
Received 22 April 2024, accepted 10 July 2024, date of publication 19 July 2024, date of current version 6 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3431206

Cascade and Extensible In-Memory Arithmetic
Computing in 2T1R ReRAM Arrays Using
Time-Sum-Logic Design
WEI ZHU 1,2,3, YI-XING HE1,2,3, HAO-NAN LI1,2,3, XIAN-QIN LIU1,2,3, SIWEN ZHANG1,2,3,
LEI WANG1,2,3, JIANG ZHU1,2,3, YUE-QI WANG1,2,3, JINCHENG ZHANG 1,2,3,4, (Member, IEEE),
YUE HAO 1,2,3,4, (Senior Member, IEEE), AND HAIJIAO HARSAN MA 1,2,3,4
1Low Dimensional Quantum Physics and Device Group, School of Microelectronics, Xidian University, Xi’an 710071, China
2State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi’an 710071, China
3Collaborative Innovation Center of Quantum Information of Shaanxi Province, Xidian University, Xi’an 710071, China
4State Key Laboratory of Wide Bandgap Semiconductor Devices and Integrated Technology, Xidian University, Xi’an 710071, China

Corresponding author: Haijiao Harsan Ma (mahj07@xidian.edu.cn)

This work was supported by the National Key Research and Development Program of China under Grant 2022YFB3605600 and
Grant 2021YFA0715600, by the Fundamental Research Funds for the Central Universities under Project QTZX23078, and by the
Interdisciplinary Cultivation Program of Xidian University.

ABSTRACT Many designs of in-memory logic computing using ReRAMhave been proposed and even a few
of them have been experimentally demonstrated. However, the ability to cascade and extend the designed
circuits is limited. In this work, we elaborate a design called time-sum-logic based on 2T1R memristor
arrays and implement arithmetic computing circuits using memristors by integrating both time and space
dimension. The core method of our design is to use sum of minterms to transfer logic to time sequence by
2T1R memristor arrays. This method is extensible by extending the number of layers to realize multi-bit
arithmetic computing. Remarkably, cascading between different layers is elaborated carefully and pipelines
are adopted tomanage the sequence ofmemristors’ writing and reading and lower the complexity and latency.
In this way, the proposed circuits will be more efficient and can support high data throughout. Based on our
design, 4-bit full adder and 4 × 4 multiplier are designed with pipelines, and n-bit full adders and m×n
multipliers could be easily constructed. The low latency and high efficiency confirm the advantages we have
illustrated and show a promised application prospect.

INDEX TERMS Memristor, logic design, arithmetic computing, crossbar.

I. INTRODUCTION
The complexity of integrated circuits, especially digital inte-
grated circuits, increases at an exponential rate according to
Moore’s law [1]. However, this rate slows down [2] because
of various limiting factors such as difficulties in reducing
the size of silicon-based transistors into subnanometer and
leakage induced by quantum effects at subnanometer scales.
Therefore, new materials and devices are invented to conquer
these difficulties. Among them, nonvolatile memristors and
in-memory computing circuits based on memristors are very

The associate editor coordinating the review of this manuscript and

approving it for publication was Artur Antonyan .

promising candidates. Memristors were first proposed as the
fourth basic element of electronic circuits by L. Chua in
1971 [3]. About forty years later, HP labs announced the
first report of memristors using titanium oxide nanowires [4],
which stimulated the search and development of memristors
and in-memory computing circuits.

Memristors are two terminal resistive devices with switch-
ing dynamics and the ability to remember their states of
resistivity [5]. Abundant works on analog computation using
memristors have been proposed and/or demonstrated [6], [7],
[19]. Meanwhile, there are some previous works on logic
computation using memristors. For example, current existing
design topologies such as Material Implication Memristor

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 104081

https://orcid.org/0009-0009-2024-687X
https://orcid.org/0000-0001-7332-6704
https://orcid.org/0000-0002-8081-2919
https://orcid.org/0000-0001-9880-7002
https://orcid.org/0000-0002-4192-5291


W. Zhu et al.: Cascade and Extensible In-Memory Arithmetic Computing in 2T1R ReRAM Arrays

FIGURE 1. Basic structure of Time-Sum-Logic:(a) The complementary
control signals of different layers. (b)Topology of different operations.

Logic (IMPLY) [8], Memristor Ratioed Logic (MRL) [9],
Memristor-Aided Logic (MAGIC) [10], CMOS/Memristor
Threshold Logic [11], CMOS-like Memristor Comple-
mentary Logic [12], Parallel Input-Processing Memristor
Logic [13], ratioed logic in ReRAM [14], [15], [30] have
been proposed. IMPLY adopts material implication to replace
Boolean logic because of the nonvolatile property of mem-
ristors. Whereas, MRL makes use of the linear resistive
property of memristors to perform logic functions. MAGIC,
however, stores results in memristors, which is different from
other designs. CMOS/Memristor Threshold Logic alsomakes
use of resistivity but from a different angle which is more
like analog computation. Inspired by CMOS technology and
Boolean logic, CMOS-likeMemristor Complementary Logic
replaces MOSFET with memristors in traditional digital
circuits. Parallel Input-Processing Memristor Logic makes
use of the conduction of memristors to compute in parallel.
We notice that redundant transistors and memristors can
be used in these strategies, which may be difficult when
integrating them into large-scale circuits.

Recently, several works [14], [15], [16], [17] have been
reported to perform logic operation in ReRAM with exter-
nal circuits. The basic operations of these works are based
on NOR gate, and flip-flops work as buffers for the pur-
pose of cascading. Several considerations like variability and
endurance of memristors are also discussed in those works.
We find that the basic logic operation types of the work above
are limited and several logic operations need multistep to be
achieved, which can be a limiting factor when integrating
large-scale logic circuits to memristor arrays. By the way,
each operation needs a flip-flop to hold the output, which can
consume extra components.

In this paper, we propose a novel approach named ‘Time-
Sum-Logic’ to do logic computation using memristors which
integrates both the time and space dimensions of circuits.
The time dimension is that, unlike the traditional CMOS
circuits or some previous work, in our design, the logic
outputs are indicated by the control voltage sequence of the
accessing transistors. By changing the sequence of control
voltage, different logic operations can be implemented with
the same data, which overcomes the limiting factor of works
above and is beneficial for data-reusing. Pipelines can also
be adopted in the design process, which increases the effi-
ciency and decreases the complexity of circuits and sequence
significantly. Considering the background of big data in the
modern information technology, data-reusing and pipelines in
the very underlying levels of circuits can promote the speed
and the power factors of modern processors. More details of
time dimension are illustrated carefully in section II. Moving
to the space dimension, we illustrate how tomap the proposed
sequence to a real memristor array. The basic unit structure
we use is a combination of two transistors and one mem-
ristor (2T1R) which differs from traditional 1T1R structure
[14], [15]. 2T1R structure adds another output by adding
one more transistor comparing to 1T1R structure. As we
will show, this delicate change will increase the efficiency
of logic operations and will make full use of the memristors.
In the last part of the paper, we design a 4-bit full adder.
The comparisons with some prior works are given, too. The
total number of electronic components are fewer by using
our design compared with previous works [21], [22] with
low latency under the sense of pipelines. Based on the adder,
we further design a 4∗4multiplier, with the pipelines adopted.
Comparing with previous works [25], we find that the com-
ponents of our proposed multiplier can increase significantly
when data bits go up, but the delay will remain the same.
The ignorable latency and less complexity under the sense of
pipelines demonstrate the huge application prospect towards
building modern processors.

II. THE DESIGN PRINCIPLE: TIME-SUM-LOGIC
A. GENERAL IMPLEMENTATION OF TIME-SUM-LOGIC
As the first application circuits of memristors, the stateful
logic is partially operating in the time dimension [18], which
indicates that the logic operation using memristors may at
least partially be organized in the time dimension. In our
design, especially cascading between different layers, is oper-
ated complementary in the time dimension. In this section,
we will discuss different operations over time while the space
dimension will be elaborated in the next section.

As Fig. 1(a) shows, in our design, the ideal bitcell is two
complementary memristors. Multiple bitcells of memristors
can be grouped as a so-called layer. The basic operations
of each layer are storing and computing. Cascaded layers
share the complementary period of operations. Taking two
layers for instance, in period i, the storing operation of layer 1
is carried out, which is meanwhile the computing period

104082 VOLUME 12, 2024



W. Zhu et al.: Cascade and Extensible In-Memory Arithmetic Computing in 2T1R ReRAM Arrays

of layer 2. While in period ii, the logic output of layer 1
is computed, and transported to the cascaded memristor of
layer 2 as layer 2 is in the storing period. It is worth noting
that the storing and computing operations of two cascaded
layers ‘rotate’, meaning that the computing period of the
last layer is almost the storing period of the next layer and
vice versa. Note that delay between different layers accumu-
lates only if these layers work at the same time. However,
in our work, cascaded layers share complementary working
time (computing period). Owing to this, computing delay in
different layers will not add up, which is of much benefit
to large-scale circuits. Moreover, this also enables pipelines
to be implemented between different layers, which will be
illustrated in the next subsection. Next, topologies of different
operations in the same layer will be discussed.

As shown in Fig. 1(b), when a layer is in its storing period,
the logic input is stored in two contiguous memristors instead
of just one memristor, which are ‘complementary’. This a
difference from prior work [8], [9], [10], [14], [15], [16],
which may seem to ‘waste’ some memristors. But this is
actually a trade-off, meaning that we use more memristors to
store the same data, but both the input data and its inversion
are stored. As we will see later, such storing operation can
help generate minterms more conveniently in the computing
period. Another notable point is that in our design, logic ‘1’
is stored as high resistance (HRS), whereas logic ‘0’ is stored
as low resistance (LRS), which is another difference from
some previous work [10], [14], [15], [16]. Considering the
nonvolatile and polarity property of memristors, the mem-
ristor with the top electrode connecting to the ground stores
the logic input itself, whereas the complementary memristor
stores its inversion, respectively.

When entering the computing period, the whole structure is
‘inverted’ for the purpose of parallelism as can be seen from
Fig. 1(b). Themethod to achieve this topology transformation
will be illustrated in the next section. After that, a relatively
small computing voltage called Vcom will be applied to this
structure through a peripheral circuit. The voltage should be
chosen carefully here because the state of memristors should
not be changed in the computing period. Meanwhile, the
resistance R1 chosen here must be much lower than Roff (the
higher impedance of the memristor) but much higher than
Ron (the lower impedance of the memristor). Only with the
proper voltage and resistor chosen here, can the Time-Sum-
Logic be performed. To show the details of computing, here
we take the three-inputs logic operation for example. In the
computing period, three memristors or less are connected to
Node B. It is obvious that only when the three memristors are
all in the state of high resistance, can the memristor array has
high resistance: Roff/3, which is much higher than R1. The
output voltage B, or the ‘precursor’ of the output of this layer,
is given by the formula below in this situation.

VB =

VcomRoff
3

Roff
3 + R1

≈Vcom (1)

FIGURE 2. Cascading process of Time-Sum-Logic: (a)details of different
periods of two cascaded layers. The y axis represents the different
operations (b) Different Subperiods of Cascading operation of layer 2.

On the contrary, however, if one of (or some of) the mem-
ristors is in the state of low resistance, the ‘precursor’ of the
output will be given by the formula below.

VB≈
VcomRon
Ron + R1

≈ 0 (2)

It is obvious that the operation here is actually a voltage
divider, and several works have taken the similar idea to
implement logic previously [14], [15], [16]. However, except
we invert the way of connecting the memristor to the divider,
the main difference here is that we enable the dynamic con-
nection to voltage divider by changing the control voltage.
As we will explain below, this change enables the general
way of expressing logic function, i.e. sum of minterms to
be implemented to the sequence, as well as the cascading
between different layers. We believe this is a novel way of
designing logic circuits based on memristor arrays.

The output of the voltage divider, or the ‘precursor’ of
the output voltage will be then amplified to be enabled to
change the state of the cascaded memristor of the next layer
as an input if it is nonzero. In the next period, the cascaded
memristor will participate in the computing period of the next
layer as an input.

As we mentioned above, HRS corresponds to logic ‘1’,
whereas LRS corresponds to logic ‘0’. According to the
discussion above, only when the logic variables of the mem-
ristors are all ‘1’, can the output be high voltage, whichmeans
that we have generated the logic AND of three inputs. Com-
pared with the operation NOR used in some relative works,
like [14], this AND operation can be seen as a complementary
function, because in these works, HRS represents logic ‘0’.
Recall that we use two complementary memristors to store
the same data, meaning that both the data and its inversion
are stored. Thus, we can generate any minterm (i.e. logic
AND) of these inputs by changing the memristors connected

VOLUME 12, 2024 104083



W. Zhu et al.: Cascade and Extensible In-Memory Arithmetic Computing in 2T1R ReRAM Arrays

FIGURE 3. Summary of Time-Sum-Logic. The cascading period
corresponds to the computing period of layer 1. Control signals: storing,
refresh and computing of layer1 and 2 are generated by external circuits.

to the external circuit. For instance, if we want to generate
ĀBC under the condition of three input logic circuits, we can
choose memristors of variables Ā, B, and C to be connected
to the voltage divider. But in most cases, the logic output
is the sum of minterms. In traditional CMOS circuits, this
operation can be realized by adding a multiple input OR
gate. This will introduce delay because the delay will accu-
mulate as the cascaded layers become more. To overcome
this weakness, the operation of sum, or logic ‘OR’ in our
design, however, is executed in the time dimension (Time-
Sum-Logic). In brief, we connect different memristors in
different subperiods of computing period dynamically, and
the output in different subperiods can be summed up by the
same memristor of the next layer owing to the non-volatile
property of memristor. The details are shown in Fig. 2. Taking
two cascaded layers for instance, the storing period of the
layer 2 can be divided into two sub-periods, in the refresh
subperiod, a negative voltage is applied to the cascaded
memristor, which will then have the low resistance (with its
reversion high). This operation generates logic ‘0’ of the logic
output. In the subperiod of ‘storing’, which corresponds to
the computing period of the last layer1, the combination of
computed memristors in layer1 is changed on the basis of the
logic expression in the form of minterms. If one of (or some
of) the minterms is true, the high voltage generated by the
last layer1, will be applied to the cascaded memristor and it
will be changed to high impedance (with its reversion low).
If none of the minterms is true, the cascaded memristor will
remain low impedance (logic ‘0’) because of its nonvolatile.
In this process, we separate the generation of logic ‘0’ and
logic ‘1’ in the time dimension. Here is an example of the
whole process. Assuming that the logic expression is ABC +

ĀB̄C, memristors of logic variables ‘A’, ‘B’, and ‘C’ should
be computed first, while memristors of logic variables Ā, ‘B̄’,
and ‘C’ will be computed then. The order of computation
usually should be considered carefully, and the reason will be
illustrated in the next section. After all the minterms (here are
ABC and ĀB̄C) have been computed, the state of the cascaded

FIGURE 4. Basic structure of pipelines of memristor arrays. The square
shown in the figure is one set (layer) of memristors. The circle represents
the buffer. The whole structure is under the control of two complementary
signals {ctrl-A, ctrl-B} which are generated by the control unit.

memristor will store the result owing to its nonvolatile and
participate in the computation of next layer. As a general way
of representing logic function, any combinational circuits can
be expressed in the form of sum of minterms, meaning that
any logic expression can be realized by Time-Sum-Logic
without any transformation. Because of the above reason,
compared with prior works [8], [14], our work is more flexi-
ble and extensible.

In Fig. 3, we summarize our design briefly. Again, the core
insight here is that we separate the generation of logic ‘0’ and
logic ‘1’ in time dimension by dynamic connections between
memristor arrays and voltage dividers. Logic ‘0’ is generated
first. Sum of minterms is organized in different subperiods
of the following computing period and the logic state of the
cascadedmemristor can be overwritten to logic ‘1’ if and only
if the logic output is true. In the next subsection, pipelines will
be introduced to the design flow, with the core conception and
insight illustrated here.

B. PIPELINES IN TIME-SUM-LOGIC
In this subsection, we will discuss how to apply pipelines
in our design methodology and show the advantages of such
design consideration. In the beginning, we want to point out
that pipeline technology is the core technology to improve
the efficiency in our design, and a natural application of the
nonvolatile property of memristor. Prior works [8], [9], [10],
[14], [15] consider little about this technology, which may
result in the waste of the excellent characteristics of mem-
ristors and decrease the efficiency of computing. Another
advantage of pipelines is that the complexity of both circuits
and sequence will decrease because the complex work will
be decomposed into several simple tasks. Moreover, delay
through these pipelined tasks will not accumulate as illus-
trated in the last subsection, so pipeline can be seen as an
effective way to eliminate latency in large scale circuits.

The basic structure of pipelining in Time-Sum-Logic is
shown in Fig. 4. Every memristor in our design can be both
seen as a computing processor and a pipeline register. The
resistive property of memristor corresponds to the ability of
computing and the nonvolatile property corresponds to the
pipeline register. In the last subsection, we have discussed the
different periods of operation of the same layer and cascading

104084 VOLUME 12, 2024



W. Zhu et al.: Cascade and Extensible In-Memory Arithmetic Computing in 2T1R ReRAM Arrays

between two layers. With more layers being added to the
general design flow, one can easily find that there are only
two sets of control signals on the whole because the cascaded
layers share two complementary operation periods, which can
be marked as ctrl-A and ctrl-B. Owing to this, the complexity
of generating gate voltage signals of transistors(switches) will
reduce greatly. Moreover, as we have mentioned in the last
subsection, the storing stage and computing stage of two
continuous layers rotate, which means that when layer1 is
in the computing period, layer2 is in the storing period, and
layer 3 is in the computing layer just as layer1. Extending this
conclusion, one can easily find that the Odd layers share the
same period of computing and storing, and even layers share
the complementary period as well. Thus, after one whole
period of storing and computing, there will be N outputs of
different inputs, here N is the number of memristor layers.
These N outputs are parallel under the sense of pipelines
and can be used in other external circuits if they share the
same set of control signals {ctrl-A, ctrl-B}. However, it can
be seen that the core problem in our memristor pipelines is
the sequence match. Data inputs of the same output must be
generated at the same time, meaning that not only the same set
of control signal should be adopted to these input memristor
layers, but the pipeline delay of different input layers should
keep same. To realize sequence match, buffers are introduced
to our structures. Here, we use one memristor as a buffer,
it stores whatever signals transported from the last layer, and
transport the output unconditionally in its computing period.
With buffers used, we can change the set of control signals
and the pipeline delay of the intermediate data, which enables
us to control the pipeline manually. To build a deeper and
more practical understanding of this subsection, case study,
namely a multiplier is illustrated in section IV.

III. PROCESS OF TIME-SUM-LOGIC
Recently, many memristor crossbar circuits have been
built [6], [7], [27], [28], among all these structures, 1T1R
configuration is a very promising structure that enables exter-
nal circuits to access each memristor independently. In this
section, to realize Time-Sum-Logic, a novel configuration
called 2T1R is built. Comparing with the existing 1T1R
structure, 2T1R adds one more transistor above one of the
electrodeswithout any other changes, which enables our logic
circuit compatible with the existing crossbars. To implement
arithmetic computing on 2T1R parallelly, we design a cross-
bar based on 2T1R, as shown in Fig. 5(a). As can be seen from
this subfigure, we bind two dual 2T1R (the electrodes added
transistors are different) together as a bitcell. Two transistors
from different memristors are connected with one wire and
the remained two are connected by another. The third wire
connects two electrodes without transistors. Compared with
the traditional crossbar bitcell. two memristors are used to
store the data and its inversion, which is redundant in some
ways. To make full use of memristors, we add another wire
for each bitcell to add one more output. After combining
these bitcells, the crossbar can be utilized to realize the

FIGURE 5. Proposed 2T1R crossbar structure: (a) Fundamental 3D model
(b) Topology of storing period (c) Topology of computing period.

proposed logic operation, here are the working details: In
period i (storing) we discussed previously, wire A and wire B
will be connected to the ground. wires Ci will be connected
to corresponding logic inputs, including the refresh signal,

VOLUME 12, 2024 104085



W. Zhu et al.: Cascade and Extensible In-Memory Arithmetic Computing in 2T1R ReRAM Arrays

TABLE 1. The truth table of one-bit full adder.

which is illustrated in Fig. 5(b). Under this topology, input
signals can both change the state of two dual memristors and
different inputs can be applied to different dual memristor
pairs parallelly, which is important to reduce delay when
there exist multiple inputs. In period ii (computing), however,
wires Ci are connected to the ground, while wire A and B
will be connected to different external circuits respectively
to compute different logic functions, which is illustrated by
Fig. 5(c). Under this topology, wire A and B can access a
certain memristor and its dual individually, which bring the
possibility of increasing efficiency. It is worth noticing that
in our design, the logic function is implemented by Sum
of minterms. Although the order of minterms in the logic
function doesn’t count, when we want to compute two logical
functions parallelly, the relative order of minterms in two
logic functions makes sense because the order of minterms
represents the computing order of different memristor com-
binations. If the same memristor is computed by two wires
at the same time, the output will be the same. For instance,
if wire A is processing ‘ABC’, while wire B is processing
‘AB̄C̄’. It is obvious that these wires are connected to each
other through memristor A, which will make outputs con-
fused. Thus, the computing sequence of two different wires
must be complementary, meaning that if wire A is generating
minterm ABC, wire B can only generate its bitwise NOT
minterm, which is ĀB̄C̄. If the logic function associated with
wire B doesn’t contain the bitwise NOT minterm of wire A,
wire B should be connected to the ground.

Taking one-bit full adder for example, the outputs are
given by the formulas below. According to the truth table
given by Table 1, one possible computing sequence is
illustrated in Fig.6.

Si = AiB̄iC̄i + ĀiBiC̄i + AiBiCi + ĀiB̄iCi (3)

Ci+1 = AiBi + AiB̄iCi + ĀiBiCi (4)

As illustrated in Fig. 6, computing periods of each layer
are divided into 4 subperiods. In each subperiod, different
transistors are turned on, and different topologies are imple-
mented as shown in the figure. As what we expect, two
parallel outputs Si and Ci+1 are generated through the 2T1R

FIGURE 6. One possible computing sequence of one-bit full adder:
(i) Subperiods of computing (subperiods of operation ‘or’) (ii) Topology of
subperiod a (iii) Topology of subperiod b (iv) Topology of subperiod c
(v) Topology of subperiod d.

memristor array at the same time, which increase the effi-
ciency of computing greatly.

The core insight of this 2T1R crossbar is that we enable
topology change in different periods and the ability of access-
ing every memristor in different subperiods in the period of
computing. However, this relies on the accurate control by
the peripheral circuits. These circuits may cost a lot when
the number of input increases and when the logic expression
contains too many minterms, which may be a limiting factor
in the practical circuits. Further works may be explored to
focus on this control circuit issue.

Besides, compared with traditional MPU, a very important
insight into Time-Sum-Logic is that the storing and comput-
ing procedures are carried out in the same place, with logic
functions processed in different periods. The storage and

104086 VOLUME 12, 2024



W. Zhu et al.: Cascade and Extensible In-Memory Arithmetic Computing in 2T1R ReRAM Arrays

FIGURE 7. Proposed 4-bit full adder design implemented by Time-Sum-
Logic: Diagram of 4-bit full adder built by four one-bit adders.

process units of data are separated in traditional MPU, which
is one of causes of ‘Memory Wall’. Furthermore, a specific
process unit corresponds to a specific logic function, which
cannot be changed once produced. On the contrary, Time-
Sum-Logic is programmable, and the same data can be reused
for different logic functions without being moved, which is of
great meaning to eliminate ‘Memory Wall’.

IV. FUNDAMENTAL OPERATIONS OF ARITHMETIC:
DESIGN AND SIMULATION
A. FOUR-BIT FULL ADDER
In this subsection, a 4-bit full adder is built in spice based
on the previously illustrated principles. The memristor sim-
ulation model is used according to [20]. As shown in Fig. 7,
a four-bit full adder is divided to four cascaded one-bit adders
for the purpose of pipelines. A0 to A3 represents the first
four-bit input of the adder and B0 to B3 represents the second.
C0 represents the carry input; S0 to S3 represents the output
of the adder, and C3 represents the carry output. The control
signal is complementary between two close layers. Thus, the
whole adder only needs two different sets of control signals
which lowers the cost of generating control signals as we
have discussed before. There exists prior work on the driving
circuit [29] and the generation of control signals is beyond
the scope of our discussion. Thus, to simulate and verify
the function of the four-bit full adder, we use ideal voltage
sources in spice to represent the control signals.

The simulation results are shown in Fig. 8. Here, we set
A as ‘0010’, B as ‘1101’, and carry input as 1. The result
shown in Fig. 8 is ‘10000’, which is exactly the true result. It is
worth pointing out again that the 4-bit full adder is actually
decomposed into four 1-bit full adders under the sense of
pipelines, and in after each period of storing and computing,
there will be 5 ‘parallel’ outputs of different input. As a result,
the efficiency increases, the total latency decreases, and more
important, the complexity of circuits and sequence are lower
as we expect. Moreover, the method can be extended to any
n-bit adder by adding more one-bit adders in pipelines with
all the advantages above.

In Table 2, based on the results shown in [21] and [22],
we compare the cost of transistors and memristors in this

FIGURE 8. Outputs of the proposed 4-bit adder: The complementary color
(i.e. green and blue) represents the pipelined outputs, which are
generated in different periods as circled. The control signals are
generated by external circuits.

TABLE 2. Comparison of different 4-bit CLA.

work and previous 4-bit full carry-lookahead adders, con-
sidering the ‘parallel’ property of our work which has been
explained above. The result shows fewer transistors and
memristors are required in this work with all the advan-
tages illustrated before. We notice that the peripheral control
circuits are ignored in the comparison similar as previous
works [8], [9], [10], [11], [12], [25]. However, as we pointed
out in section III, the peripheral circuits may be big and cost
lots of transistors, so in a practical situation, maybe only
fewer memristors can be achieved. In summary, this 4-bit
full adder works parallelly and efficiently with little ignorable
delay and costs fewer memristor components, which is of big
application potential.

B. 4 × 4 MULTIPLIER
Multiplication is a core operation in many areas such as
signal processing, 3D graphics, and image processing [23].
Multiplies consume significant power and area, which is
a tremendous problem in VLSI [24]. Several works have
been proposed to design multipliers based on IMPLY [25],
MAD [25], and MRL [26]. Although all these works have
been optimized, there exists some space for improvement.
For example, when the multiplier is designed by IMPLY or
MAD, latency which is proportional to the number of input
bits exists even when adopting pipelines to reduce [25]. This
can be a serious issue when integrating them into large-scale
circuits. Furthermore,MRL relies on linearmemristors which
is slower than threshold-type memristors, and the applied

VOLUME 12, 2024 104087



W. Zhu et al.: Cascade and Extensible In-Memory Arithmetic Computing in 2T1R ReRAM Arrays

FIGURE 9. Workflow of 4∗4 multiplier, the squares in the figure represent
one-bit adders and the circles represent buffers. The black arrows show
the data flow through different one-bit full adders and indicate latency.
The red arrows represent the input data.

voltage affects the performance of circuits greatly. To opti-
mize multipliers designed by memristors, in this subsection,
we will illustrate a novel way of designing an M∗N Braun
multiplier based on Time-Sum-Logic.

In general, we design Braun multipliers by adders. The
basic workflow is shown in Fig. 9. Pipelines are used in our
design, so the proposed multiplier achieves high throughput
performance and multidigit parallel output. The squares in
the figure represent one-bit adders and the circles represent
buffers. The black arrows show the data flow through dif-
ferent one-bit full adders and indicate delay in the pipeline.
The red arrows represent the input data. Note that the input
data used in this multiplier is the logic and of different bits of
the multiplicand and the multiplier, which can be generated
previously. Moreover, the data should be inputted delicately
in different periods and meet with the sequence of the data
flowing through adders.

Taking 4 × 4 multiplier for example, generally, the output
will have eight bits. Assuming the inputs are A3A2A1A0
and B3B2B1B0, the output is P7P6P5P4P3P2P1P0. P0 is
the logic and of A0 and B0, and other bits of the output
can be computed as the figure shows. For instance, if we
want to compute P4, three inputs should be given as shown
in Fig 9. They are the carry output of adder 1, the sum
output of adder 2, and one external input. The carry output
of adder 1 and the sum output of adder 2 are computed at
the same time as can be seen in Fig 9, and if the input given
by external circuits is A1 and B3 at this time, P4 will be
computed correctly. It is worth pointing out again that 4∗4
multiplier will generate 8 bits of data in one period parallelly,
but these data correspond to different inputs because the
proposedmultiplier is based on pipelines.Moreover, owing to
the extensibility and flexibility of Time-Sum-Logic any m×n
multiplier can be constructed by adding the number of adders
in the line in Fig. 9 to n and changing the number of lines to
m-1 in pipelines.

The 4×4 Braun multiplier simulation results are shown in
Fig. 10. To simplify the simulation, we use voltage sources to
replace the input data. The inputs are set as 1011 and 1111,

FIGURE 10. Simulation results of the proposed 4∗4 multiplier. The
complementary color (i.e. green and blue) represents the pipelined
outputs, which are generated in different periods as circled. The control
signals are generated by external circuits.

TABLE 3. Delay and area comparison of different multipliers.

and the different bits of output are generated at different
points in time, the final higher 7 bits of result are 1010010 as
marked in the figure.

An advantage of pipelining is that it can promote the
efficiency greatly. Taking the N×N multiplier for instance,
it needs 15N-20 steps (we take single subperiod in the com-
puting period as one step to show the advantage) to get the
first full output. However, it only needs five steps to get each
remaining output. Assuming that there are R outputs needed
to be computed, the average delay is (15N-25+5R)/R. As R
goes bigger, this delay will eventually approach 5. Compared
with the prior works [25] as shown in Table 3, if R is bigger
enough and if N is greater than 1 (which is reasonable in
practice), the latency of our proposed multiplier is the least.
In summary, our proposed multipliers use more components,
but can compute with ignorable fixed latency under the sense
of pipelines, if the number of required outputs is big. This
is because the adders in our design are either storing data or
computing without idling owing to pipelines. The continuous
operation of every memristor ensures the high efficiency of
our design. The memristors used here are also threshold-type,
which have less delay than the memristors in MRL [26]. And
the delay accumulates between layers in MRL, which can be
a problem when the scale of circuits becomes larger.

104088 VOLUME 12, 2024



W. Zhu et al.: Cascade and Extensible In-Memory Arithmetic Computing in 2T1R ReRAM Arrays

In summary, the proposed Braun multiplier is built by
adders under the sense of pipelines. Due to the cascade of
our circuits, the parallel outputs and the constant ignorable
delay illustrate the high efficiency and the huge application
prospects of Time-Sum-Logic.

V. CONCLUSION
In this work, a novel logic computation methodology (Time-
Sum-Logic) using 2T1R memristor arrays is proposed. The
basic principle, the idea of pipelines and data reusing are illus-
trated carefully to decrease the latency and complexity and
increase the efficiency and flexibility. Moreover, classic com-
binational circuits like adder and multiplier are designed with
considerations based on the methodology. The demonstration
of 4-bit full adders shows the low cost, high efficiency and
low latency of our design. Modifying this 4-bit full adder and
4 × 4 multiplier were designed, confirming the flexibility of
our methodology. Due to the cascade ability n-bit full adders
and m×n multipliers could be easily constructed. The ignor-
able delay, parallel output and high efficiency demonstrate
the great potential to design higher performance processors
with 2T1R ReRAM arrays in the very fundamental layer.
With the general principle illustrated in our work, complex
combinational logic circuits and sequential logic such as
flip-flops can be designed, which is of remarkable application
prospects.

REFERENCES
[1] G. E. Moore, ‘‘Cramming more components onto integrated circuits,’’

Proc. IEEE, vol. 86, no. 1, pp. 82–85, Jan. 1998.
[2] T. N. Theis and H.-S. P. Wong, ‘‘The end of Moore’s law: A new beginning

for information technology,’’ Comput. Sci. Eng., vol. 19, no. 2, pp. 41–50,
Mar. 2017.

[3] L. Chua, ‘‘Memristor—The missing circuit element,’’ IEEE Trans. Circuit
Theory, vol. CT-18, no. 5, pp. 507–519, Sep. 1971.

[4] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, ‘‘The miss-
ing memristor found,’’ Nature, vol. 453, no. 7191, pp. 80–83, May 2008.

[5] I. Vourkas and G. C. Sirakoulis, ‘‘Emerging memristor-based logic circuit
design approaches: A review,’’ IEEE Circuits Syst. Mag., vol. 16, no. 3,
pp. 15–30, 3rd Quart., 2016.

[6] Z.Wang et al., ‘‘Fully memristive neural networks for pattern classification
with unsupervised learning,’’ Nature Electron., vol. 1, no. 2, pp. 137–145,
Feb. 2018, doi: 10.1038/s41928-018-0023-2.

[7] P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, J. J. Yang, and
H. Qian, ‘‘Fully hardware-implemented memristor convolutional neu-
ral network,’’ Nature, vol. 577, no. 7792, pp. 641–646, Jan. 2020, doi:
10.1038/s41586-020-1942-4.

[8] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart,
and R. S. Williams, ‘‘‘Memristive’ switches enable ‘stateful’ logic oper-
ations via material implication,’’ Nature, vol. 464, no. 7290, pp. 873–876,
Apr. 2010.

[9] S. Kvatinsky, N. Wald, G. Satat, A. Kolodny, U. C. Weiser, and
E. G. Friedman, ‘‘MRL—Memristor ratioed logic,’’ in Proc. 13th Int.
Workshop Cellular Nanosc. Netw. Appl., Aug. 2012, pp. 1–6.

[10] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Fried-
man, A. Kolodny, and U. C. Weiser, ‘‘MAGIC—Memristor-aided logic,’’
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 11, pp. 895–899,
Nov. 2014.

[11] L. Gao, F. Alibart, and D. B. Strukov, ‘‘Programmable CMOS/memristor
threshold logic,’’ IEEE Trans. Nanotechnol., vol. 12, no. 2, pp. 115–119,
Mar. 2013.

[12] I. Vourkas and G. C. Sirakoulis, ‘‘Memristor-based combinational circuits:
A design methodology for encoders/decoders,’’Microelectron. J., vol. 45,
no. 1, pp. 59–70, Jan. 2014.

[13] G. Papandroulidakis, I. Vourkas, N. Vasileiadis, and G. Ch. Sirakoulis,
‘‘Boolean logic operations and computing circuits based on memristors,’’
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 12, pp. 972–976,
Dec. 2014.

[14] M. Escudero, I. Vourkas, A. Rubio, and F. Moll, ‘‘Memristive logic in
crossbar memory arrays: Variability-aware design for higher reliability,’’
IEEE Trans. Nanotechnol., vol. 18, pp. 635–646, 2019.

[15] C. Fernandez and I. Vourkas, ‘‘ReRAM-based ratioed combinational cir-
cuit design: A solution for in-memory computing,’’ in Proc. 9th Int. Conf.
Modern Circuits Syst. Technol. (MOCAST), Sep. 2020, pp. 1–5.

[16] C. Fernandez and I. Vourkas, ‘‘Reliability-aware ratioed logic operations
for energy-efficient computational ReRAM,’’ in Proc. IFIP/IEEE 30th Int.
Conf. Very Large Scale Integr. (VLSI-SoC), Oct. 2022, pp. 1–6.

[17] D. Bhattacharjee, L. Amaru, and A. Chattopadhyay, ‘‘Technology-aware
logic synthesis for ReRAM based in-memory computing,’’ in Proc.
Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2018, pp. 1435–1440.

[18] D. S. Jeong, K. M. Kim, S. Kim, B. J. Choi, and C. S. Hwang, ‘‘Memristors
for energy-efficient new computing paradigms,’’ Adv. Electron. Mater.,
vol. 2, no. 9, Sep. 2016, Art. no. 1600090.

[19] X. Zhang, A. Huang, Q. Hu, Z. Xiao, and P. K. Chu, ‘‘Neuromorphic
computing with memristor crossbar,’’ Phys. Status Solidi, A, vol. 215,
no. 13, Jul. 2018, Art. no. 1700875, doi: 10.1002/pssa.201700875.

[20] V. Mladenov, S. Kirilov, and I. Zaykov, ‘‘A general model for metal oxide-
based memristors and application in filters,’’ in Proc. 11th Int. Conf.
Modern Circuits Syst. Technol. (MOCAST), Jun. 2022, pp. 1–4.

[21] G. Liu, L. Zheng, G. Wang, Y. Shen, and Y. Liang, ‘‘A carry lookahead
adder based on hybrid CMOS-memristor logic circuit,’’ IEEE Access,
vol. 7, pp. 43691–43696, 2019.

[22] A. H. Shaltoot and A. H. Madian, ‘‘Memristor based carry lookahead
adder architectures,’’ in Proc. IEEE 55th Int. Midwest Symp. Circuits Syst.
(MWSCAS), Aug. 2012, pp. 298–301.

[23] J.-Y. Kang and J.-L. Gaudiot, ‘‘A simple high-speed multiplier design,’’
IEEE Trans. Comput., vol. 55, no. 10, pp. 1253–1258, Oct. 2006, doi:
10.1109/TC.2006.156.

[24] J.-T. Yan and Z.-W. Chen, ‘‘Low-power multiplier design with row and
column bypassing,’’ in Proc. IEEE Int. SOC Conf. (SOCC), Sep. 2009,
pp. 227–230, doi: 10.1109/SOCCON.2009.5398054.

[25] L. Guckert and E. E. Swartzlander, ‘‘Optimized memristor-based multipli-
ers,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 64, no. 2, pp. 373–385,
Feb. 2017, doi: 10.1109/TCSI.2016.2606433.

[26] S. Baek, J. K. Eshraghian, S.-H. Ahn, A. James, andK. Cho, ‘‘Amemristor-
CMOS braun multiplier array for arithmetic pipelining,’’ in Proc. 26th
IEEE Int. Conf. Electron., Circuits Syst. (ICECS), Genoa, Italy, Nov. 2019,
pp. 735–738, doi: 10.1109/ICECS46596.2019.8964710.

[27] F. Cai, J. M. Correll, S. H. Lee, Y. Lim, V. Bothra, Z. Zhang, M. P. Flynn,
and W. D. Lu, ‘‘A fully integrated reprogrammable memristor–CMOS
system for efficient multiply–accumulate operations,’’ Nature Electron.,
vol. 2, no. 7, pp. 290–299, Jul. 2019, doi: 10.1038/s41928-019-0270-x.

[28] J. S. Pannu, S. Raj, S. L. Fernandes, D. Chakraborty, S. Rafiq, N. Cady, and
S. K. Jha, ‘‘Design and fabrication of flow-based edge detection memristor
crossbar circuits,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 5,
pp. 961–965, May 2020, doi: 10.1109/TCSII.2020.2984155.

[29] C. Fernandez, I. Vourkas, and A. Rubio, ‘‘Design and simulation of periph-
eral driving circuitry for computational ReRAM,’’ in Proc. 37th Conf.
Design Circuits Integr. Circuits (DCIS), Nov. 2022, pp. 1–6.

[30] C. Fernandez, A. Cirera, and I. Vourkas, ‘‘Design exploration of threshold
logic in memory and experimental implementation using knowm memris-
tors,’’ Int. J. Unconventional Comput., vol. 18, pp. 249–267, Jan. 2023.

WEI ZHU is currently pursuing the B.S. degree
in electronic information engineering with Xidian
University, Xi’an, China. His research interests
include in-memory processing and memristor-
based logic circuits design.

VOLUME 12, 2024 104089

http://dx.doi.org/10.1038/s41928-018-0023-2
http://dx.doi.org/10.1038/s41586-020-1942-4
http://dx.doi.org/10.1002/pssa.201700875
http://dx.doi.org/10.1109/TC.2006.156
http://dx.doi.org/10.1109/SOCCON.2009.5398054
http://dx.doi.org/10.1109/TCSI.2016.2606433
http://dx.doi.org/10.1109/ICECS46596.2019.8964710
http://dx.doi.org/10.1038/s41928-019-0270-x
http://dx.doi.org/10.1109/TCSII.2020.2984155


W. Zhu et al.: Cascade and Extensible In-Memory Arithmetic Computing in 2T1R ReRAM Arrays

YI-XING HE received the B.S. degree fromWuhan
University of Technology, Hubei, China, in 2023.
He is currently pursuing the M.S. degree with
Xidian University, Xi’an, China. His research
interests include antiferromagnetic device and
MRAM-based in-memory processing circuits.

HAO-NAN LI received the B.S. degree fromHebei
University, Hebei, China, in 2023. He is currently
pursuing the M.S. degree with Xidian University,
Xi’an, China. His research interests include mem-
ristor, its manufacture, and memristor-based logic
circuits design.

XIAN-QIN LIU received the B.S. degree from
Xidian University, Xi’an, China, in 2023, where
she is currently pursuing the M.S. degree. Her
research interest includes aluminium nitride-based
memristor device.

SIWEN ZHANG received the B.S. degree from
Xidian University, Xi’an, China, in 2023, where
she is currently pursuing the Ph.D. degree. Her
research interest includes microelectronics in low
temperature.

LEI WANG received the B.S. degree from
Chang’an University, Xi’an, China, in 2021. He is
currently pursuing the M.S. degree with Xidian
University, Xi’an. His research interests include
oxide-based memristor and memristor-based logic
circuits design.

JIANG ZHU received the B.S. degree from
Xidian University, Xi’an, China, in 2022, where
he is currently pursuing the M.S. degree. His
research interests include ferroelectric film and its
manufacture.

YUE-QI WANG received the B.S. degree from
Changsha University of Science and Technology,
Hunan, China, in 2022. She is currently pursuing
the M.S. degree with Xidian University, Xi’an,
China. Her research interests include ferroelectric
film and its manufacture.

JINCHENG ZHANG (Member, IEEE) received
the M.S. and Ph.D. degrees from Xidian Uni-
versity, China, in 2001 and 2004, respectively.
He is currently a Professor with Xidian Univer-
sity. He has authored and co-authored more than
200 journal and conference papers. His current
research interests include wide bandgap semicon-
ductor GaN and diamond materials and devices.

YUE HAO (Senior Member, IEEE) received the
B.S. degree in semiconductor physics and devices
from Xidian University, China, in 1982, and the
Ph.D. degree in computing mathematics from
Xi’an Jiaotong University, Xi’an, in 1990. He is
currently a Professor with the School of Micro-
electronics, Xidian University, and an Academi-
cian with Chinese Academy of Sciences, Beijing,
China.

HAIJIAO HARSAN MA received the bachelor’s
degree in physics from Lanzhou University,
in 2011, and the Ph.D. degree in condensed matter
physics from theNational University of Singapore,
in December 2015. In 2018, he joined Xidian Uni-
versity. His research interests include nonvolatile
memories, such as memrisotrs, ferroelectric mate-
rials, and in-memory computing based on these
novel memories. He was awarded the Most Out-
standing Ph.D. Thesis (Medal Prize) in Singapore

by the Material Research Society of Singapore in 2016. In 2017, he was
awarded the Humboldt Scholar.

104090 VOLUME 12, 2024


