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ABSTRACT The efficient processing of information plays a critical role in data-driven domains. Data
acquisition pipelines, which act as the interface between data collection and subsequent processing, are
central to this. Traditional software engineering methods form the foundation for the development of robust
data acquisition pipelines, but agent-based systems hold great potential for realizing such pipelines, and
this study presents an innovative architecture that uses agent-based components. This modular approach
makes it possible to use specialized agents for individual tasks and to increase the effectiveness of the
pipelines. The applicability and effectiveness of this architecture are demonstrated using a system for
autonomous driving that collects and processes data from edge computers along roads. Our results are on
GitHub (https://github.com/BenjaminAcar/Agent-based-Data-Acquisition-Pipeline).

INDEX TERMS Data pipelines, agents, data processing, streaming, autonomous driving.

I. INTRODUCTION
In data-driven domains, it is invaluable not only to collect
large amounts of information but also to process it efficiently.
Data acquisition pipelines play a crucial role here, as they
act as an interface between raw data acquisition and further
processing [1], [2], [3]. These pipelines are complex systems
consisting of several coordinated components in order to
make the processed data available for analysis and model
training [4]. In addition, these systems must be flexible
enough to adapt to changing data structures and formats as
well as changing hardware landscape [5].

Traditionally, developers have relied on proven soft-
ware engineering methodologies to create data acquisition
pipelines. In addition to conventional techniques, however,
approaches such as agent-based systems also provide oppor-
tunities [6], [7], [8]. These systems use autonomous software
units, so-called agents, which perform tasks independently
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and interact and cooperate with each other [9]. Such systems
are remarkably adaptable and greatly benefit in dynamic
environments where flexibility and scalability are crucial.

This study presents an architecture that builds on
agent-based systems to realize the construction of a data
acquisition pipeline. In this concept, agents and their func-
tionalities are independent units that subsequently interact
in a coordinated manner. This interaction of the agents
leads to a synergetic interplay that results in a highly
functional software system. We demonstrate the feasibility
and effectiveness of this approach using the example of
infrastructure-enhanced autonomous driving. Our presented
system collects data from traffic cameras, following a
postprocessing step on edge computers co-located with
roadside units near the cameras. This data is collected,
anonymized, and then aggregated in the cloud to gain
insights that are essential for autonomous driving. Our study
shows that agent-based systems have considerable potential
for the development and deployment of data acquisition
pipelines. By using agents, complex data streams are
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captured, processed, and integrated more effectively, leading
to a significant increase in data quality and availability.
The results are applied to our project BeIntelli,1 which
investigates how the enrichment of infrastructure data can
improve the capabilities of autonomous vehicles, such as cars
or buses. The project uses a large infrastructure in the heart
of Berlin, Germany, equipped with sensors and cameras that
provide over-the-horizon perception to the vehicles.

II. BACKGROUND
In the following, we will introduce the technical concepts
behind agent systems as well as data pipelines. These serve
as the basis for our own work.

As information technologies become increasingly dis-
tributed, the need for softwaremethodologies that ensure end-
to-end functionality, minimize human involvement in design
and deployment, and provide flexible software behavior
is growing. Agent-Oriented Software Engineering (AOSE)
offers a promising approach to address these challenges
due to its modularity and the ease with which agents are
combined. By applying the principles of AOSE, developers
can create more flexible and scalable systems that meet
the complex needs of today’s distributed environments [10].
A common definition describes agents as autonomous entities
that can act intelligently and perceive their environment [11].
Multi-agent systems are groups of autonomous agents
working independently. Each agent focuses on accomplishing
its own tasks while interacting with other agents and the
environment to access missing information or coordinate
activities. These interactions enable agents to achieve their
goals more effectively by leveraging shared resources and
knowledge [12].

With the proliferation and growth of data-driven applica-
tions, the question of how to manage these data flows arose
as well. Data pipelines are complex chains of activities that
manipulate data, where the output of one component becomes
the input of another, enabling an automated flow of data
from source to destination. A data pipeline begins with a data
source that generates data and ends with a destination that
receives the processed data. The final destination of a data
pipeline does not need to be a data store. Instead, it can be
any application, such as a visualization tool [13]. The need for
data pipelines is because, in practice, raw data is rarely ready
for consumption and usually needs to be transformed through
a series of operations. For example, if the data contains too
many variables, feature selection methods are applied [14].
In the area of data collection, topics such as security and
analytics also play a particular role [15]. However, in the
following, we will focus, in particular, on the architecture of
such pipelines.

III. RELATED WORK
The potential of agent-based approaches in the context of data
acquisition and processing has been demonstrated in many

1BeIntelli project: https://be-intelli.com

studies. In the following, we provide a brief insight into these,
particularly with regard to the architecture that is realized in
each case.

Hu et al. [6] analyze various techniques for data collec-
tion in manufacturing systems and present an agent-based
framework for such tasks, including two use cases in the
steel and chemical industries. The framework includes a
data acquisition platform, embodying an environment where
agents operate both physically and virtually. This platform
contains machines and protocols for communication as well
as other functionalities. Another component is the sampling
workstation, a data acquisition subsystem designed to gener-
ate data, consisting of agents that generate data and technical
functionalities that are responsible for communication and
other crucial components. A further key element is the sensor
array, which consists of concrete sensors that collect the data.
The platform itself has three layers: a management layer to
orchestrate tasks for the system, a data sampling layer to
orchestrate specific data sampling tasks, and a basic support
layer to support the system components.

Xu et al. [7] introduces an agent-based architecture for
data collection and analysis for distributed simulations. The
proposed system consists of multiple layers. The lowest layer
is responsible for the network communication. At the higher
layers, the simulation applications take place. A data agent
is in charge of conveying data between the simulation layers
and also analyzing the data.

Bodrozic et al. [16] use a multi-agent system to gather data
in real-time for fast forest fire reactions. The system consists
of several agents. A camera agent is responsible for collecting
images and to set up the moving cameras to the desired
positions by adjusting the camera’s pan and tilt angles.
Another agent is responsible for collecting meteorological
data. The database agent stores meteorological data and keeps
a record of the collected images and alarms. A user agent
embodies the interface to the system.

Reichherzer et al. [17] focus on smart home systems that
support independent living for the elderly by addressing the
challenge of collecting and analyzing data to detect unusual
behavior. The system is also agent-driven, where each device
in the smart home system has a software agent that acts as an
interface for data collection and control of the device itself.
The architecture has three types of agents. Sensor agents are
used to collect and store raw data. Middleware agents pro-
cess the collected sensor data. The application agents
provide control over the devices, such as controlling the
lights.

Yang et al. [18] address the problem of digital libraries in
terms of the heterogeneous information stored in them. The
authors propose an agent-based framework for managing data
access using an XLS-based data model. Stationary agents
are used for specific roles, and mobile agents are used to
analyze the data repositories. The mobile agent is responsible
for assisting the user by performing tasks such as helping the
user formulate queries, launching mobile agents, and so on.
On the other hand, the static agent handles complex tasks
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TABLE 1. API endpoints for the data collection pipeline.

within the system and communicates with the less complex
mobile agents.

In summary, the work presented in this section clearly
demonstrates the versatility and effectiveness of agent-based
approaches in developing data collection and acquisition
pipelines. These approaches provide flexible architectures
that can efficiently handle complex data collection and
processing tasks. Our architecture innovates on existing
methodologies by incorporating the strengths and lessons
learned from our own and others’ previous research.
It significantly transforms data collection, processing, and
aggregation through the use of cutting-edge, containerized
agent technologies [19], marking a new approach in the field
of image data acquisition. We use the modern framework
OPACA [20] and evaluate its potential use in the application.

IV. ARCHITECTURE
In the following pipeline, a setup of edge PCs, Real-Time
Streaming Protocol (RTSP) cameras is used, and a cloud
enables the acquisition, processing, and storage of video
data. The edge PCs serve as a central component that can
communicate with the RTSP cameras and receive the video
streams supplied by them. The edge PCs are also responsible
for processing the data. In addition to this local processing,
a cloud serves as central data storage and computing power.
Our software architecture includes several types of agents,
each with specific responsibilities, as illustrated in Figure 1.
The OPACA framework was selected for developing the
agent-based data acquisition pipeline due to its inherent
capabilities for streaming data, connecting to non-agent
external services, and easy-to-use interaction protocols. For
more information about the framework used, please see the
documentation provided within the respective GitHub.2 In
the following, we provide an overview of the respective
responsibilities. The system has four types of agents:

1) Capture and Process Agents,
2) Data Stream Agents,

2OPACA Core: https://github.com/GT-ARC/opaca-core

3) File Manager Agents,
4) Orchestrator Agents.
The Capture and Process Agents capture and process data

streams from cameras. When calling the action for starting
the acquisition, five parameters must be specified:

1) rtsp-URL: the camera’s address from which the agent
receives the data.

2) processing-URL: the address of the microservices that
anonymizes the images.

3) t: the time when the agent should start collecting the
data.

4) tn: the number of seconds for which the agent should
collect the data.

5) n: The frame rate. For example, if n = 10, every second
10 frames are collected.

The agents themselves then record the respective frames
in a queue. Initially, the data is not immediately written on
the hard drive but is kept in memory. This is decided so
that the privacy of the captured entities could be maintained.
Instead of saving the data immediately, the agent first sends
it to a microservice with the address processing-URL, which
is only responsible for anonymizing the images and then
sending them back in processed form. This happens in the
same order in which the images are initially captured. The
processed images are now successively stored on the local
memory with time stamps (see Algorithm 1). The capturing
and processing processes happen in parallel, while the
sub-processes themselves are in series. However, in theory,
also, the processing procedure itself can be done in parallel
to enhance the speed of the process. We decided not to do
this because the frame capturing itself is very GPU intensive,
especially for the camera resolution used (see Appendix).
In our experience, putting too much load on the GPU can
cause it to hang and require a complete reboot before it
is available again. In addition, when processing images in
parallel, we would always limit the number of GPU cores that
are used; otherwise, failures such as the one described above
are more likely. This also requires proper knowledge of the
GPU in use. However, in the case of having a heterogeneous
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hardware stack like we do, maintaining this information
for all GPUs is tedious. As a result, we preferred system
reliability before speed. Furthermore, it should be noted that
the connection to the camera is continuous and is not created
anew with every frame. As RTSP connections always take a
certain amount of time to be established, too many frames
would otherwise be lost simply because the connection has
to be established first.

At the end of each acquisition process, two further
processes are triggered. Firstly, the folder with all the frames
is compiled into a .zip file. Secondly, another agent of type
Data Stream Agent is created, which is only responsible for
being available for requests to the file so that other agents and
users can retrieve this file.

The File Manager Agents maintain an overview of all
generated data records. They provide information on how
much data records are available for a particular camera. To do
this, the URL of the camera is passed to the agent. The agent
then checks for generated data records that are available on
the local machine based on the respective URL. These are
then returned as a list. Finally, the Orchestrator Agent is
responsible for initiating those processes and gathering all
the potential data records from different machines to a single
location in the cloud. For a list of the routes/actions provided
by each agent, see Table 1

Algorithm 1 Frame Capture and Processing Algorithm
1: t ← initial start time
2: endTime = t + tn
3: frameRate = 1/n
4: Wait until t is reached
5: while t++ ≤ endTime do
6: In Parallel:
7: Thread 1: Capture Frame
8: Capture a frame
9: Store the frame in a queue

10: Wait for frameRate× 1 second
11: Thread 2: Process Frame
12: Take a frame from the queue
13: Process the frame
14: Store the processed frame
15: end while

To address implementation hurdles when realizing our
agent-oriented data acquisition pipeline for image data,
ensuring seamless interaction among the various agents is
crucial. Firstly, the Capture and Process Agent must be
optimized for diverse environmental conditions and hardware
variations, using robust preprocessing techniques to maintain
data consistency. This can be realized, for example, by always
transforming the data to the same size and keeping the
resolution as low as possible, depending on the application
that needs to be implemented. The Data Stream Agent should
utilize efficient data transmission protocols to handle high
throughput and low latency. The OPACA API offers generic
concepts for streaming data. Therefore, the recommendation

here is to use the OPACA framework. For the File Manager
Agent, we need an easily navigable directory structure that
supports quick data retrieval and storage. The Orchestrator
Agent should have advanced scheduling and error-handling
capabilities to ensure smooth coordination between different
pipeline stages.

A. ARCHITECTURE ADAPTABILITY
The architecture can be transferred to various setups. There
are a large number of potential data sources that can be used,
and RTSP video streams are just one example; for instance,
an adapter for HTTP or Secure Reliable Transport (SRT)
input streams can also be used by making a few changes to
the Capture and Process Agent. It is also worth mentioning
that our dataset is currently to be transferred by design to
an Orchestrator Agent, which is embedded in a cloud and
is intended to merge the data centrally. This is also not
the best choice for every use case. If, for example, a more
complex network of storage nodes exists and the aim is to
keep the dataset aggregated but still partitioned on different
storage nodes, it would be possible to introduce another
agent. This agent would then have the task of orchestrating
different Orchestrator Agents that are located on different
storage nodes in order to realize two levels of abstraction.
Optionally, simply communicating directly with the different
Orchestrator Agents on the different storage nodes can be
applied, but then the interaction with the system would
be more cumbersome because then the user has a higher
complexity since it now has to use different entities to
communicate with the system.

A second use case is employed to validate the pipeline’s
adaptability. In this instance, the objective is to gather data
on object detection. Instead of consuming camera streams,
we now consume a Kafka topic, into which edge computers
push the results of their object detection. The edge computers
will use this data to determine the trajectories of objects on
the infrastructure to predict the behavior of these objects
(e.g., pedestrians or cars) [21] and then communicate the
information about the driving behavior of other road users
to our autonomous test car. This should enable the car to
optimize its behavior, react to cyclists driving the wrong
way, and so forth. Again, the Capture and Process Agent can
easily acquire this data and transfer it to the central point
of the Orchestrator Agent. Instead of generating a final zip
file that contains the image data, this time, we generate a
JSON file that documents the objects and their movement,
including timestamps, the identifier of the object, and its
current geolocation. The pipeline is not benchmarked for this
use case because it is important to keep the work within the
scope of the paper, which focuses on image data.

V. EVALUATION
To evaluate the efficiency and reliability of our data
acquisition pipeline, we implement four quantitative tests:
measuring the generation time of datasets, determining the
number of lost frames, measuring the maximum length of the
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FIGURE 1. Architecture of our system. The Orchestrator Agent initiates the pipeline by calling the action of the Capture and Process Agent, passing
initial parameters such as the time when the agent should start the process. The agent then starts to capture and process frames in parallel. When
done, it zips the images to a single file and spawns a Data Stream Agent, which is solely responsible for providing stream access to the file. A File
Manager Agent has an overview of the local storage and provides users and other agents with information about existing datasets.

queue of images waiting to be processed and the processing
time for each image.

First, we focus on the duration of data generation. Here,
we measure the time required to create datasets for different
time periods. These time periods vary; for example, we could
generate data for an hour, a half hour, and so forth. It is
also important to consider different frame rates. By testing
different frame rates, such as 30 fpm (frames per minute),
60 fpm, or 120 fpm, we can better understand how the
performance of our pipeline is affected by data density.
Higher frame rates could lead to longer generation times
and losses of frames, which is critical. Information about
our duration and frame setups is in Table 2 as well as
the results. The present results show that even taking into
account high frame rates and extended acquisition periods,
the time required for the final generation of the dataset is
acceptable, with around four hours for a high-density dataset
of 240 frames per minute and one hour in total of capturing
time. This result is achieved despite the very high resolution.

The second test focuses on the number of frames lost
during the acquisition process. This is a crucial factor for
data quality. Lost frames can indicate various problems,
such as network delays, storage bottlenecks, or processing
errors. By systematically capturing and analyzing these
losses at different frame rates and over different time
periods, we gain valuable insights into the robustness and
reliability of our pipeline. The present results reveal that the
developed data acquisition pipeline, even when confronted
with high frame rates and extended time intervals, has an
impressively low error rate in terms of missing frames.
This finding is particularly noteworthy as it highlights the
robustness and reliability of the system under different and

TABLE 2. Overall setup of our experiments and the corresponding
execution time results. Duration describes the time a dataset is recorded.
Time taken is the result in terms of how long it took to complete the
experiment for the given duration and frame rate.

potentially challenging conditions. In particular, it shows that
the pipeline maintains consistent precision regardless of the
speed or duration of data collection. Only in one experiment,
there is a loss of 18 frames. This happened for the case
of one minute with 120 frames per minute. Instead of the
expected 120 frames, as described in Table 2 row 3 under the
column Frames in Total, we only collected 102 frames. For
all other experiments, the Frames in Total, which describes
the expected number of frames given the duration of the
experiment, and the Frames per Minute, the resulting number
of frames met the expectations. When capturing frames from
an RTSP camera, the network may become congested due
to high traffic. We suspect that this led to network overload,
resulting in packet loss and missing frames.
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FIGURE 2. Measuring the maximum queue length of images waiting to be
processed.

Next, we look at the maximum length of the queue of
images waiting to be processed. This value, particularly the
behavior about increasing the duration of the experiment,
gives us information about the extent to which the system
works consistently. If the queues become very large in some
cases, the system will not be reliable, and a large amount of
RAMwould have to be provided to cope with the fluctuations
in the queue. As the images are only saved once they are
anonymized, only the RAM is affected up to this point. Here,
the queue increases linearly depending on the frames per
minute, indicating that the system works consistently, see
Figure 2. For the experiment with 60 frames per minute, there
is a negligible increase, which is realized without problems
using smaller RAM. For the experiment with 240 frames per
minute and a length of 60 minutes, there is a peak value
of approx. 12,000 images in the queue, which is due, in
particular, to the serial processing of the images. Such a
large queue can overload the system for smaller systems
with little RAM. Here, it is important to adapt the pipeline
to the respective hardware possibilities to keep the system
stable. The observed linear increase in the queue size with
higher image processing rates can significantly impact the
edge computing system. In scenarios where large volumes
of data are processed–such as during peak traffic times—
the inability of the system to handle these spikes efficiently,
in addition to the data acquisition itself that takes quite
many machine resources, might cause a bottleneck. However,
when the queue size increases linearly with the number
of images processed per minute, it provides a transparent
and predictable resource usage pattern. This predictability
is crucial for effectively managing and allocating system
resources on the edge computer. Therefore, the issue
explained can be mitigated by applying a proper strategy
(such as reducing the allocation of machine learning tasks
for a period). Overall, the results meet expectations and show
consistent behavior.

In our last test, we look at the average time in which an
image is processed. This value is important to determine
the extent to which the overall performance of the system

FIGURE 3. Capturing the distribution of the processing time for each
image.

is affected by the anonymization step. If it is too slow, the
entire architecture is affected. For this purpose, we created
a histogram across all experiments; see Figure 3. The results
show that the vast majority of images take around 1 second to
be processed and returned to the Capture and Process Agent.
Some images reach peak values of approx. 0.6, while a larger
proportion takes approx. 1.2 to 1.3 seconds. This is roughly
normal behavior. Surprisingly, a second high-frequency range
exists, in the range of 3.5 to 4.5 seconds processing time.
It seems that the system has some phases in which the pro-
cessing step does not run optimally, and then the processing
time is increased. However, since the results are such that
the outliers themselves form a second, independent normal
distribution, we conclude that although the system is slower
than usual, it is still stable, and no significant downtimes
have occurred. In principle, this can be critical if the pipeline
is also used for real-time data acquisition pipelines, i.e.,
if the anonymized data is transferred continuously. In such a
case, if one of the components experiences excessive delays,
it inevitably follows that certain use cases can no longer
be realized. One example of this is timely online learning.
Overall, the results show that the processing step still has
room for improvement but is performing efficiently enough
to meet the system architecture.

The system offers potential for optimization. As already
mentioned, parallel processing can significantly accelerate
the anonymization task. In addition, the possibility of simply
connecting agents developed in the OPACA framework with
other non-agent microservices is used (cf. [20]), which is
why an agent did not take over the anonymization process.
In principle, this could also be modeled as such. Also, the
transfer of the large dataset files to the cloud can be done
with more proper protocols, such as FTP if needed. Finally,
we have decided to transfer the data to the cloud as a ZIP file
only on request. In principle, OPACA also allows the data to
be transferred continuously as soon as it has been processed
without waiting for the ZIP to be created. However, as we
operate many edges and do not have a real-time requirement
for the creation of data records, we have decided against this.
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A. COMPARISON
In the following, we will compare our architecture against the
related work, presented in section III.

Our current modeling approach does not make a clear
separation between agents in charge of handling physical
devices and those in charge of data processing tasks such
as anonymization. In our framework, a main agent is
tasked with both collecting raw data and directing the
anonymization process. This contrasts to approaches such
as that of Hu et al. [6], which use a component called the
Sensory Array specifically to connect to physical sensors.
Their model’s clear separation of responsibilities improves
its usability within more complex architectures. Without a
clear separation, agents can adapt to multiple roles, allowing
them to perform different tasks, including sensor interactions,
data processing, and communication. This flexibility can
simplify development because a single agent might be used
in different contexts. However, it can also lead to complex
code as agents grow to accommodate different functionalities,
making maintenance and debugging more difficult. This is
particularly critical when you consider the processing of lidar
data, for example, which can become particularly complex.
Mixing these with other functionalities would then quickly
become very critical. Without dedicated agents for sensor
interactions, the same agents performing other tasks may face
resource conflicts. For example, an agent may struggle to
balance sensor-related responsibilities with data processing
or communication tasks, potentially causing performance
issues. The processing of lidar data is also a good example
here, as this data is particularly complex and requires a lot
of computing power. This can lead to inconsistent handling
of sensor data, especially under heavy load, which affects
overall system reliability. Having dedicated agents for sensor
interactions ensures that these agents are highly specialized
and optimized for this specific task. This specialization can
lead to more efficient and reliable sensor data handling
because the agents have a focused purpose. It also makes
the system easier to maintain since any problems with sensor
interactions can be traced back to these specific agents. This
clear separation requires robust mechanisms for coordination
between the sensor-interacting agents and other agents
responsible for data processing or communication. It requires
well-defined communication protocols and interfaces, adding
complexity to the system design. Developers must ensure
seamless data flow and synchronization between agents,
which can be time-consuming and require careful planning.

Compared to Xu et al. [7] there is also a big difference
in the way the data agent collects data. In Xu et al.’s
approach, the data agent should have some intelligence
to decide whether the collected data is sufficient or not.
In contrast, in our system, we have a centralization in the
way that the acquisition itself is orchestrated, rather than
up to the individual agents. While the authors’ approach
is more flexible than ours, the purpose is also different.
We are interested in creating specific datasets, so we want
to be able to predefine our setup and have it orchestrated

by an agent. However, this also has a disadvantage. If, for
example, an object suddenly appears and data acquisition is
paused due to the frequency of the sensor readout rate, this
object is not included in the data record. In the related work,
the data agent is also responsible for independently finding
data in, for example, databases. Therefore, the data agent
needs more flexibility for its discovery tasks. This also has
its pitfalls. The operation of intelligent agents necessitates
the implementation of sophisticated algorithms and the
availability of substantial computational resources, both of
which are essential for formulating well-informed decisions.
To illustrate, in heavy traffic conditions, an intelligent agent
would be required to process data from several sensors,
analyze traffic patterns, and determine, in real time, which
data is most important.

Reichherzer et al. [17] used a very simple architecture.
This can, therefore, also be transferred well, but it is poorly
developed in terms of how information is exchanged between
agents, namely via databases. This approach can be very
cumbersome, depending on the database chosen. If many
agents are involved who all want to share information with
each other but which may not be of interest for persistent
storage, this generates a high load on the databases. On
the other hand, it simplifies data synchronization across
the system, as many agents can access the same up-to-
date information from the database. Peer-to-peer approaches
between the agents can perform considerably better if
information is exchanged directly between them. Of course,
this requires more effort in terms of architecture, as the
interfaces have to be defined. Also, the bandwidth might
be more loaded if one agent shares the same information
with multiple agents; for instance, objection detection data
detected by one vehicle is sent to the surrounding vehicles
that might be affected by the same obstacle.

In terms of design, our approach is closest to Bodrozic et al.
[16]. The distinction here is particularly important concerning
those agents that interact directly with the sensors to collect
data and those that deal with data storage. Nevertheless,
a clear modeling of the agent system is missing here,
particularly a systematic structuring of functionalities in
actions and the embedding in the environment where agents
share information about themselves and their functionalities.
Developing a similar system would require a complete
re-modeling in advance, which is why the transfer can only
be realized to a limited extent. In comparison, our agents are
embedded in an environment, share information about their
functionalities, but also about how these functionalities are
used, share their activity, the networking of the individual
functionalities is easily realized and by using the OPACAAPI
all the interfaces are clearly defined. This makes our approach
easier to transfer to other applications in comparison to
Bodrozic and the rest of the related work. Furthermore, using
containerized agents makes it easy to embed our architecture
into popular software architectures, such as Kubernetes.3

3https://kubernetes.io
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B. LIMITATIONS
Despite its advantages, our architecture also has some gaps
that need to be filled in the future. Resource contention
among agents for CPU, memory, and network bandwidth
can break down the system if the container configurations
are not well chosen. Adding additional concepts to avoid
such behavior is crucial for large-scale applications based
on our architecture. To mitigate the risk of system failures,
a robust monitoring and alerting system capable of tracking
resource usage and performance metrics in real-time must
be implemented. Furthermore, the Orchestrator Agent, as the
central coordinating entity, represents a single point of
failure. Therefore, it is posing a risk to the system reliability
and availability unless complex redundancy and failover
mechanisms are implemented. This limitation is mitigated
because the other agents can be used without the Orchestrator
Agent. In practice, however, users want to use only one
interface to the system, not several. Understanding the
principles of all entities can be a hurdle. To mitigate
this issue, orchestration tools such as Kubernetes can be
employed to implement redundancy for the Orchestrator
Agent. Instead of relying on a single agent, multiple agents
are deployed to overtake the role of the Orchestrator Agent
in the event of a failure. This approach is not limited to
the Orchestrator Agent but can also be employed for all
the other agents, such as the Capture and Process Agent. In
addition, robust error handling is essential. At the moment,
more concrete information about data losses and their reasons
are not given, especially because the monitoring of network
issue, can be cumbersome. Overcoming these limitations
will enable a broader application of our architecture in the
future.

VI. DISCUSSION
In the following, we will shed light on the concrete
contribution we made in the paper, as well as the conclusions
we can draw from the results and future directions of work.

A. CONTRIBUTION
This paper presents an innovative system for a data pipeline
based on an agent-based approach. This system consists
of different specialized agents, each performing dedicated
tasks. One agent is solely responsible for capturing and
processing data from a camera stream, while another agent
provides this processed data as a stream. A third agent
handles file management, and a fourth agent orchestrates the
entire data collection. Each agent exposes its functionality
through a REST interface, enabling seamless interaction
and integration. This modular approach not only streamlines
the data collection process but also provides flexibility
and scalability, making the system easily extensible and
adaptable to different data acquisition tasks. Furthermore,
due to its properties, the pipeline is also well-suited to
large-scale infrastructure, such as IoT testbeds and other use
cases.

VII. CONCLUSION
The results of our work clearly demonstrate the effectiveness
and efficiency of the agent-based architecture. Particularly
noteworthy is its suitability for the acquisition and processing
of large datasets. Furthermore, results have shown that the
data acquisition pipeline is robust and yields accurate datasets
even for high frame rates and long durations. The error rate in
terms of missing frames is noticeably low. The system is also
consistent and scales linearly. The processing of individual
frames follows a narrow normal distribution, with a deviation
in the area of higher processing times. Our work, therefore,
confirms the assumptions of the related work. At the same
time, it provides further approaches as to how potential
modeling of possible systems could look. Our approach and
the agent structures are generic and can be used for different
use cases, depending on the domain, by slightly adjusting
those.

A. FUTURE WORK
The incorporation of sensor fusion into the existing data
acquisition pipeline can significantly enhance its capabilities
by integrating distributed sensor data to make the data more
comprehensive. This involves extending the Capture and
Process Agent to handle inputs frommultiple sensors, such as
cameras and LiDAR sensors, and fusing their data to produce
more detailed and versatile datasets. The File Manager Agent
manages the increased volume and complexity of data,
ensuring efficient data overview. The Orchestrator Agent
would coordinate the acquisition process across different
sensor types, ensuring synchronized data acquisition. Finally,
the Data Stream Agent will deliver the fused sensor data in
real-time or in a historical manner.

APPENDIX
A. SETUP
For the experiment, we used a GeForce RTX 3080 Lite Hash
Rate graphic card, deployed on aNuvo-8108GC-XL edge PC.
The used camera has a resolution of 1920× 1080 (Full HD).
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