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ABSTRACT Fabric pilling performance is one of the key indicators for evaluating textile quality, but there
is limited research on the effectiveness of pilling detection traceability and non-intrusive monitoring of
detection equipment operating status. In this paper, a multi-source data-driven method for classifying the
working status of fabric pilling performance detection is proposed. This study constructs a real-time non-
intrusive monitoring system for fabric pilling detection in a laboratory environment, collectingmultiple types
of data such as electrical parameters of pilling detection equipment, personnel behavior, and equipment
noise. GoogLeNet convolutional neural network is used to recognize high-dimensional audio data and
achieve feature dimension reduction. By constructing a multi-classification algorithm based on Decision
Tree-Support Vector Machine (DT-SVM) for the pilling detection process, a minimum accuracy of 95.62%
is achieved in practical operation. This system not only perceives the relevant influencing factors of detection
activities without interfering with normal detection activities but also effectively distinguishes various
detection working states, providing new ideas for the effectiveness traceability of pilling detection activities.

INDEX TERMS Non-intrusive monitoring, multi-source data-driven, fabric pilling performance, SVM
multi-classification.

I. INTRODUCTION
As the primary raw material in textile production, fabrics
play a crucial role in determining the quality and comfort
of the final products [1]. With the improvement of living
standards, consumers’ demand for clothing has shifted from
basic functionalities to a deeper pursuit of fabric quality and
tactile sensation [2]. However, the common occurrence of
fabric surface irregularities such as pilling and linting, result-
ing from friction between fibers leading to the formation of
opaque particulate clusters, significantly impacts the visual
appearance, tactile sensation, and durability of fabrics [3].
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Complaints related to fabric pilling and linting account for
as much as 29.51% of total textile quality issues [4], [5],
underscoring the critical importance of fabric pilling and
linting performance in assessing textile quality. Despite the
crucial role of pilling and linting performance assessment
in textile quality, there are still many challenges in current
fabric pilling and linting detection, including susceptibility to
factors such as equipment operation, personnel handling, and
testing environments, as well as a lack of traceability of work
states and non-intrusive diagnostics. Therefore, there is an
urgent need for a comprehensive, accurate, and real-time non-
intrusive monitoring system that integrates multi-source data
analysis to effectively classify and trace the working states of
fabric pilling and linting detection equipment.
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Against this backdrop, this paper focuses on a research
platform in a fabric testing laboratory, incorporating
Non-Intrusive Monitoring (NIM) technology, aiming to
maintain the original state of fabric pilling and linting detec-
tion, reduce subject bias, and enable real-time monitoring [6]
The core of NIM technology lies in obtaining efficient and
precise data for in-depth analysis and decision-making while
minimizing interference with the tested objects [7] In this
study, by adhering to the principles of NIM, we have devel-
oped a real-time non-intrusive monitoring system suitable for
actual laboratory conditions and compliant with international
standard testing requirements, enabling non-destructive mon-
itoring of the entire fabric pilling and linting detection
process. This paper introduces a workflow state classifica-
tion methodology for fabric pilling performance inspection
leveraging multi-source data. The principal contributions of
this approach are summarized as follows:

(1) A comprehensive detection scheme for fabric pilling
performance testing laboratories is proposed, which encom-
passes personnel activities, equipment power consumption,
and instrument operating sounds throughout the inspection
process. A real-time, non-intrusive monitoring system, tai-
lored to the actual laboratory environment and conforming
to standard testing requirements, has been designed. This
system enables the sensing of diverse information related to
inspection activities without interfering with routine testing
procedures.

(2) In light of the varying noise levels inherent in dif-
ferent sensors during practical data acquisition, appropriate
denoising techniques have been employed. To ensure tem-
poral consistency among multiple data streams collected
at disparate frequencies, sliding window approaches and
interpolation techniques have been applied. Of note, audio
data undergoes dimensionality reduction through Short-Time
Fourier Transform (STFT), followed by feature extraction
using the GoogLeNet model.

(3) A DT-SVM model has been established by integrating
threshold classification with SVM classification based on
decision trees. By optimizing the hyperparameters of this
model, a minimum classification accuracy of 95.62% has
been achieved for workflow states.

(4) The integration of multi-source data with the test-
ing process facilitates not only the determination of test
conditions but also the tracing of various parameters dur-
ing operation, thereby ensuring the consistency of tests and
enhancing the credibility of test results.

In summary, this study integrates non-intrusive monitoring
technology with multi-source data analysis to construct a
multi-source data-driven method for classifying the working
states of fabric pilling and linting performance detection.
By implementing detailed monitoring and intelligent clas-
sification during the detection process, it contributes to
enhancing the reliability and accuracy of detection results,
thereby playing a role in advancing the field of textile quality
control technology.

II. RELATED RESEARCH
A. METHODS AND ISSUES IN FABRIC PILLING
PERFORMANCE DETECTION
With the improvement of living standards, the demand for
textile quality is increasing. The pilling performance of fab-
rics is a key indicator in assessing textile quality. However,
in the current field of textile quality detection, there are vari-
ous methods and standards adopted by different countries [8],
[9], such as the ASTM D4970 standard in the United States,
the ISO 12945 series standards in Europe, and the GB/T
4802 standard in China [10]. This necessitates the selection
of appropriate testing standards and methods based on the
destination, type of product, and specific requirements of
buyers. In this study, fabric pilling and linting tests were
mainly conducted using the circular trajectory method and
the pilling box method.

To improve the accuracy of detection reports, Dong [11]
proposed that enhancing the accuracy of fabric pilling
and linting performance evaluation requires strengthening
the management of personnel and detection instruments,
emphasizing environmental control, and strengthening the
management of test results and reports. However, in previ-
ous fabric performance detection experiments, the writing
of experiment records and reports was done by personnel
without sufficient data support, making it impossible to
know the specific conditions during the experiment when
problems occurred subsequently. By introducing a real-time
non-intrusive monitoring system driven by multi-source data,
we conducted detailed testing and analysis of the fabric
pilling and linting detection process of specimens, achieving
comprehensive control over the working status of the detec-
tion equipment and the ability to trace various parameters
during work based on the working states.

B. MULTI-SOURE DATA PROCESSING TECHNIQUES IN
REAL-TIME NIM SYSTEMS
In current technical research, real-time non-intrusive moni-
toring systems have been widely applied in various fields and
have demonstrated advantages in obtaining required informa-
tion without intervening in the original state of the monitored
objects. Li and Dick [12] confirmed the superior performance
of the best algorithm through comparative experiments on
four non-intrusive multi-label classification algorithms using
a real-world household dataset. Additionally, Yin et al.
[13] proposed a non-intrusive load monitoring framework
based on deep convolutional neural networks, which effec-
tively improves the efficiency of appliance state analysis and
residential energy management. These research outcomes
convincingly demonstrate that non-invasive monitoring tech-
nology can accurately handle and analyze multi-modal data
in different industry application scenarios, achieve precise
classification and traceability of equipment working states,
and reflect the vast application prospects of this technology
in the field of textile performance detection.
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In the field of textile testing, monitoring the electrical
parameters, mechanical vibrations, and sound characteris-
tics of equipment during operation can reflect real-time
changes in the testing process, effectively compensating
for the deficiencies of traditional manual recording meth-
ods and improving the accuracy and traceability of test
results. Athanasiadis and Doukas [14] developed a real-
time non-intrusive load monitoring system based on active
power transient response, achieving high computational and
memory efficiency, and accurately identifying equipment
states and energy consumption. Hou et al. [15] developed
the BuMA respiratory monitoring system, which utilizes
microphone arrays, beamforming, and noise cancellation
techniques to improve the accuracy of non-contact audio
signal monitoring in home environments, further demonstrat-
ing the broad application potential of this technology across
domains.

Significant progress has been made in feature extraction
from diverse data sources such as sound characteristics and
electrical parameters, providing a solid foundation for the
classification of fabric pilling and linting performance detec-
tion working states. Munoli et al. [16] effectively enhanced
the accuracy of Visual Question Answering (VQA) sys-
tems by employing multi-scale feature extraction and fusion
techniques to improve image feature representation and text
information portrayal. Singh et al. [17] employ efficient
machine learning techniques to extract acoustic features from
automotive transmission fault data, establishing a systematic
approach to vocal diagnosis of automotive transmission mal-
functions. Morenas et al. [18] applied edge machine learning
techniques to analyze and successfully classify rotor bar
faults in motor current characteristics. These studies demon-
strate the excellent performance of feature extraction from
sound characteristics and electrical parameters in various
application scenarios.

C. DECISION TREE-BASED SUPPORT VECTOR MACHINE
MULTI-CLASSIFICATION ALGORITHM
When selecting a classification model for multi-source data
features captured by real-time NIM systems, SVM has
been widely used in various classification tasks due to
its advantages in handling nonlinear relationships, strong
generalization ability, and interpretability [19]. Zhao et al.
[20] proposed a fabric defect detection method based on
the Pyramid Histogram of Oriented Gradients (PHOG) and
SVM, demonstrating excellent detection, classification per-
formance, and robustness in actual production departments.
Anami et al. [21] compared the performance of SVM and
Artificial Neural Networks (ANN) in fabric image defect
classification and found that the SVMclassifier outperformed
ANN in classification rate. Although SVM has been used in
the textile field for classifying fabric defect images, its appli-
cation in classifying detection process states in the textile
field is also meaningful.

Decision trees, on the other hand, have excellent perfor-
mance in training speed and handling mixed data types [22].

Combining SVM with decision trees can improve prediction
performance and reduce the risk of overfitting on the basis
of their excellent classification performance. Recent research
further demonstrates the advantages of combining SVMwith
decision tree classification algorithms. Rzayeva et al. [23]
demonstrated the precision of decision tree and SVM joint
modeling in predicting local area network equipment failures.
Chen et al. [24] innovatively designed a reverse-merged SVM
classification decision tree structure, achieving excellent
results in power transformer monitoring and fault diagno-
sis. Given this, this study draws on this approach, aiming
to optimize the classification of fabric pilling and linting
performance detection processes by integrating personnel
activities, equipment power usage, and instrument sound data
using the decision tree support vector machine (DT-SVM)
algorithm.

D. CLASSIFICATION METHODS FOR OPERATIONAL STATES
The methods discussed in the referenced literature have
been widely applied and validated in other domains, pro-
viding valuable insights for our research. Drawing upon
the referenced literature, this paper designs and implements
an efficient working-state classification system tailored for
textile inspection laboratories, leveraging NIM techniques.
Inspired by Bo Yang’s comprehensive review on lithium-ion
batteries (LiBs) State-of-charge (SoC) estimation models,
which categorizes six classes with stringent criteria to
guide electric vehicles (EVs) performance assessments, our
approach similarly aims for high precision and reliability in a
different domain. Additionally, Hu Zhengwei’s non-intrusive
BP-Adaboost neural network-based motor operation state
identification technique, which achieves over 96% accuracy,
highlights the potential of non-intrusive methods for high-
fidelity state recognition. This has influenced our choice of
non-intrusive sensing techniques to avoid interference with
the subject under test. Moreover, Yoon et al.’s successful
detection of intricate occupant activities using a non-intrusive
machine learning model augmented with building data has
inspired our use of advanced machine learning models for
precise monitoring. Therefore, we believe that these validated
methods can play a crucial role in enhancing the accuracy and
reliability of our research process and results.

III. RESEARCH METHODS
To address the lack of traceability in fabric pilling and linting
detection experiments and the need for non-intrusive diagnos-
tics, this paper introduces NIM technology into the field of
textile strength testing, constructing a real-time NIM system
tailored for fabric pilling detection in a laboratory environ-
ment. This system collects and processes a large amount of
real-time data on the dynamic operation of detection equip-
ment, including machine power consumption parameters,
equipment operating sounds, and experimental personnel
behavior, to achieve comprehensive control over the working
status of the detection equipment.
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FIGURE 1. Real-time non-intrusive monitoring system.

FIGURE 2. Data flow.

FIGURE 3. Work flow.

A. SYSTEM DESIGN
Given that the internationally recognized flat abrasion
test is the Martindale method instead of the circular

track method, the present study utilized the circular track
method in accordance with the Chinese National Standard
’GB/T 4802.1-2008: Textiles – Evaluation of Fabric Pilling
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Performance – Part 1: Circular Track Method’ [26], whereas
the ball-box method was carried out following the Interna-
tional Standard ’ISO 12945-1-2020: Textiles – Determination
of Fabric Propensity to Surface Fuzzing and Pilling – Part 1:
Pilling Box Method’ [27]. In response, we have devised and
executed a real-time, non-intrusive monitoring system within
the context of an actual laboratory environment and conform-
ing to prescribed testing standards, depicted in Figure 1. This
system continuously collects and processes diverse data sets,
encompassing electrical parameters from machinery, sound
emissions during equipment operation, and the behavioral
actions of the experimenters, thus tackling challenges posed
by voluminous and highly redundant data.

Figure 1 presents the architecture of the real-time, NIM
system that has been assembled. This system incorporates
suitably chosen sensors to collect pertinent data on power
consumption characteristics of the experimental apparatus,
machinery operation noise levels, and staff activities, all of
which undergo initial data filtering and handling on an indus-
trial computer. Datasets from various sensors, each captured
at its specific sampling rate, are amalgamated into several
database tables, including but not limited to a machine work
sound dataset table, a machine power consumption parameter
table, and a human presence radar dataset table.

Thereafter, the data from these tables is transmitted via
LAN to a dedicated model for work condition classifica-
tion analysis. A dedicated working condition classification
model is applied to analyze this accumulated data, with
the instrument’s work states being systematically recorded
against timestamps within the experiment information table.
The experiment information table is linked to the experi-
ment personnel log table through the use of start and end
timestamps, thus facilitating the retrospective investigation
of diverse issues encountered throughout the experiment by
referring to personnel logs, as shown in Figure 2.

In the workflow depicted in Figure 3, experimental data
undergo a series of data processing steps, encompassing data
acquisition and feature extraction stages, culminating in a
detailed classification of the system’s operational states using
a classification model.

The specific procedures are as follows: Raw time-series
data obtained from experiments are initially subjected to
extensive preprocessing within an industrial control com-
puter environment, which includes noise reduction and data
alignment tasks, thereby ensuring the precision and reliability
of the time-series signals during experimentation. Following
this thorough preprocessing, the processed time-series data
is subsequently uploaded to a computational platform for
further analysis.

Given that the DT-SVM model cannot directly classify
audio signals, STFT technology is employed to transform the
audio data into spectrogram representations. Subsequently,
the generated spectrograms are processed using the deep
learning model GoogLeNet to extract discriminative audio
features.

In order to comprehensively represent the system’s oper-
ational status, a sliding window mechanism is utilized to
extract feature vectors from the multi-modal dataset that
reflect changes in the working state after fusion processing.
Ultimately, the derivedmulti-modal operational status feature
vectors are fed into a work condition classificationmodel.The
model, based on the differential attributes of these features,
meticulously categorizes the working states into five distinct
classes: circular track tester change, circular track tester work,
ball box tester change, and different operating states with
either two or four ball-boxes work simultaneously.

B. DATA ACQUISITON
This section describes the testing equipment and monitor-
ing requirements for assessing fabric pilling performance,
encompassing machine Power consumption monitoring,
machine sound detection, and operator behavior monitoring.

1) MACHINE POWER CONSUMPTION MONITORING
To track the power consumption of the machinery in real-time
during the fabric pilling performance test, including param-
eters such as current, voltage, and power, which reflect the
machine’s working condition and provide subsequent data
support, this study employs electrical parameter monitoring.
Referring to the electric parameters during the operation of
the pilling tester, the detection apparatus must cover the range
of voltage, current, and power during the instrument’s func-
tioning, with a voltage measurement accuracy not exceeding
0.1, a current accuracy not exceeding 0.01, and power accu-
racy not exceeding 0.1. According to ‘GB/T 4802.1-2008:
Textiles – Evaluation of Fabric Pilling Performance – Part 1:
Circular Track Method’, the rotational speed is 60±1 revo-
lutions per minute (r/min), and in the ‘ISO 12945-1-2020:
Textiles – Determination of Fabric Propensity to Surface
Fuzzing and Pilling – Part 1: Pilling Box Method’, the drum
speed is 60±2 r/min, implying that the operating frequencies
of both instruments are approximately 1 Hz. Based on the
Nyquist theorem, the sampling frequency should be at least
twice the highest frequency component of the signal, hence,
a sampling rate greater than or equal to 2 Hz is required.

2) MACHINE SOUND DETECTION
The sound frequencies generated by the machine during its
operation can serve as an auxiliary indicator of its working
status. Considering that the sound frequency ranges of the
pilling box and circular track tester are between 100 Hz and
8 kHz, and the primary sound range is 0-3 meters, the sound
sensor used in this system should have a collection range
not exceeding 3 meters. Following the Nyquist sampling the-
ory, the sampling frequency should be greater than or equal
to 16 kHz.

3) OPERATOR BEHAVIOR MONITORING
In the fabric pilling performance testing experiment, mon-
itoring the operators’ behaviors ensures the safety and
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reliability of the tests and provides classification basis for
sample-changing work states. Human radar sensors, com-
pared to other human body sensors, enable non-intrusive,
high-precision human detection and tracking without direct
contact with the target. Given the sensor layout in the labo-
ratory, the distance between the human radar sensor and the
personnel under detection is within 0-1 meter. To meet the
requirement for personnel detection distances, the sensor’s
monitoring range should span 0-1 meter, covering a forward-
facing 180◦ field of view.

C. DATA PROCESSING
1) DATA DENOISING
In the practical process of sensor data acquisition, electrical
parameter sensor data is susceptible to various noise inter-
ferences, while Boolean output signals from human radar
sensors typically do not require filtering treatment. Specif-
ically for electrical parameter sensors, parameters such as
current, voltage, and power measurements can be affected
by electromagnetic noise generated by operating electrical
equipment within the power system.

Drawing inspiration from the noise reductionmethodology
employing the Kalman filter as reported by Yang Zhang and
colleagues in the context of oceanic temperature sensing [30],
this study adapts and applies similar principles to electrical
parameter sensors operating within laboratory environments.
Given that laboratory conditions entail noise profiles that
are both more defined and amenable to filtration when con-
trasted with the intricate dynamics of marine ecosystems,
an endeavor has been made to elevate data integrity through
the adoption of the conventional linear Kalman filtering
algorithm. Initially, a state space model is constructed where
the state transition Equation (1) describes how the system’s
state evolves through a linear dynamic process; the mea-
surement Equation (2) represents the sensor measurements
obtained via linear observations [31].

xk = Axk−1 + Buk + wk (1)

zk = Hxk + vk (2)

In the equation: represents the prior estimate of the state;
denotes the state transition matrix; signifies the input matrix;
stands for the external input;is the sensormeasurement; repre-
sents the process noise; and refers to the measurement noise.

Based on this model, we first use the previous state esti-
mation and the system model to predict the current state,
obtaining the state prediction Equation (3) and the corre-
sponding predicted covariance matrix Equation (4):

x̂k|k−1 = Ax̂k−1|k−1 + Buk (3)

Pk|k−1 = APk−1|k−1AT + Q (4)

In the equation: represents state prediction, is the covariance
matrix of the state estimation, and denotes the covariance
matrix of the process noise.

Next, combining the current measurement, we calculate
the Kalman gain Equation (5) to update the state estimate

Equation (6) and the updated covariance matrix Equation (7):

Kk = Pk|k−1HT
(
HPk|k−1HT

+ R
)−1

(5)

x̂k|k = x̂k|k−1 + Kk
(
zk − Hx̂k|k−1

)
(6)

Pk|k = (1 − KkH)Pk|k−1 (7)

In the equation: represents the Kalman gain,and is the covari-
ance matrix of the measurement noise.

Through this iterative cycle of prediction-update steps, the
Kalman filter recursively optimizes the state estimation and
effectively removes electromagnetic interference and other
noise components, thereby significantly improving the qual-
ity of the electrical parameter sensor data. This method not
only upgrades data quality but also ensures the reliability
and reproducibility of scientific research results. It effectively
mitigates the impact of noise on experimental outcomes,
allowing experimental data to more accurately reflect real
conditions, thus facilitating robust and reliable conclusions.

2) AUDIO DATA DIMENSIONALITY REDUCTION AND
FEATURE EXTRACTION
In the classification of machine working audio signals,
raw high-dimensional audio data pose challenges due to
their time-series nature with rich frequency components
and non-stationary characteristics. Directly employing such
high-dimensional data for SVM training would significantly
increase computational complexity, and unprocessed audio
data typically do not meet the requirement for comparability
and standardization that SVMs generally demand. Hence, this
study employs dimensionality reduction techniques to reduce
computational burden, eliminate noise, and remove redun-
dant information, thereby enhancing model generalizability
and preventing overfitting.

To embed the audio signal effectively into the SVM frame-
work, we first transform it into a time-frequency spectrogram
using STFT to jointly represent temporal and frequency
information. Given the inherent non-stationarity in indus-
trial machine working audio signals affected by mechanical
noise, environmental changes, etc., direct application of
Fourier Transform fails to adequately capture its dynamic
features evolving over time. Thus, STFT is adopted, which
approximates stationarity within short-time windows and
extracts instantaneous frequency characteristics as defined by
Equation (8):

STFT (t, f ) =

∫
∞

∞

x (τ )w (τ − t) e−j2π f τdτ (8)

In the equation: represents the input function, denotes the
window function, represents a complex exponential term that
signifies a complex sinusoidal wave of frequency.

During the experimental process, the audio signal is
divided into multiple overlapping time-window segments,
and STFT is performed on each segment to obtain spec-
tral features within those windows. The specific parameter
settings involve a 1-minute window size and a 5-second
sliding step strategy, allowing systematic extraction of key
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state-related features from the non-stationary audio data.
Based on this, the resulting time-frequency spectrograms
are categorized into five class labels: Non-Operational State
(Label 0), Circular Track Operating State (Label 1), Ball-
Box Sample change State (Label 2), Two Ball-Boxes Work
Simultaneously (Label 3), and Four Ball-Boxes Work Simul-
taneously (Label 4).

For effective analysis and classification of the extracted
time-frequency spectrograms, this research utilizes the
GoogLeNet convolutional neural network model. The core
innovation of GoogLeNet lies in its carefully designed Incep-
tion module structure, as shown in Figure 4. This module
processes multiple scales of features in parallel through inte-
grating various kernel sizes (including 1 × 1, 3 × 3, and
5 × 5 convolutions) and max pooling operations, stacking
and fusing them to build a multi-level, multi-scale feature
representation space. This design enables the network to
simultaneously capture crucial features at different spatial
resolutions and further refine these into abstract, richly-
layered features, significantly enhancing its representation
capability for complex audio patterns.

FIGURE 4. Inception module.

Notably, the Inception module embraces a lightweight
design philosophy, effectively reducing the number of
network parameters. This simplifies the training process,
enhances computational efficiency, and allows the model to
handle larger image datasets under limited computational
resources. Additionally, embedded auxiliary classifiers dis-
tributed across different intermediate layers in GoogLeNet
provide extra gradient feedback, accelerating the overall net-
work training process while helping alleviate the vanishing
gradient problem in deep learning networks, thus improving
both training efficiency and model performance.

Of particular significance, GoogLeNet excels in dimen-
sionality reduction. Its sparsely connected Inception modules
cleverly leverage parallel processing of input features using
different-sized convolution kernels; the 1 × 1 convolution
layer plays a critical role in reducing computational complex-
ity and decreasing dimensions, while global average pooling
further compresses the depth and dimensions of feature maps,
significantly lowering the model’s parameter count and com-
putational load. This efficient design ensures that GoogLeNet

can maintain a compact model dimensionality while enhanc-
ing computation efficiency and performance, particularly
suitable for tasks involving high-dimensional audio feature
representations with rich spatiotemporal information.

Finally, the results after the above processing and classi-
fication are recorded in the ‘‘Machine Work Sound Dataset
Table’’ to meticulously track and differentiate sound feature
differences during various operational states of the equip-
ment, providing robust data support for subsequent machine
condition monitoring and fault diagnosis tasks.

3) DATA SYNCHRONIZATION
In real-time NIM systems, ensuring temporal consistency
among data collected from multiple sensors is a core task.
This system integrates diverse parameters such as power
usage metrics, machine sound feature analysis, and operator
behavior pattern recognition. Due to the inherent differences
in sampling frequencies across various sensors, which lead
to asynchronous timestamps, direct comparison and analy-
sis can be misleading due to data inconsistency. To address
this issue, given the significant discrepancies in sampling
frequencies and conversion intervals among electrical param-
eter, human radar, and sound sensors, alongwith the extensive
time span covered by the database records, this study employs
a sliding time window alignment method partitioned into
discrete time periods to simplify the overall synchronization
process.

After effectively filtering out intermittent noise interfer-
ence during preprocessing, we devised a sliding window
strategy based on the minimum common sampling frequency,
setting a 1Hz time interval, to progressively align all data
points in timestamp order. For those sensors with sampling
rates significantly higher than 1Hz, including human radar,
power consumption sensors, and sound sensors, we employed
the method shown in Equation (9) to perform aggregation
operations for down-sampling alignment:

Averagei =
1

|W |

∑
j∈Wi

Sj (9)

In the equation: W represents the size of the sliding
window, Wi refers to the set of all data points within the
i-th sliding window, and j denotes the measured value of the
j-th original data point within windowWi.

This approach ensures precise temporal matching of data
from different sampling frequencies across various sensors,
thereby guaranteeing the effectiveness and accuracy of the
real-time NIM system.

4) DATA NORMALIZATION
In this research, Boolean data output by the human radar
sensor, due to its binary nature, does not require normaliza-
tion preprocessing. However, for other types of continuous
data within the sliding windows, prior to applying SVM
for classification tasks, we adopted a normalization strategy
to eliminate scale differences between features that could
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FIGURE 5. Multi-class flowchar.

influence decision boundaries and ensure consistent model
attention to all features.

The chosen normalization method was Min-Max scal-
ing, favored for its intuitive simplicity and retention of
the original data distribution shape. Although under certain
extreme conditions, this method may compress outliers into
a smaller interval, at the current experimental stage, having
successfully removed distinct discrete data points, Min-Max
scaling proved suitable and effective in this specific context.
In practice, for each individual sliding window, we separately
calculated the minimum and maximum values of each feature
dimension and then used Equation (10) to map the average
values of all features within the sliding window onto the [0,1]
interval, thus achieving standardized data processing.

X =
X − min
max − min

(10)

Moreover, to optimize memory usage and focus on the core
analytical areas, only normalized data within the sampled
windows were retained, while the rest were discarded.

5) STATE CLASSIFICATION
For the more complex problem of equipment state classifica-
tion involving multiple dimensions such as power consump-
tion parameters, sound signals, and personnel behaviors, this
study employs the SVM algorithm. SVM has demonstrated
exceptional performance in solving high-dimensional space
problems, particularly when dealing with high-dimensional
data and limited sample sizes, effectively reducing the risk
of overfitting. Leveraging kernel mapping techniques, SVM
transforms originally non-linearly separable problems into
linearly separable ones in higher-dimensional spaces, suc-
cessfully addressing complex nonlinear relationships among
features.

This research combines the intuitive interpretability of
decision trees with the high-dimensional classification effi-
ciency of SVM to devise an effective strategy for classifying
the states of machinery used in fabric pilling and fuzzing
performance testing. The detailed steps are as follows:

(1) A four-dimensional time-series vector dataset is ini-
tially input into SVM1, which serves to segment the overall
operation states of the Circular Track Tester and Ball
Box Tester. This step discerns between the ‘Circular Track
Tester Change’ state and the ‘Circular Track Tester Work’
state.

(2) The ‘Circular Track TesterWork’ state’s refined feature
vector undergoes classification using a threshold classifier.
This step differentiates between the ‘Circular Track Tester
Change’ state and ‘Circular Track Tester Work’, based
on Boolean features indicating operator proximity to the
instrument.

(3) Similarly, the work state feature vector for the ‘Ball Box
Tester’ is passed through SVM2 to accurately classify it into
the ‘Ball Box Tester Change’ state and the ‘Ball Box Tester
Work’ state.

(4) Once the Ball Box Tester’s work state has been clearly
categorized, the corresponding data is fed into SVM3 to fur-
ther discriminate between two different ‘TwoBall BinsWork’
states and a state where all ‘Four Ball Bins’ are operating
simultaneously

The specific classification process is illustrated in Figure 5:
Multi-Class Flowchart.

The threshold classifier for the circular trajectory work
state primarily involves judgment of the operator’s activity
status, with threshold values based on Boolean features indi-
cating operator presence near the instrument.

Regarding the selection of the kernel function for the
SVM classifiers, given that the input features consist of
four dimensions—sound, electrical parameters, and person-
nel activities—which exhibit nonlinear relationships and
have complex, irregular distributions, we opted for the Gaus-
sian radial basis function (RBF) kernel due to its high
flexibility and strong capacity for modeling nonlineari-
ties. The employed Gaussian kernel function is defined by
Equation (11):

K (x, y) = exp(
∥ x − y ∥

2

−2σ 2 ) (11)
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TABLE 1. Comparison of fabric pilling test machine parameters.

TABLE 2. Situation awareness sensor parameters.

FIGURE 6. On-site deployment diagram.

In the equation: ∥ x−y ∥ represents the squared Euclidean
distance between sample x and y.σ denotes the bandwidth,
which is an adjustable parameter in the Gaussian kernel
function, controlling the range of distribution that samples are
mapped to in higher-dimensional space.

IV. EXPERIMENT DESIGN
This section provides a comprehensive overview of the exper-
imental process for fabric pilling and fuzzing performance
evaluation based on multi-source data, encompassing the
experimental environment, instrument configurations, sensor
parameter settings, dataset construction, visualization anal-
ysis, and culminating with an in-depth discussion of the
optimization strategies for the DT-SVM model.

A. INTRODUCTION TO THE EXPERIMENT ENVIRONMENT
The research was conducted in collaboration with the Zhe-
jiang Institute of Quality Inspection for Light Industrial
Products. The experimental instruments were supplied by
Nantong Hongda Experimental Instrument Co., Ltd. For the
box method testing, a YG511N-4 Box-Type Pilling Tester
was employed, while the circular track method utilized a
YG502N Fabric Pilling Tester. The detailed technical spec-
ifications of these instruments are presented in Table 1.

Additionally, the experimental platform included a
high-performance computer equipped with an Intel Core i7-
6700HQprocessor and anNVIDIAGeForceGTX1060GPU.
To collect diverse data, several sensors were deployed, such
as a sound sensor (Sony Capacitive Microphone), a human
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FIGURE 7. STFT spectrogram.

radar sensor (Zetai 485 Human Presence Sensor), and power
consumption sensors (GWGJ Intelligent PDU). The specific
signal parameters for these sensors are listed in Table 2.

The data acquisition frequency set by the data collec-
tion devices, as indicated in Table 2, effectively ensures the
completeness and high accuracy of data collection, thereby
guaranteeing the intact reproduction of system processes
during subsequent analyses or retrospectives.To ensure com-
prehensive reliability of the experiment, the focus was placed
on detailing the laboratory environment, which featured
advanced computing equipment and the strategic placement
and parameter configuration of various sensors. Figure 6
presents a clear layout of sensor placements, critical for
understanding experimental conditions and contextualizing
the results.

B. COMPARATIVE EXPERIMENT ON SOUND FEATURE
EXTRACTION
By examining STFT-generated spectrograms of collected
audio features, distinct differences in sound characteristics
were revealed under various operational states of the fabric
pilling detection equipment, including non-operational states,
ball bin replacement operations, synchronous operation of
two ball bins, asynchronous operation of four ball bins, and
circular track work. As shown in Figure 7, each working
condition presents unique temporal-frequency patterns.

Observations from the experiment showed that when the
rolling bins were operational, due to the large volume and
high rotation speed of the drums, the frequency fluctuations in
the generated sound signals were significantly more intense
and frequent compared to the steady-state operation of the
circular track mode. Conversely, sound frequency changes
in the circular track work were smoother and more con-
tinuous. A comparison of scenarios where four ball bins
worked simultaneously versus two ball bins synchronously
demonstrated that the former’s time-frequency spectrograms
exhibited denser and more amplitude-varying features due
to the asynchronous nature of the ball bins. In the ball
box change phase, identifiable acoustic signatures from the
interaction between abrasives and fabric samples could be
discerned from the spectrogram in Figure 7(c), whereas dur-
ing regular ball bin work, the primary captured sounds were
related to mechanical noise from the rotating machinery.

Table 3 summarizes the durations of audio data samples
collected under different states. Notably, the audio samples
for non-working states and ball bin changes were shorter,
especially those for the changeover operations. To address
this issue, sliding window techniques were adopted, applying
suitable window strides to the audio data according to each
state’s specifics, aiming to balance the number of converted
STFT images across all working states. By preprocessing all
raw audio data in this manner, converting them into spec-
trograms, and meticulously labeling them according to their
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corresponding operational states, a comprehensive sound fea-
ture dataset was constructed.

TABLE 3. Situation awareness sensor parameters.

Finally, GoogLeNet convolutional neural network archi-
tecture was further applied to classify these image-based
sound features, aiming to distinguish the unique sound pat-
terns associated with each operational state.

C. DATASET AND DATA VISUALIZATION
In the actual instrument operation and data collection process,
the number of samples for different states in the dataset
varied. An imbalance in the amount of data associated with
a particular label could negatively affect the SVM classifi-
cation performance. Excessive amounts of data can lead to
overfitting, where themodel becomes overly complex and fits
noise in the training data rather than the underlying pattern.
Conversely, insufficient data can cause underfitting, where
the model is too simple and fails to capture the complexity
of the problem at hand. In cases of class imbalance, the
model may tend to favor majority classes and struggle to learn
patterns from minority classes.

TABLE 4. Dataset.

In our case, the changeover state had the least amount of
data for both working instruments, while the working state
data for the ball box tester was notably abundant due to typical
operating times ranging from 2 to 4 hours. To mitigate the
effects of overfitting and underfitting on the classification
model, data augmentation was performed on the changeover
states for both the circular track and ball box testers, while
undersampling was applied to the working state data of the

ball box tester. This ensured that each state had approximately
equal representation within the dataset.

The final dataset comprised 10,708 records, which were
labeled as ‘Circular Track Change’, ‘Circular Track Work’,
‘Ball Box Change’, ‘Two Ball Bins Work’, and ‘Four Ball
Bins Work’, represented by numerical labels 0, 1, 2, 3, and 4,
respectively. The dataset was randomly partitioned, with 10%
of the total data designated as the testing set. Table 4 presents
this balanced and partitioned dataset.

Figures 8 and 9 illustrate the variations in multiple param-
eters and state changes during the fabric pilling and fuzzing
tests using the ball box and circular track methods. Figure (a)
shows voltage changes, (b) displays power changes,
(c) represents the presence or absence of personnel, and
(d) indicates whether there was machine-generated sound.
Different background colors denote the various states without
considering environmental anomalies, where light red rep-
resents the power off state, yellow denotes standby, orange
signifies the change state, green represents the two ball bins
work state, purple indicates the four ball bins work state, and
cyan represents the circular track work state.

FIGURE 8. Ball box teser visualization diagram.

D. DT-SVM MODEL OPTIMIZATION
Hyperparameters are parameters manually set by researchers
before the model training process begins and do not get
learned from the training data. They play a critical role in
determining the structure and learning process of the model,
significantly influencing its learning capacity, complexity,
and generalization ability. The selection of hyperparame-
ters directly impacts the model’s behavior and performance,
with different configurations potentially leading to substan-
tial differences. In the classification problem discussed in
this paper, the main hyperparameters that critically affect the
model’s performance include the kernel function, regulariza-
tion parameter C, and scale parameter γ .

VOLUME 12, 2024 101099



Y. Mao et al.: Multi-Source Data-Driven Framework for Work State Classification

FIGURE 9. Circular track tester visualization diagram.

Given that we employed a DT-SVM model suitable for
multi-class scenarios, we selected the Gaussian radial basis
function (RBF) kernel due to its strong nonlinear mapping
capabilities, which are apt for complex classification tasks.
However, the crucial aspect for this model lies in optimizing
the combination of the regularization parameter C and the
scale parameter γ to achieve optimal classification results.
To this end, this study utilized cross-validation, using accu-
racy as the core metric to evaluate model performance and
identify the optimal hyperparameter combination. The for-
mula for calculating accuracy is shown as Equation (12):

Accuracy =
TP+ TN

TP+ TN + FP+ FN
× 100% (12)

In the equation: TP stands for True Positives, TN represents
True Negatives, FP denotes False Positives, and FN signifies
False Negatives.

Through cross-validation optimization of the SVM model
under various combinations of the regularization parameter C
and the kernel function parameter γ , we recorded the clas-
sification accuracies. We then compiled those results with
accuracies exceeding 90% into Table 5.

The results showed that when the kernel function param-
eter γ was set to 0.5, and the regularization parameter C
was set to 0.1, the model achieved the highest classification
accuracy at 97.17%. This outcome effectively demonstrates
the importance of judiciously selecting hyperparameters for
enhancing the model’s performance.

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL STATE CLASSIFICATION AND
HYPOTHESES
The experiment is set with five states: ‘Circular Track
Change’, ‘Circular Track Work’, ‘Ball Box Change’, ‘Two
Ball Bins Work’, and ‘Four Ball Bins Work’. It is hypoth-
esized that in the ‘Circular Track Change’ and ‘Ball Box

TABLE 5. Cross-validation accuracy.

Change’ states, the sensor detects significantly lower motion
frequency and continuity compared to the working states,
with higher power readings but lower audio features. In the
‘Circular Track Work’ state, the sensor is expected to detect
continuous circular motion, with moderate power readings
and audio features. For the ‘Two Ball Bins Work’ and ‘Four
Ball Bins Work’ states, the sensor should detect dual and
quadruple periodic motion patterns, with higher activity fre-
quencies, power readings, and audio features. Specific data
are provided in Table 6.

TABLE 6. State classification and hypothesized parameterst.

Here, ‘People’ denotes a binary value captured by the
Human Radar Sensor, ‘Power’ refers to the power range
recorded by the Power Sensor, and ‘Audio’ signifies the audio
features derived from the STFT analysis conducted in the
‘Comparative Experiment on Sound Feature Extraction’.

B. EVALUTION METRICS
When assessing model performance, relying solely on accu-
racy as a single metric may not fully reflect the model’s
behavior when dealing with imbalanced datasets. In cases
where class distributions are uneven, the model might tend
to predict samples from the majority class while neglecting
its ability to identify minority class instances. Hence, using
a combination of multiple evaluation metrics is particularly
crucial.
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FIGURE 10. Comparative experiment on audio feature extraction.

TABLE 7. Model classification experiment.

FIGURE 11. Confusion matrix.

Precision (PRC) and Recall (REC) are two core parameters
indispensable for evaluating the performance of classification
models. Precision measures the proportion of actual positive
samples among those predicted as positive by the model,
as shown in Equation (13):

PRC =
TP

TP+ FP
× 100% (13)

FIGURE 12. ROC curve.

The recall quantifies how many of the truly positive sam-
ples were correctly identified, revealing the model’s coverage
of genuine positives, with its formula given in Equation (14):

REC =
TP

TP+ FN
× 100% (14)

In the context of class imbalance, we introduce
F1-score(F1) as a comprehensive evaluation metric that
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FIGURE 13. Enlarged data confusion matrix.

balances precision and recall; it is the harmonic mean of
precision and recall, aiming to consider both the preciseness
and completeness of the model, calculated according to
Equation (15):

F1 = 2 ×
PRC × REC
PRC + REC

(15)

The Receiver Operating Characteristic Curve (ROC) fur-
ther illustrates the model’s discriminative ability between
positive and negative samples at different thresholds. An ideal
ROC curve should be as close as possible to the top-left
corner, indicating high recall with low false positive rate. The
larger theAreaUnder the Curve (AUC), the better themodel’s
performance.

C. AUDIO FEATURE EXTRACTION COMPARISON
EXPERIMENT
The audio feature extraction comparison experiment eval-
uated the differences in performance among several typ-
ical CNN architectures—VGGNet 16, GoogLeNet, and
DenseNet—using metrics such as Accuracy, PRC, REC, and
F1 scores. As shown in Table 7, the confusion matrices
for each model architecture on the test set are depicted
in Figure 10. The DenseNet model achieved the highest

classification accuracy of 99.69%, but considering its slower
processing speed compared to GoogLeNet, whichmaintained
a relatively high accuracy of 98.79% while tripling its pro-
cessing speed, this study chose to employ the GoogLeNet
architecture for classifying audio STFT spectrograms and
integrating the classification results into the machine working
sound data table for subsequent analysis.

D. DT-SVM CLASSIFICATION EXPERIMENT
During the experimental phase, we employed several key
evaluation metrics to assess the DT-SVM model’s per-
formance under different operating conditions. Figure 11
presents the corresponding confusion matrix, and Table 8
lists the precision, recall, and F1-scores, reflecting
the model’s classification performance for each work
state. Notably, the DT-SVM model demonstrated overall
strong performance, achieving an overall accuracy rate
of 98.32%.

To provide a more intuitive assessment of the model’s dis-
criminative capability and overall performance, this research
plotted the ROC curve, shown in Figure 12 By observing
the AUC value, we can obtain a comprehensive evaluation of
the model’s ability to classify positive and negative samples
under varying threshold settings.
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TABLE 8. DT-SVM model performance metrics.

E. GENERALIZABILITY EXPERIMENT
Despite the original dataset containing 10,708 samples, due
to the limited amount of training data, themodel may not fully
capture the complex characteristics of the entire data distribu-
tion, thus limiting its generalization capacity. When trained
on small sample datasets, models often overfit, performing
well on the training set but showing poor generalization
performance on the testing set.

To address this issue, we augmented the fabric pilling
performance detection dataset with additional multi-source
data collected across four sets of records equivalent in scale
to the original experiments. By increasing the number of
training data, the model was exposed to a more diverse range
of samples, which helped it learn and capture invariant fea-
tures in the data better, thereby enhancing its adaptability to
different situations. Moreover, introducing sample diversity
also helps mitigate the model’s tendency to overfit specific
patterns within the training set, improving its ability to handle
novel and unknown scenarios, effectively reducing the risk of
overfitting.

Upon retraining the model with the expanded dataset
using the previously determined optimal hyperparameters,
the accuracy rates for each state reached 98.80%, 97.95%,
95.62%, and 96.29%, respectively. The corresponding con-
fusion matrix is displayed in Figure 13.

VI. CONCLUSION AND OUTLOOK
This paper proposes a multi-source data-driven method for
classifying the operational states of fabric pilling perfor-
mance testing, tailored to real-world laboratory environ-
ments. The approach utilizes an advanced, real-time NIM
system to collect and analyze a variety of data sources
including electrical parameters, operator behavior, and sound
data. The study employs suitable noise reduction techniques,
sliding window alignment, and feature extraction methods,
combined with threshold-based classification and a SVM
algorithm using decision trees, successfully achieving precise

categorization and traceable diagnostics of the fabric pilling
performance testing process.

In the experimental setup, we provide detailed descrip-
tions of the configurations of various instruments and
sensor parameter settings. Experimental results demon-
strate that the proposed multi-source data-driven methodol-
ogy performs well in handling class imbalance problems.
Through cross-validation optimization and selecting appro-
priate hyperparameters, the final model achieves high accu-
racy levels across different operating conditions, with a peak
accuracy rate of 97.17%, and exhibits strong generalization
capability. Upon expanding the dataset, the lowest accuracy
achieved by the model for any state was 95.62%, substantiat-
ing the effectiveness and reliability of this method.

Despite achieving preliminary results, this study still con-
fronts several limitations and uncovers ample prospects for
enhancement and further exploration. To address these, suc-
ceeding investigations can concentrate on several pivotal
avenues: firstly, broadening the scope of feature dimensions
to facilitate a more nuanced differentiation of operational
statuses, specifically in pinpointing and categorizing salient
signals of abnormal operations, thereby augmenting the diag-
nostic precision for system malfunctions. Concomitantly,
as we enrich feature dimensions, the modernization of
data acquisition mechanisms is indispensable, not solely to
amplify dataset sizes and hasten computational velocities,
but also to ascertain prompt anomaly alerts, circumventing
delayed discrepancy identifications post-operation.

Furthermore, the exploration of deep learning frameworks
for constructing end-to-end learning ecosystems is advo-
cated, to better accommodate the intricacy and variability
inherent in diverse data streams. Alongside, the quest for effi-
cacious techniques in feature extraction must be intensified to
bolster the accuracy and resilience of our models.

We are committed to addressing these issues in our subse-
quent research and encourage future scholars venturing into
similar domains to tackle these existing limitations proac-
tively.

Zooming out to a broader perspective, validating the adapt-
ability of our methodology across a spectrum of textile
quality assessment scenarios forms a cornerstone of our long-
term strategy, aiming to affirm its extensive practicality and
validity. Amidst the swift advancements in the Internet of
Things (IoT) and 5G communication landscapes, devising
schemes for real-time surveillance and remote, intelligent
analytical capabilities within detection systems emerges as a
pivotal agenda for upcoming studies, steering us towards the
profound digitalization and intelligent metamorphosis of the
textile sector.
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