UCF EL Defect dataset. They proposed the use
of a Deeplabv3 model with ResNet-50 backbone for semantic
segmentation of five types of defects in monocrystalline and
multicrystalline PV cells. The model’s training utilized the
UCF EL Defect dataset that comprises 17,064 EL images.
The model exhibited an mloU score of 57.3%, a pixel-
level accuracy of 95.4%, weighted F1-score of 0.95, and un-
weighted Fl-score of 0.69 and, underscoring its significant
potential for industry applications.

In their study [14], Rahman and Chen introduced an
enhanced Unet model termed multi-attention U-net (MAU-
net) for binary PV defect detection in EL images. For model
training, a dataset comprising 828 solar cell images was
used to determine whether the cell exhibited defects or was
defect-free. Data augmentation methodologies were utilized
to enhance the dataset scale and diversity. Furthermore,
the model integrated channel attention and spatial attention
mechanisms to suppress nonessential features during training
and highlight important ones. To address the issue of class
imbalance, a combination of focal and dice loss functions
was utilized for model training. The suggested model
exhibited better performance relative to the baseline Unet
model and alternative semantic segmentation methodologies.
It achieved an F-measure of 0.799 and an mloU of 0.699.
Han et al. presented a deep learning-based method for defect
segmentation in polycrystalline silicon wafers in [15]. The
process initially involved using a Region Proposal Network
(RPN) to produce defect patches, which were then entered
into an improved Unet to perform defect segmentation.
A dilated convolution was added to the original Unet structure
to handle the variation in the defect sizes. Utilizing dilated
convolution can improve the model’s ability to rebuild
information about small objects. The final findings were
then obtained by processing the segmentation outcomes. The
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model was trained and assessed on a dataset that consisted of
106 1024 x 1024 images. The experimental findings showed
that, in spite of being trained on a relatively small dataset,
the suggested model performed better than existing semantic
segmentation models. Wang et al. [16] presented a novel
algorithm for defect detection in solar cells. This algorithm is
an enhanced version of the Faster region-based convolutional
neural network. The algorithm leverages a similarity non-
maximum suppression mechanism, along with the cosine
similarity of the candidate box aspect ratio, and multi-
scale feature fusion. The authors conducted comprehensive
training, validation, and testing of the proposed approach
using the dataset documented in [17], with an augmented
image count of 2687 achieved through slicing. The proposed
algorithm demonstrated notable superiority over other object
detection models, achieving an impressive mean average
precision (mAP) of 91.19%.

To automatically detect PV defects in EL images,
Mazen et al. [18] have improved YOLOvVS5. The main
improvements are as follows: the network’s neck and
backbone are enhanced with the Global Attention Module
(GAM); the head branch’s Adaptive Feature Space Fusion
(ASFF) is integrated to increase the effectiveness and
accuracy of the model’s detection; and the distance
intersection over union-non-maximum suppression (DIoU-
NMS) is used to create more accurate bounding boxes.
The suggested system was trained and tested. Furthermore,
after using Test Time Augmentation (TTA), the enhanced
YOLOVS5 model outperformed the YOLOv8 model, attaining
amAP@0.5 of 77.7%.

El-Rashidy [1] presented a lightweight automated method
for PV panel defect detection. First, solar cell images are
clustered, and each cluster’s identification model is created.
A classifier model is developed to categorize solar cell
images into clusters, which is then employed to assign a
cluster label to each cell image based on its similarity to
the images within the cluster. The identification of defective
solar cells is subsequently achieved through the utilization of
the model developed based on the assigned clusters. A con-
volutional neural network (CNN)-based classification model
was developed by Tang et al. [19] for the identification of
four different types of PV module defects: break, defect-free,
finger-interrupt, and micro-crack. First, the authors employed
Generative Adversarial Networks (GANs) to generate high-
resolution EL images. Subsequently, four classifiers, lever-
aging ResNet50, VGG16, MobileNet, and Inception V3
architectures, were trained utilizing the generated dataset.
The experimental findings demonstrated the considerable
effect of data augmentation techniques in enhancing the
model’s accuracy.

Akram et al. [7] presented a classification system that
is both time- and power-efficient to recognize PV defects
EL images. Owing to the dataset’s small size, the authors
employed various data augmentation techniques, such as
rotation, contrast correction, flipping, and random cropping,
to increase its size. To reduce overfitting, they also used
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weight regularization and dropout strategies. With an accu-
racy of 93.02%, the final model proved to be feasible for use
in industrial settings for defect detection applications. The
ELDDS1400C5 dataset, which includes 1,400 EL images
of PV panels for defect detection and segmentation in
PV modules, was developed by Rodriguez et al. [20]. There
are 1187 training images in the dataset. 1187 training
images were used to train a YOLOvVS] model. After that,
a test set of 190 was used to evaluate the model. The
proposed model attained an mAP@0.5 of 0.778. Lastly,
the authors segmented the cells using image-gradient-based
line localization. A novel dual encoder-decoder architecture
called the Polyp Segmentation Network (PSNet) was pre-
sented by Lewis et al. [21] for the semantic segmentation of
polyps. Multiple deep learning modules were combined to
create the PSNet’s dual encoder and decoder. The model’s
performance was assessed using five different polyp datasets,
demonstrating higher performance in terms of mean Dice
coefficient (mDice) and mloU when compared to existing
state-of-the-art techniques. Zhang and Yin [22]developed an
automated system for the identification of PV panel defects in
arecent research article. The suggested model is an improved
version of YOLOVS, designed especially for identifying three
distinct types of defects in PV modules. Notably, the model’s
increased accuracy in identifying small objects was largely
due to the addition of a tiny defect detection head, the use
of the ECA-Net attention mechanism, and the inclusion of
deformable convolution within the CSP module. To increase
the dataset’s size, the researchers also used a range of data
augmentation strategies. Following these improvements, the
model outperformed the original YOLOVS framework with
an mAP of 89.64%.

Another study [23] introduced a deep learning framework,
termed the internal damage segmentation network (IDSNet),
to semantically segment interior defects in concrete struc-
tures. To augment the training dataset for the proposed
model, attention-based GAN (AGAN) was employed. The
application of AGAN resulted in a notable enhancement of
12% in the mloU, demonstrating its efficacy in improv-
ing the model’s performance for semantic segmentation
tasks.

The proposed model overcomes the drawbacks found in
previous research works using the same dataset: it performs
better in semantic segmentation of small, narrow cracks
and produces masks that are more accurate than the ground
truth masks. Moreover, the model effectively detects defects
that the annotators missed, demonstrating its effectiveness in
defect identification and segmentation.

lll. METHODOLOGY
The dataset, suggested model, and methods used in its
creation are summarized in this section.

A. THE DATASET
This work utilizes a 29-class dataset that was made available
in [9]. It is further separated into 16 defects and 13 intrinsic
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FIGURE 1. (a), (d), (g) EL images (b), (e), (h) Grayscale mask (c), (f),
(i) Colored mask.

features of solar PV modules. A PV expert selected its
images by visually scanning 80,000 images from the five data
sources and selecting samples at random. A PV module’s
ribbon connector, busbar, or cell spacing are examples of
particular elements that are referred to as features in this
work. Defects refer to undesirable imperfections that can
negatively impact the overall efficiency and lifespan of the
PV system like gridlines, inactive areas, and cracks. A solar
cell’s EL image has a resolution of 512 x 512 pixels. For
training, validation, and testing, a total of 2212, 70, and 72 EL
images were employed, respectively. For monocrystalline and
multicrystalline solar wafers, almost equal amounts of images
were used.

the GNU Image Manipulation Program (GIMP) [24] was
utilized to generate a ground truth mask for each image
so that each class has a distinct color. As verified by
Pratt et al. [9] and Eesaar et al. [10] through their benchmark
investigation, the initial release of the dataset on November 4,
2021, presented a significant challenge marked by inaccurate
labeling, resulting in suboptimal segmentation performance.
To address this limitation, this research employs the latest
version of the dataset, released on October 8, 2022. Notably,
this updated iteration does not provide RGB masks for the
training, validation, and test sets.
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FIGURE 2. The attention-based SegNet model architecture.

Consequently, the color code information accompanying
the dataset was used to transform grayscale masks into RGB
format, as depicted in FIGURE 1.

B. DETAILS ABOUT THE TRAINING ENVIRONMENT

The study utilized the Kaggle platform with a computational
environment consisting of a NVIDIA TESLA P100 GPU,
CUDA version 11.1, Python version 3.8.8, keras version
2.13.1, and Tesorflow version 2.13.0. The training process
used an Adam optimizer with a learning rate of 0.0001. The
number of training epochs was set to 30, while the batch size
was set to 8. The input images used in the training process had
dimensions of 512 x 512 pixels. The Attention-Based SegNet
model used the VGG16 encoder, which leveraged pre-trained
weights obtained from the ImageNet dataset.

C. ATTENTION-BASED SEGNET MODEL

This work presents an improved version of the SegNet
architecture presented by Badrinarayanan et al. [25] The
SegNet has three main components: an encoder block,
a corresponding decoder block, and a pixel-wise classifica-
tion layer. The authors proposed a 13-convolutional-layer
encoder similar to that of the VGG16 [26] architecture to
produce a set of feature maps. Each encoder layer has a
corresponding decoder layer, resulting in a 13-layer decoder
network. On the other hand, the decoder takes feature
maps as input, upsamples them, and produces sparse feature
maps. The deepest encoder output retains higher-resolution
feature maps by discarding fully connected layers. The high-
dimensional feature representation emerging from the final
decoder output is provided as input to a softmax classifier.
The decoder in SegNet employs pooling indices from the
max-pooling stage for non-linear upsampling. As a result,
SegNet has fewer trainable parameters than other semantic
segmentation architectures, making it time- and memory-
efficient. The architecture of the proposed Attention-Based
SegNet is shown in FIGURE 2 Initially, the VGG16 model is
instantiated with pre-trained weights sourced from ImageNet,
and the upper layers, specifically the fully connected layers,
are omitted. Subsequently, the encoder output is derived
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by extracting the output of the ‘block5_conv3’ layer from
VGG16. The decoder phase involves the upsampling and
concatenation of features originating from the encoder
across diverse resolutions. To illustrate, the concatenation
with the ‘block3_conv3’ layer corresponds to a resolution
of 128 x 128, concatenation with the ‘block2_conv?2’
layer corresponds to 256 x 256, and the concatenation
with the ‘blockl_conv2’ layer corresponds to a resolution
of 512 x 512.

Following the resolution adjustment, convolutional layers
are applied to fine-tune the feature map. Lastly, the defined
CBAM block is employed, followed by a 1 x 1 convolutional
layer with softmax activation, culminating in the generation
of the ultimate pixel-wise classification.

D. INTEGRATION OF A CONVOLUTIONAL BLOCK
ATTENTION MODULE (CBAM)

The concept of CBAM gained initial prominence by
Woo et al. [27]. They demonstrated that using CBAM at
every convolutional block can produce enhanced feature
maps. The integration of CBAM module into the SegNet
network has the potential to greatly improve network perfor-
mance by enhancing the significance of defect information
and reducing the impact of irrelevant data [28]. It overcomes
the difficulty of identifying obscured and tiny objects that
might be missed otherwise and improves the network’s
feature extraction capabilities [29].

This CBAM module as shown in FIGURE 3 is divided into
two distinct submodules: channel attention module and the
spatial attention module. To ensure the concurrent utilization
of both channel and spatial features, the attention weight
is computed in the spatial and channel dimensions and
subsequently applied to the original feature map. This process
allows to dynamically modify the features.

1) CHANNEL ATTENTION MODULE

The channel attention mechanism depicted in FIGURE 4
identifies and enhances the most important feature map for
learning. Firstly, global average pooling and global max
pooling operations are applied to the feature map F, the output
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FIGURE 3. CBAM structure diagram.

feature maps, F

Output
Feature Map
V\\ N
1
! N
of the encoder part The result of this stepistwo 1 x 1 x C given by Equation 4:
€., and FS .. The output of this step is
F'=Ms (F)®F'. 4)

then passed through two dense layers to reduce the channel
dimension further. The number of neurons in the first and
second layer is C/y, C, respectively, where y defines the
attenuation rate that controls the channel reduction ratio.
ReLU activation is then applied for non-linearity, and sigmoid
activation is applied to produce attention weights. This
process is expressed in Equation 1, where o represents the
Sigmoid activation function and wp and wj stand for the
weights of the first and second dense layers, respectively.

Mc(F) = o (MLP (FS,) +MLP (FG,,))

o o (7)) o (0 (r5))

Finally, the channel attention weights and the input feature
map are element-wise multiplied by the channel dimension
as depicted in Equation 2 to produce F’, the output feature
map of the channel attention module that matches the input
feature map dimensions.

F'=Mc (F)®F. (2)

2) SPATIAL ATTENTION MODULE
The output of the channel attention module, F’ of the
size¢ H x W x C, is inputted into the spatial attention
module as illustrated by FIGURE 5. Then, it is subjected
to global max pooling and global average pooling of the
channel dimensions, respectively. Max and average values
are computed along the channel dimension separately to get
. and F5  of size Hx W x 1. A7 x 7 convolutional
layer with Sigmoid activation function is then used to produce
attention weights Mg(F) based on max and average values
as illustrated in Equation 3 where o denotes the Sigmoid
activation function, and f7X7 is the 7 x 7 convolution
operation.

Mg(F)=o0 (f7X7 ([Avgpool(F); Maxpool(F)]))
=0 (f7><7 (I:szvg’ Frflax])) €)

Finally, the output feature map of the Spatial Attention
module F” is generated through element-wise multiplication
of the input feature map F’ and Mg(F). The formula of F” is
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What is important to learn from the feature map is
conveyed through the spatial attention module. The mask
created by spatial attention will highlight the features that
characterize the object of interest. Through the application
of Spatial Attention to refine the feature maps, the input for
the subsequent convolutional layers is enhanced, improving
the performance of the model..

IV. RESULTS AND DISCUSSION

This section employs a variety of evaluation measures to test
and compare the suggested model’s performance with that of
the most advanced models.

A. EVALUATION METRICS

The quality of the segmentation results is assessed using a
variety of measures in order to determine how effective the
recommended architecture is. As mentioned in [10], and [14],
various metrics can be applied to compare the predicted
outcomes with the ground truth masks: F1 Score, accuracy,
recall, precision, Dice coefficient and mean Intersection over
Union(mloU). Equations 5, 6, 7, 8, 9, and 10 are used,
respectively, to calculate IoU, accuracy, recall, precision,
F-measure, and Dice coeficient.

[J NK]| TP
IoU = = (5)
[J UK]| TP + FP + FN
TP + TN
Accuracy = i (6)
TP+ FP+ FN + TN
TP
Recall = —— 7)
TP + FP
. TP
Precision = —— (8)
TP + TN
Precision % Recall
F1 — Score =2 x — O]
Precision + Recall
. .. [JNK| TP
DiceCoefficient =2 X ——— =2 X ——————
J]+ K| 2TP + FP + FN
(10)

in which FN stands for false negative, FP for false
positive, TP for true positive, and TN for true negative.
In Equations 5 and 10, J represents the ground truth mask
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for an object, K represents the predicted mask for the same
object.

B. DISCUSSION

A comparison of the suggested model’s performance against
four well-known models for semantic segmentation—SEiPV-
Net, DeepLabv3+, U-Net, and PSP-Net—is shown in
TABLE 1. In TABLE 1, bold highlighting is used to indicate
superior outcomes for emphasis. The experimental findings
clearly demonstrate that the proposed model using equal class
weights exhibited optimal performance achieving a Dice
coefficient of 94.08% and a mloU of 91.01%, which are
8.77% and 4.97% better, respectively, than the state-of-the-
art SEiPV-Net, under equal or custom class conditions which
was trained on the same dataset.

Notably, the PSP-Net model incorporates a pre-trained
ResNet50 [30] backbone, which was also trained on an
ImageNet dataset, but the DeepLabv3+ model is supported
by an Xception backbone that was trained on an Ima-
geNet dataset [31]. In conjunction with the analysis of
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Global Max S
Pooling

Mixed Pooling ([ 7x7 convolution
|

the experimental results based on the evaluation metrics,
a visual inspection was also conducted. FIGURE 6 depicts
the predicted masks versus the ground truth ones. While
certain defects, such as gridlines, inactive areas, and cracks,
encompass a relatively limited pixel range within EL images,
the proposed model demonstrated the capability to accurately
detect them.

As indicated by the authors in [10], the dataset exhibits
shortcomings caused by inaccuracies in labeling. A thorough
visual examination of FIGURE 6 confirms this observation.
The proposed model not only adeptly identifies small-
sized defects but also identifies other defects the dataset
annotators failed to notice, as illustrated by the pink boxes.
For example, in the test image shown in FIGURE 6(a), there
are multiple gridline defects that were overlooked by the
dataset annotators. They are shown as thin orange horizontal
lines bounded by pink boxes in the original image and its
corresponding predicted mask. Furthermore, the model is
also capable of generating more precise masks, as evidenced
in the case of test image depicted in FIGURE 6(d) and
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FIGURE 6. (a), (d), (g) EL images (b), (e), (h) Ground truth mask (c), (f), (i) Predicted mask.

its corresponding predicted mask. The two pink boxes
on the right illustrate some defects overlooked by the
annotators. Additionally, the pink box at the bottom of the
image demonstrates that the proposed model can generate
a more accurate mask than the provided ground truth. The
TABLE 4 presents the Dice coefficient, precision, recall,
IoU, F1 score, and mloU values utilizing the three loss
functions, with the bold values emphasizing the optimal
results.
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The proposed model’s superior performance is justified
through a comparative analysis with the study carried out by
Pratt et al. [9], which used the same dataset. In their study, the
authors employed equal, inverse, and custom class weights to
train four separate deep-learning models, thereby resulting in
twelve different model configurations.

The evaluation used the same subset consisting of three
defect types, crack, gridline, and inactive, and two features,
ribbons and spacing. The performance assessment used two
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FIGURE 7. (a) EL image (b), Ground truth mask (c), Our predicted mask (d), DeepLabv3+ Pratt et al. [9].

TABLE 1. Comparison of the improved SegNet with state-of-the-art (SOTA) models, highlighting superior results in bold.

Method Class weights | Dice Coefficient | Precision | IoU Recall | F1 Score | mloU
U-NET [10] Custom 75.03 94.36 60.38 | 90.28 92.07 80.65
PSP-NET [10] Custom 80.09 93.85 67.14 | 90.55 92.10 83.29
DeepLabV3+ [10] Custom 82.18 93.25 69.98 | 89.60 91.29 84.57
SEiPV-Net [10] Custom 83.12 94.63 71.24 | 92.90 93.75 85.73
U-NET [10] Equal 79.57 94.64 66.33 | 91.29 92.90 81.45
PSP-NET [10] Equal 82.27 93.14 70.43 | 91.69 92.41 85.16
DeepLabV3+ [10] Equal 83.63 93.46 7198 | 91.71 92.58 83.16
SEiPV-Net [10] Equal 85.31 94.91 74.47 | 93.62 94.26 86.04
Attention-Based SegNet [ours] | Equal 94.08 95.46 89.02 | 95.31 95.38 91.01

metrics: the median recall (mRcl) and the median intersection
over union (medloU).

As the results in TABLE 2 reflect, the DeepLabv3+ model
with custom class weights (4c) from Pratt et al’s study
achieved the highest medloU, with averages of 0.28 for
the three defects and 0.70 for the two features. However,
the proposed model exceeded these results, achieving
an average medloU of 0.67 for defects and 0.79 for
features.

Additionally, the proposed model exhibited exceptional
ability in precisely identifying thin, intricate defects like
cracks, as shown in FIGURE 7(c). It accurately segmented
gridline defects, even though they are small and thin, a task
that the DeepLabv3+ model by Pratt et al. could not achieve
due to noticeable segmentation overlap and dilation. [9].
These results underscore the advanced precision and overall
enhanced performance of the proposed model. TABLE 3
provides a summary of the mRcl and the corresponding
averages for a consistent set of five classes. Models
utilizing equal class weights (la, 2a, 3a, 4a) achieved the
lowest average mRcl for defects, whereas models employing
inverse class weights (1b, 2b, 3b, 4b) exhibited the highest
average mRcl for defects, ranging from 0.48 to 0.77.
The DeepLabv3+ model with custom class weights (4c)
emerged as one of the top performers in terms of the
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average mRcl for both features and defects. Despite the high
recall demonstrated by DeepLabv3+- (4c) across the three
defect classes, the medloU remained relatively low due to
low precision. This is visually indicated in FIGURE 7(d)
by the dilated predicted masks of defects such as cracks
and gridlines relative to the ground truth mask. Notably,
the proposed model outperformed the DeepLabv3+ with
custom class weights (4c), achieving an average mRcl for
defects of 0.79.

Furthermore, a comparative assessment using three distinct
loss functions: focal loss [32], categorical cross-entropy
loss, and weighted categorical cross-entropy [33] has been
conducted.The focal loss represents a refined version of
the conventional cross-entropy loss, specifically designed to
mitigate the challenges associated with class imbalance [34].
The authors introduced a focusing parameter, y, to enable a
smooth adjustment of the down-weighting rate for simpler
examples. Throughout the training process, greater emphasis
is placed on challenging examples, while lesser emphasis
is placed on well-classified examples. In our experiments,
we adhered to the authors’ guidance and set the gamma value
to 2. Furthermore, for better accuracy, the authors utilized
an alpha-balanced variant of the focal loss, with the o value
set to 0.25 based on its optimal performance. According
to [34], Weighted cross-entropy is widely used for semantic
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TABLE 2. Median loU for U-Net_12 (1a/b/c), U-Net_25 (2a/b/ c), PSPNet (3a/b/c), and DeepLabv3+ (4a/b/c), highlighting superior results in bold.

Method Weights | crack | gridline | inactive | ribbons | spacing | avg_defects | avg_features
1a [9] equal 0.13 0.32 0.25 0.68 0.78 0.24 0.73
1b [9] inverse 0.19 0.15 0.00 0.57 0.70 0.11 0.63
1c [9] custom 0.26 0.22 0.00 0.58 0.72 0.16 0.65
2a [9] equal 0.15 0.32 0.09 0.72 0.77 0.19 0.74
2b [9] inverse 0.19 0.15 0.04 0.54 0.67 0.13 0.61
2¢ [9] custom 0.22 0.18 0.00 0.57 0.74 0.13 0.66
3a[9] equal 0.03 0.23 0.12 0.68 0.80 0.13 0.74
3b [9] inverse 0.15 0.17 0.00 0.61 0.74 0.10 0.68
3c [9] custom 0.17 0.14 0.11 0.61 0.77 0.14 0.69
4a [9] equal 0.00 0.00 0.13 0.70 0.79 0.04 0.75
4b [9] inverse 0.18 0.14 0.20 0.56 0.66 0.17 0.61
4c [9] custom 0.25 0.20 0.38 0.63 0.77 0.28 0.70
Attention-Based SegNet[Ours] | equal 0.42 0.26 1.00 0.68 0.90 0.67 0.79

TABLE 3. Median recall for U-Net_12 (1a/b/c), U-Net_25 (2a/b/ c), PSPNet (3a/b/c), and DeepLabv3+ (4a/b/c).

Method Weights | crack | gridline | inactive | ribbons | spacing | avg_defects | avg_features
1a[9] equal 0.14 0.44 0.32 0.74 0.91 0.30 0.83
1b [9] inverse 0.92 0.87 0.00 0.95 0.97 0.60 0.96
lc [9] custom 0.90 0.84 0.00 0.97 0.96 0.58 0.96
2a [9] equal 0.18 0.43 0.20 0.85 0.88 0.27 0.86
2b [9] inverse 0.92 0.93 0.05 0.97 0.97 0.63 0.97
2¢ 9] custom 0.89 0.93 0.00 0.99 0.96 0.61 0.98
3a[9] equal 0.03 0.30 0.17 0.81 0.90 0.17 0.85
3b [9] inverse 0.62 0.82 0.00 0.95 0.95 0.48 0.95
3c 9] custom 0.43 0.68 0.18 0.96 0.96 0.43 0.96
4a 9] equal 0.00 0.00 0.15 0.83 0.87 0.05 0.85
4b [9] inverse 0.93 0.92 0.46 0.97 0.99 0.77 0.98
4c [9] custom 0.86 0.85 0.55 0.98 0.95 0.75 0.96
Attention-Based SegNet[Ours] | equal 0.82 0.56 1.00 0.86 1.00 0.79 0.93

TABLE 4. Comparison of the evaluation metrics using different loss functions.

focal_loss Categorical cross entrop Weighted categorical t
(alpha=0.25, gamma=2.0) Y & gorIcal Cross entropy

accuracy 95.16 95.07 95.37

dice_coef 88.42 92.76 94.08

iou 79.55 86.75 89.02

jacard 79.55 86.75 89.02

precision_m | 95.54 95.34 95.46

recall_m 94.85 94.85 95.31

fl_m 95.19 95.09 95.38

specificity 99.84 99.83 99.84

mean_iou 90.99 89.93 91.01

segmentation with imbalanced datasets. Consequently, this
study employed the weighted categorical cross-entropy loss
with equal class weight set to a value of 1. Upon examination
of the visual performance depicted in FIGURE 8 using these
loss functions, it is evident that the focal loss and cate-
gorical cross-entropy loss exhibit inadequate performance,
as they demonstrate a lack of precision in segmenting
the defects. For example, in FIGURE 8(a), the categorical
cross-entropy loss failed to identify jbox feature presented
in blue color in the ground truth mask in FIGURE 8&(b).
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Additionally, the focal loss masks contains many false
positive gridlines depicted in orange color as indicated by
white boxes in FIGURE 8(e). Moreover, as demonstrated
in FIGURE 8(j) and (i) respectively, in the case of the
test image represented in FIGURE 8(f), both the focal
loss and categorical cross-entropy loss demonstrated limited
capability in detecting the inactive area defect, depicted in
red within the ground truth mask. This visual analysis is
numerically demonstrated by the results of TABLE 4. Finally,
for the last test image FIGURE 8(k), the focal and categorical
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FIGURE 8. (a), (f), (k) EL images (b), (g). (i) GT mask (c), (h), (m) Weighted categorical cross-entropy (d), (i), (n) Categorical cross-entropy (e), (j), (0) Focal
loss.

cross-entropy loss functions were unable to detect the scuff
defect characterized by yellow color in the ground truth
mask FIGURE 8(I) and incorrectly predicted it as inactive
area characterized by red colors as shown by white boxes
in FIGURE 8(0) and FIGURE 8(n) respectively. In contrast,
the weighted categorical cross-entropy loss displays a
significantly more accurate segmentation capability for test
images (a), (f), and (k). Compared to the groundtruth masks,
it has produced the most close and precise segmentation
masks depicted in FIGURE 8 (c), (h), and (m).

V. CONCLUSION
This work presents an encoder-decoder framework namely
Attention-Based SegNet for semantic segmentation of
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29 defects and features of PV modules in EL images.
The Attention-Based SegNet replaces the traditional SegNet
encoder by the VGG16 encoder with its pretrained weights
to make use of transfer learning in feature extraction. Then
a CBAM module is added enhance the decoder’s ability
to generate fine-grained segmentations. While CBAM has
demonstrated effectiveness in enhancing the performance
of convolutional neural networks (CNNs) by incorporating
attention mechanisms, its application in semantic segmen-
tation networks presents challenges. When increasing the
image size in the context of the SegNet architecture, there
will be a tradeoff between memory efficiency and spatial
information preservation during the upsampling process in
the decoder network. Furthermore, the default Categorical
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Cross-entropy loss function was replaced by Weighted
Categorical cross-entropy and focal loss functions and
performance is compared.The suggested model is trained,
validated and tested using publicly available 29-class dataset.
The Attention-Based SegNet model could efficiently detect
multiple-scale defects in PV cell EL images, even under
complex background conditions. The proposed methodology
has demonstrated satisfactory performance in comparison
to the SEiPV-Net and the previously employed models in
prior investigations like PSP-Net, U-Net, and DeepLabv3+-.
It is important to highlight that the proposed model, along
with other models, attained lower medloU and mRcl for
small, narrow defects like cracks and gridlines, in contrast
to larger features such as spacing and ribbons. This research
shows that there is a great deal of promise for the suggested
model in the PV industry’s automated defect semantic
segmentation and quality control. According to this study,
the suggested model has a lot of potential for use in
semantic segmentation and quality control in the photovoltaic
industry, offering a lightweight practical and non-intrusive
method of extending the lifespan and reliability of PV
modules. Future directions may be toward generating new
versions of the dataset to address the inaccurate label-
ing problem. Another important consideration for creating
more accurate masks is the incorporation of new loss
functions.
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