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ABSTRACT In this study, a series arc fault detection method combining load recognition and multilayer
perceptron-support vector machine (MLP-SVM) is proposed. The method addresses the issue of interfering
loads on series arc fault detection and the lack of significant arc fault features in some loads. Initially, the
eigenvalues of the line currents for single and mixed loads are extracted in the time domain, both during arc
fault and normal conditions. Subsequently, load recognition is performed using a complex matrix calculation
method. Then, a feature matrix and history matrix are created for each load. The history matrix is then
used to compare the data in the feature matrix to detect any abnormalities in the eigenvalues of each in
the presence of any irregularity, the line current flowing through this load will be consistently gathered
throughout several cycles, and processed to obtain the eigenvalues, then fed into the MLP-SVM model for
training. The classification outcomes will be achieved by means of model train. The results demonstrate
that the method effectively prevents misclassification of interfering loads, resulting in improved accuracy in
series arc fault detection.

INDEX TERMS Load recognition, complex matrix, characteristic matrix, history matrix, MLP-SVM
algorithm.

I. INTRODUCTION
Arc fault is significant causative agent of electrical fires [1],
[2], [3], [4]. In AC systems, there are three main types of
arc fault: parallel, grounded, and series. Among these, shunt
and grounding arc fault are relatively easy to detect due to
the large current they produce. Conversely, series arc fault
is more challenging to detect because the amplitude of the
line current during a series arc fault is similar to the current
amplitude under normal operating conditions. Additionally,
the current waveform in series arc fault resembles that of
many nonlinear loads, making detection more complex and
crucial.

Previous studies [5], [6], [7], [8], [9] have utilized the phys-
ical properties of arc light, arc sound, and electromagnetic
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radiation to detect and locate series arc fault. However, these
methods are generally limited to specific switchgear cabinets
and are not easily applicable to other scenarios. Consequently,
some researchers have focused on detecting arc faults by
extracting current or voltage eigenvalues [10], [11], [12],
[13]. For instance, Literature [12] analyzed the behavior of
line current under different loads and the relationship between
voltage and current during series arc fault, using features
such as the shoulder of the fault current waveform, pulse
current, and randomness to detect arc fault. Literature [13]
presents an algebraic derivative method of the line current in
order to detect the presence of series arcs in an AC or DC
electrical installation. However, solely analyzing current or
voltage eigenvalues can lead to susceptibility to interference
from other loads.

With the advancement of artificial intelligence, machine
learning algorithms have shown promising performance in
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fault detection across various fields [14], [15], [16], [17].
The use of machine learning for series arc fault detection is
an emerging area of research. For example, Literature [18]
proposed a feature selection method combining Euclidean
distance, classifier criterion, max-relevance min-redundancy
and clustering index is proposed, and a variational Bayesian
optimization-based stochastic configuration network (VB-
SCN) algorithm for series arc fault detection. Literature [19]
combined wavelet transform and singular value decomposi-
tion (SVD) to extract characteristics of localized discharge
signals. Literature [20] developed a tandem arc fault detection
method based on category identification and artificial neural
networks after analyzing the current characteristics of arc
fault under different loads. Literature [21] proposed a low
voltage AC series arc fault localization method based on a
radial basis function (RBF) neural network. These methods,
however, often require extensive data training and involve
complex algorithms, which can limit their practicality.

When a series arc fault occurs, the line current waveform
can resemble the current waveform of some loads during
normal operation, potentially leading to misjudgments. Addi-
tionally, series arc fault impact the line current differently
depending on the type of load. If the load type is known
in advance during series arc fault detection, the accuracy of
detecting arc fault can be significantly improved. Therefore,
in recent years, several academics have suggested incorpo-
rating load identification prior to series arc fault detection
in order to mitigate the impact of specific disruptive loads.
This approach has the potential to significantly enhance the
accuracy of the algorithm, making it more applicable and
practical [20], [22], [23]. Literature [20] categorizes loads
into three types: resistive, resistive-inductive, and rectifying
circuits with capacitive filters. It utilizes neural networks for
series arc fault detection, and optimizes the initial weights
and thresholds of these neural networks using genetic algo-
rithms. Reference [22] presented a methodology that utilized
a combined principal component analysis and support vector
machine (PCA-SVM) model to identify loads and detect
series arcs. Based on the fact that different types of load
circuits exhibit distinct current characteristics, the litera-
ture [23] trained a Learning Vector Quantization Neural
Network (LVQ-NN) and developed a Particle Swarm Opti-
mization Support Vector Machine (PSO-SVM) algorithm to
detect arc fault. However, Literature [20] fails to identify
specific loads, increasing the complexity of the detection
model. Furthermore, Literature [22], [23] only focuses on sin-
gle load identification, which introduces certain limitations.
To address the aforementioned issues, this work provides a
series arc fault detection approach that combines load recog-
nition and the MLP-SVM model. In the load identification
link, the formula method is first used to solve the complex
matrix equation to determine whether the load is a single load
and reflect its type; conversely, if the formula method is used
to determine the load as a composite load, the combination
of the formula method and the exhaustive method is used
to determine the individual components in the mixed load

to achieve effective identification of the mixed load. The
load identification realized by these two methods avoids the
influence of the wide variety of load types on arc detection.
Then the MLP-SVM model is utilized to detect series arc
fault, which reduces the difficulty of series arc fault detection
and also achieves higher detection accuracy.

II. EXPERIMENTAL PLATFORM CONSTRUCTION
Figure 1 displays the schematic diagram of an AC series
arc fault experiment, which consists of an AC power source,
an arc generating device, a signal acquisition device, and
a load. This study presents the construction of a series arc
fault test platform, which adheres to the relevant requirements
both domestically and internationally [24], [25], [26]. The
platform is depicted in Figure 2.

FIGURE 1. Experimental schematic.

FIGURE 2. Arc fault experiment platform.

The fault arc generator in this scenario comprises a sta-
tionary electrode, a mobile electrode, and a stepper motor
for precisely modifying the gap between the electrodes. The
stepper motor is employed to precisely position the moveable
slider in order to achieve complete contact between the two
electrodes. After that, the circuit is powered, and the distance
between the two electrodes is incrementally modified using
the adjustable slider. An electric arc is formed when the
distance between the two electrodes hits a specific threshold.
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TABLE 1. Load parameter information table.

The experiment collected data such as the waveform of
arc voltage, load terminal voltage, and line current. The
sampling frequency was 50kHz, meaning that 1,000 points
were recorded per cycle at the industrial frequency of 50Hz.
Table 1 displays the loads employed in this experiment for
the purpose of gathering information. Figure 3 displays the
waveforms of the current flowing through the load in two
scenarios: normal conditions and when an arc fault occurs.

III. BASIC PRINCIPLE AND TESTING PROCESS
A. PRINCIPLES OF MULTILAYER PERCEPTRON
ALGORITHM
The multilayer perceptron (MLP) is a type of neural net-
work that consists of multiple layers, including input, hidden,
and output layers, arranged in a hierarchical structure. The
neurons in each layer are interconnected through weights
and undergo a nonlinear transformation through an activation
function. MLP is capable of approximating any continuous
function, making it suitable for solving nonlinear regression
problems. The objective of training the MLP is to optimize
the hyperparameters by adjusting the weights and bias values
in order to minimize the loss function [27], [28]. Figure 4 dis-
plays the block diagram illustrating the structure. The input
variables are denoted as x1, xj , and xM . The hidden layer
consists of the neuron models θ1, θi, and θq. The output layer
contains the neurons α1, αk and αL. The output variables are
represented byO1,Ok, andOL. Theweight between xM in the
input layer and neuron θq in the hidden layer is represented
by the variable wqM . Similarly, the weight between neuron
θq in the hidden layer and neuron αL in the output layer is
represented by the variable wLq.

B. PRINCIPLES OF SUPPORT VECTOR MACHINE
ALGORITHM
Support Vector Machine (SVM) algorithm is a binary classi-
fication model, which is to find a hyperplane in the feature

FIGURE 3. Line current waveforms for loads under normal conditions and
under arcing fault conditions.
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FIGURE 3. (Continued.) Line current waveforms for loads under normal
conditions and under arcing fault conditions.

FIGURE 4. Schematic diagram of MLP algorithm.

space that can separate samples of different classes and
maximize the distance from the nearest sample point to the
hyperplane [29], [30], [31]. For example, for a given set of
training samples as M, ai is the ith feature vector and bi is
the class labeling, w is the plane normal vector and y is the
intercept. it can be partitioned by a hyperplane as represented
in equation (1).

wMa+ y = 0 (1)

The minimum distance between the training sample points
under two different classifications is defined as equation (2).

b = min
(a|b=1)

wMa+ y
|w|

− max
(a|b=−1)

wMa+ y
|w|

=
2

|w|
(2)

Thus, as in equation (3), the SVM algorithm models the
maximum segmentation hyperplane problem by optimizing

the following constraints.

max
w,y

1
2

∥ w2
∥ s.t.bi

(
wMai + y

)
⩾ 1, i = 1, 2, 3, · · · ,m

(3)

For convex quadratic programming formulations contain-
ing inequality constraints, the optimal parameters w and ycan
be solved using the Lagrange multiplier method and the
pairwise algorithm.

C. MLP-SVM COMBINED MODELING PRINCIPLES
Integrated learning is an educational approach that com-
bines many less effective learners by assigning weights to
the samples and learners in order to achieve a more pow-
erful learner with exceptional generalization abilities. This
approach necessitates that individual learners possess a spe-
cific degree of precision as well as a specific degree of
diversity. The fundamental concept is to employ diverse sam-
pling or preprocessing techniques on the training data in order
to create several base learners and merge them into a unified
model, hence enhancing the overall predictive accuracy and
generalization capability.

Hence, this article aims to integrate the MLP method
with the SVM algorithm to create the MLP-SVM com-
bined model. Initially, the model is trained using a set of
hyperparameters selected from a given space. The training
is performed on the training set, while the validation set is
used for testing. This process is repeated iteratively within
the hyperparameter selection space to identify the best model
with optimal hyperparameters. The accuracy of the validation
set on themodel is recorded throughout this process. Next, the
accuracy of various models on the validation set is evaluated.
If there is a significant difference in accuracy, the model
with the higher accuracy is chosen as the final model. If the
difference in accuracy is less than a certain threshold θ ,
the two models are combined using weights, and the final
prediction is calculated as the weighted sum of the predicted
values from both models. Figure 5 displays the diagram of the
integrated model.

D. TESTING PROCESS
This paper first identifies the loads using a complex matrix.
It then establishes a feature matrix and a history matrix
for each load. The loads are monitored through the history
matrix, and the monitoring values in the history matrix are
compared with the feature matrix for assessment. If there is
an eigenvalue in the load’s monitoring value that exceeds
the threshold range, the line current data within 1 second
is collected continuously as a test set for the load. This test
set is then inputted into the MLP-SVM model for detection,
and the classification results are obtained after training the
model. As per the literature standards [25], [26], if there are
14 or more half-cycle arc faults within 1 second, the arc fault
detector must promptly emit an alarm signal. Hence, if there
are 14 anomalous sample points in the classification outcome,
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FIGURE 5. Schematic diagram of the combined MLP-SVM model.

FIGURE 6. Flowchart of the combined model.

it is determined that a fault in the form of an arc has transpired
in the line. Figure 6 displays the flow chart for detection.

IV. LOAD RECOGNITION
A. THE NEED FOR LOAD RECOGNITION
To mitigate the impact of specific interfering loads on arc
detection, incorporating load recognition prior to arc detec-

tion might enhance the precision of future arc fault detection
methods. The current data of the line under normal operation
and during the occurrence of a series fault arcing state are
gathered by conducting experiments with the loads listed in
Table 1. Subsequently, both the regular functioning of each
load and the instances of arc fault are categorized. The loads
are categorized and labeled according to their load serial
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FIGURE 7. Load categorization confusion matrix diagram.

numbers in Table 1. Load serial number 1 is categorized as
category 1, representing normal operation. Category 2 rep-
resents an arcing fault happening. Load serial number 2 is
categorized as category 3, representing normal operation,
and so on. The loads are classified based on the MLP-SVM
model, and the accuracy of the predicted labels is assessed
using the confusion matrix. The confusion matrix in this
scenario represents the connection between the predicted and
actual labels of the samples, illustrating the model’s binary
classification difficulty.

The confusion matrix was utilized to compare the actual
categories of the loads with the categories in the post-
categorization. The outcomes of the experiment are depicted
in Figure 7. The confusion matrix in Figure 7 represents
the true categorization of the samples in each row, and the
expected categorization of the samples in each column.

Figure 7 illustrates a phenomenon where certain loads in
the normal operation and arc fault categories are incorrectly
classified into different categories. For example, a small
amount of class 8 was categorized into class 10, class 11, and
class 14, and most were categorized into class 12. Class 12
is mostly categorized into class 14. The presence of power
electronic switches in these loads, along with the flat shoulder
phenomenon, current waveform shape, and other character-
istics, complicates the classification process and leads to
the phenomenon of categorization crossover. This makes it
difficult to detect arc faults and increases the likelihood of
misjudging line fault arcs in the absence of load categoriza-
tion. Thus, this article aims to simplify the task of identifying
all loads by accurately recognizing the loads and arc fault
detection on various loads.

B. FEATURE VALUE SELECTION FOR LOAD RECOGNITION
Kirchhoff’s current law states that the total current flowing
through a load in a circuit is equal to the sum of the cur-
rents flowing through each branch of the circuit. The Fourier

transform has the purpose of breaking down the waveform
of a signal in the time domain into a combination of several
sinusoids with varying frequencies. Hence, in this study, the
fast fourier transform (FFT) technique is employed to convert
the normal operating current of each load. By performing
calculations, the real and imaginary components of the fun-
damental current amplitude and each harmonic amplitude are
determined. These values serve as the indicators for load
identification [32]. The outcome of the FFT transformation
aligns with the principle of superposition, specifically.

(Ia1 + jIb1) + (Ia2 + jIb2)

+ · · · + (Ian + jIbn) = ISUM + jISUM (4)

In Eq. (4), Ia1 and jIb1 are the real and imaginary parts,
respectively, of the A1 load after FFT transformation of the
current signal, Ia2 and jIb2 are the real and imaginary parts,
respectively, of the A2 load after FFT transformation, and so
on.

Therefore, the process of load identification can be trans-
formed into a matrix form as shown in equation (5),

AX = B (5)

In equation (5),

XT = (X1,X2,X3, · · · ,Xn)

BT = (I1 + jI1, I3 + jI3, I5 + jI5, I7 + jI7, I9 + jI9)

A =


a1 + ja1 b1 + jb1 c1 + jc1 · · · n1 + jn1
a3 + ja3 b3 + jb3 c3 + jc3 · · · n3 + jn3
a5 + ja5 b5 + jb5 c5 + jc5 · · · n5 + jn5
a7 + ja7 b7 + jb7 c7 + jc7 · · · n7 + jn7
a9 + ja9 b9 + jb9 c9 + jc9 · · · n9 + jn9


where a1 + ja1 denotes the real and imaginary parts of the
fundamental of the current of load a, a3+ ja3 denotes the real
and imaginary parts of the third harmonic of the current of
load a, and so on. X is the required solution and B is a matrix
of order 5∗1.

C. METHOD OF LOAD RECOGNITION AND INSPECTION
PROCESS
This study combines the formula approach with the exhaus-
tive method proposed in the literature [32] to improve load
identification detection. By doing so, it decreases misclas-
sification caused by the formula method and enhances the
detection rate of the exhaustive method. The process of using
the formulaic approach to solve Equation (5) and obtain the
solution for X is demonstrated in Equation (6).

X = (A′A)−1A′B (6)

The solution value of the circuit is directly proportional to
the number of loads connected to it. The exhaustive enumer-
ation method involves progressively traversing all the data in
a dataset where all the answers are present in order to identify
the one that satisfies the user’s criteria. Setting the number of
standard individual loads in the circuit to five. To completely
deplete the circuit, a single load is referred to as a one-time
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TABLE 2. Real and imaginary parts of 8 loads.

TABLE 3. Formula load recognition results.

FIGURE 8. Exhaustive array.

exhaustion, as seen in Figure 8. Therefore, at this juncture,
it is necessary to exhaust the circuit 5 times. To calculate
mixed loads, add the real and imaginary components of each
individual load individually. If there is a significant discrep-
ancy between the calculated results and the actual results, it is
required to continue the process of elimination until the actual
array is identified in order to achieve load recognition.

The real and imaginary components of the fundamental
and each harmonic of the normal line current are calculated
using the FFT transform, as presented in Table 2. The load
is identified using a mix of the formula technique and the
exhaustive method. The formula method is initially employed
to solve the complex matrix problem and ascertain if the
load is singular or not. Furthermore, when dealing with
mixed loads, the formula method exhibits a significant rate
of misjudgment, particularly when many load combinations
are involved. Thus, the initial step is to determine the solution
for X. Next, the calculated result of the derived solution
is compared to the actual value. If the comparison does
not meet the error percentage of the exhaustive method,
the solution for X, combined with the exhaustive method,
is used to determine the specific combination of mixed
loads.

D. DETECTION RESULTS OF LOAD RECOGNITION
Initially, the loads in Table 1 are computed utilizing the
formulaic approach, and the corresponding test outcomes are
presented in Table 3. In Table 1, the single loads with load
numbers 1 to 5 are represented consecutively by the letters a
to e.

In Table 3, the first five working conditions have a load
value of 1 in the theoretically calculated matrix, while the
other values are 0. This indicates that only one load is con-
nected to the circuit during this time. However, throughout
the process of identifying the load, the data collected for sam-
pling is influenced by the voltage of the power grid or other
external factors. As a result, there is a certain degree of error
when comparing the real sampling data with the ideal data
after transformation. This inaccuracy results in the produced
results during the solution process typically being imprecise
numbers, but rather values that vary within a specific range.
Hence, this article permits a margin of error of 25% in the
outcomes obtained by the formulaic approach to problem-
solving. Specifically, the derived value of X is permitted to
vary between 0.75 and 1.25. Any results exceeding the error
are considered invalid values. Table 3 demonstrates that the
formula technique has a strong capability in identifying a
single load, as the value in the solution X is nearly equal to 1.
Additionally, the method can also recognize two mixed loads
when a certain degree of error is permitted. However, when
considering three mixed loads, there is a discrepancy between
the solution’s results and the actual results for comparison.
The loads accounted for in the solution only comprise the
evaporative cooling fan and the display screen, while exclud-
ing the electric fan load. Hence, it is imperative to persist
in identifying the three amalgamated loads using the com-
prehensive approach. If the exhaustive enumeration approach
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TABLE 4. Exhaustive load identification results.

is used directly to the three mixed loads listed in Table 1,
a minimum of 16 exhaustive enumerations and amaximum of
25 enumerations are required to obtain the accurate outcome.
First, calculate the answer for X using the formula technique.
The results of the solution will help define the loads for the
evaporative cooling fan and display. Then, use the exhaustive
method to identify the loads, which can reduce the num-
ber of exhaustive calculations. In this scenario, it requires
a maximum of three iterations to obtain the outcome. This
work exclusively presents the outcomes of the comprehensive
approach utilized for identifying mixed loads, as displayed
in Table 4.
The utilization of both formulaic and exhaustive tech-

niques allows for precise recognition of individual and
blended loads, hence minimizing the frequency of exhaustive
procedures.

V. EIGENVALUE SELECTION FOR ARC DETECTION
The load’s line currents will be measured under both normal
and arc fault conditions. Subsequently, the eigenvalues will
be retrieved. The eigenvalues that have been obtained are
the amplitude of the current fundamental, the total harmonic
distortion (THD), the flat shoulder, the time-domain integral
value, and the difference-root mean square. Below is an illus-
tration of an eigenvalue analysis conducted on the load of a
vacuum cleaner. Figure 3(e)(f) displays the waveforms of the
vacuum cleaner during both normal and arc fault situations.

A. CURRENT FUNDAMENTAL AMPLITUDE
When a series arcing fault arises on a line, it induces a
substantial alteration in the current waveform inside the cir-
cuit. The fundamental wave is the primary constituent of the
current waveform. Hence, the detection of an arcing defect in
the circuit can be accomplished by monitoring the alteration
in the amplitude of the current’s fundamental waveform [33].
The load’s fundamental current amplitude is determined by
utilizing the Fast Fourier Transform. Figure 9 illustrates that
the current fundamental amplitude typically ranges from
1.39 to 1.40 A under normal operating conditions. However,

FIGURE 9. Plot of current fundamental amplitude for vacuum cleaner
load under normal and fault conditions.

in the event of an arc fault in the line, the amplitude of the
current fundamental experiences noticeable fluctuations.

B. TOTAL HARMONIC DISTORTION
The Total Harmonic Distortion is capable of quantifying
the proximity of the line current to a sinusoidal waveform.
A smaller value indicates a higher proximity to a sine wave.
The Total Harmonic Distortion is a measure of the distortion
in the line current waveform caused by the occurrence of load
arcing faults [33]. In this work, THD is not expressed as a
percentage to facilitate calculations. The calculation formula
is presented in equation (7).

THD =
1
I1

[
n∑
i=2

(Ii)2
] 1

2

(7)

where Ii is the ith harmonic component of the current, and
I1 is the fundamental component of the current. Figure 10
shows that the THD is generally between 0.86 and 0.88 under
normal operation, which is basically stable. When arc fault
occurs, the arc has randomness, which causes the line current
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FIGURE 10. Plot of total harmonic distortion for vacuum cleaner loads
under normal and fault conditions.

waveform to become complex and unstable, thus making the
THD change more significant and unstable.

C. LEVEL SHOULDER
The occurrence of flat shoulder is a significant indication of
the load during a fault arc [20]. Equation (8) displays the
computation for the flat shoulder.

β =

500∑
i=1

Xi

500
(8)

During each half-cycle, a fixed sampling frequency of 50K
is used to collect the current signal of the line. If the absolute
value of the current at the sampling point Xi is below the
threshold In1, and the absolute value of the difference with
the next sampling point is lower than In2, then the point Xi
is considered to be the zero crossing of the current. In this
case, Xi is assigned a value of 1; otherwise, it is assigned a
value of zero. The flat shoulder value β of the current signal
in each half cycle can be determined by tallying the number
of zero rest points near the natural zero point. In order to
mitigate the influence of interference signals and account
for measurement errors, this study chooses a threshold of
0.05A for In1 and 0.1A for In2. It then proceeds to compute
the magnitude of the flat shoulder value of the current β for
each half-cycle. If the maximum value of the current flowing
through the line exceeds 1A, the threshold value for In1 is
set at 0.3A, while the threshold value for In2 is set at 0.1A.
As depicted in Figure 11, the load of the vacuum cleaner
during regular operation typically results in a determined flat
shoulder value ranging from 0.4 to 0.6. However, when a fault
arcing occurs, the majority of cases exhibit a flat shoulder
value exceeding 0.6.

D. TIME DOMAIN INTEGRAL VALUE
During an arc fault, the current waveform of the load will
exhibit a plateau or an extended duration shoulder, leading

FIGURE 11. Flat shoulder plot for normal and faulty vacuum cleaner
loads.

to a reduction in the integral value of the current cycle.
Thus, the present integral value of the cycle can be retrieved
for study [34]. The calculating formula is presented in
equation (9),

Yi =

n∑
j=1

|X (i)j| (9)

where X (i)j is the current value at the jth sampling point of
the ith cycle and n is the total number of sampling points in a
cycle.

Defects arise from variations in load powers, leading to
varying magnitudes of current. This work presents the inte-
gral value change coefficient, which quantifies the rate at
which the integral value of surrounding cycles changes. The
calculation of this coefficient is presented in Equation (10).

Y ′
i =

Yi−1 − Yi
Yi−1

(i = 2, 3, · · ·) (10)

where Yi−1 is the integral value of the previous cycle and Yi
is the integral value of the current cycle.

Figure 12 displays the coefficient of variation for the
integral value of the vacuum cleaner load. During normal
situation, the waveform of the load remains relatively stable
within each cycle, and the rate of change of the integral
value between consecutive cycles approaches zero. When
an arc fault happens, the unpredictable nature of the arcing
causes a noticeable alteration in the current waveform of the
adjacent cycle, leading to a substantial change in the rate of
change.

E. DIFFERENCE-ROOT MEAN SQUARE
During normal load operation, the current waveform exhibits
regular periodicity. However, when arcing occurs, the current
waveform becomes distorted, displaying irregular phenom-
ena. By extracting the difference-root-mean-square value,
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FIGURE 12. Plot of the coefficient of variation of the integral of the
vacuum cleaner load for normal and fault conditions.

one can determine the presence of a faulty arc [34]. The calcu-
lation formula is displayed in equation (11) and equation (12).

y(n)j = X (n)j − X (n− 1)j (11)

In Eq. (11), X (n)j is the value at point j of the nth cycle and
X (n− 1)j is the value at point j of the (n− 1)th cycle.

Zn =

√√√√√ i∑
j=1

y(n)2j

i
(n = 2, 3 · ··) (12)

In Eq. (12), Zn is the root-mean-square of adjacent cycles,
and i is the total number of sampling points in a cycle.

Additional computations are necessary to address the vari-
ations in current intensity among different loads. The root
mean square (rms) magnitude is influenced by the level of
distortion in the adjacent cycle waveform and the amount of
the current. Consequently, the rms value for adjacent cycles
under different loads is measured using Equation (13).

Z ′
n =

1
an−1

√√√√√ i∑
j=1

y(n)2j

i
(n = 2, 3 · ··) (13)

In Eq. (13), Z ′
n is the quantized root-mean-square of adja-

cent cycles, and an−1 denotes the current amplitude of the
(n− 1)th cycle.

Figure 13 displays the test results of the difference-mean-
square of the vacuum cleaner loads. It reveals a notable
rise in the difference-mean-square value when arcing occurs,
compared to when the loads are functioning correctly.

By analyzing Figures 9-13, numerical alterations in the
feature values can be utilized to examine irregularities in the
current waveform resulting from the defective arc, thereby
achieving the detection and identification of the defective
arc. For arc process identification, it is possible to establish
a threshold value for the eigenvalue mentioned above. The
requirement of the threshold value selected is that as many

FIGURE 13. Root-mean-square plot of the difference between normal
and faulty conditions for vacuum cleaner loads.

sample points as possible should be included in the normal
situation, while the occurrence of arc fault line current also
exists in part of the cycle change is not obvious phenomenon,
which will make the eigenvalues during the fault and the
eigenvalues of the normal operation in the numerical value
of the eigenvalues similar, therefore, it is also necessary to
include as few as possible in the range of the threshold value
set in the occurrence of arc fault situation of the sample
points. Based on the waveform analysis above, it is evident
that in order to prevent the impact of minor disturbances
caused by the actual load during normal operation on the
experimental outcomes, the thresholds for the amplitude of
the current fundamental waveform, THD, and time-domain
integral value can be established as the average of the eigen-
values during normal situation plus or minus 0.005. The
threshold for the Root Mean Square of Difference eigenvalue
can be set to the average of the eigenvalues during normal
situation plus or minus 0.001. Similarly, the thresholds for
the flat-shoulder eigenvalues can be set as the average of the
eigenvalues during normal situation plus or minus 0.05. The
thresholds are utilized as the criteria for real-time monitor-
ing of the eigenvalues of the feature matrix and the history
matrix.

VI. CHARACTERIZATION MATRIX AND HISTORY MATRIX
The purpose of the feature matrix is to create a database
of parameters by gathering the distinctive characteristics of
different types of loads. The history matrix is a tool used to
document specific attributes of the current over a duration of
time when the load is operational [32].

A. CREATION OF THE FEATURE MATRIX
The feature matrix is constructed using several feature quan-
tities, including the current fundamental amplitude, THD, flat
shoulder, time-domain integral value coefficient of variation,
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and difference-root-mean-square. These feature quantities
are then used to establish thresholds, which are used as the
foundation for creating a data feature matrix, as presented in
Table 5. The sequence of the order in Table 5 corresponds to
the sequential loading order in Table 1.

TABLE 5. Characteristic matrix.

B. CREATION OF HISTORICAL MATRIX
The Load Characterization Matrix is a database containing
pre-collected eigenvalues. On the other hand, the History
Matrix is a record of the present characteristics of the signal
across a specific time period. During operation, the circuit
is sampled at regular intervals, often every other cycle. The
sampling time can be adjusted to meet specific requirements.
Subsequently, the eigenvalues are extracted by performing
calculations on the sampled data. Once the 7th cycle is
surpassed, the real-time sampling data from the 8th cycle
will replace the data from the 7th cycle. Similarly, the data
from the 7th cycle will replace the data from the 6th cycle,
and so on. This process allows for the real-time display of
data within the last 7 cycles, ensuring the accuracy of the
real-time data. The setting time in this study is 0.5 seconds,
which is equivalent to 25 cycles. For the vacuum cleaner
load, only the initial 7 cycles of data are shown, as presented
in Table 6.

TABLE 6. History matrix.

Based on the provided history matrix, it is evident that
there is an eigenvalue that surpasses the threshold during the
6th cycle. At this point, it is imperative to gather
numerous cycles using the MLP-SVM model for further
analysis.

VII. ARC FAULT DETECTION RESULT AND ANALYSIS
Once the loads have been recognized, tests are performed
on the loads listed in Table 1. A total of 2000 data sets are
collected, consisting of 1000 samples taken under normal
conditions and 1000 samples taken under fault conditions.
This information constitutes a novel dataset. The new dataset
categorizes samples under normal conditions as ‘‘1’’ and
those with arc fault as ‘‘2.’’ Next, the data set is randomly
shuffled and divided into three subsets: 60% is allocated as
the training set, 20% as the validation set, and the remaining
20% as the test set. The training set consists of 1200 samples,
whereas both the validation and test sets consist of 400 sam-
ples each. In this paper, the MLP-SVMmodel will be trained
20 times to take into account the variability caused by random
partitioning of the dataset. By averaging the results of these
runs, we may obtain a more reliable estimate of the model’s
output. The hyperparameters of the kernel function, Kernel,
in the MLP-SVM model are chosen as 0.5, 5, and 50. The
hyperparameters of the neurons in each layer of the MLP are
chosen as [8], [6,4], and [8,8]. Additionally, the value of θ is
set to 0.05.

The training results are obtained by training each load by
MLP-SVMmodel as shown in Fig. 14 and Table 7. According
to Table 7, Table 8 and Figure 14, the training set achieves an
average accuracy of 100% after load recognition. The valida-
tion set achieves an average accuracy of 99.947%, and the test
set achieves an average accuracy of 99.802%.Meanwhile, the
MLP-SVM model also has a good detection effect on loads
with inconspicuous current waveform characteristics, such
as vacuum cleaners, with a detection accuracy of 99.325%.
The output results of the model after load recognition are
compared to the results before load recognition, as presented
in Table 8 and Table 9. The comparison results indicate that
the MLP-SVM model, following load recognition, demon-
strates a high level of accuracy in identifying arc fault. The
classification results have improved by 1.774% compared to
the results obtained before load recognition. And the training
time of the model is shortened, the average training time is
shortened from 57.4233s before load recognition to 0.2284s,
percentage reduction in training time of 99.602%. The MLP-
SVMmodel, after load identification, has a low misjudgment
rate on the test set, demonstrates superior learning capability
for the training data, possesses high reliability in sample
classification, and significantly reduces the model’s running
time.

TABLE 7. Training results for each load after load identification.
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TABLE 8. Accuracy comparison before and after load recognition.

TABLE 9. Average training time after load recognition.

FIGURE 14. Plot of test results for each load after load recognition.

FIGURE 15. Comparison chart of different test methods.

The findings obtained from the detectionmethod described
in this paper are compared with those reported in the
literatures [20], [22], and [23]. The comparison is presented in
Table 10 and Figure 15. Table 10 and Fig. 15 clearly demon-
strate that the average detection accuracy of the method

TABLE 10. Comparison of results of different testing methods.

proposed in this paper is 99.802%, surpassing the detection
results reported in the literatures [20], [22], and [23]. The
load identification method in this paper is more universal,
reduces the complexity of subsequent arc fault detection, and
improves the accuracy of arc fault detection.

VIII. CONCLUSION
In this paper, a series arc fault detection method based on the
combination of load recognition and MLP-SVM is proposed.
To address the issues of series arc fault being easily incorrect
ruling and the arc fault characteristics of some loads being
insignificant, the line current flowing through the load is first
sampled and processed to obtain the eigenvalues. The loads
are then identified using a mix of the formula technique and
the exhaustive method, and the feature and history matrices
for each load are established based on the recognition. Finally,
after comparing the data in the feature matrix and history
matrix, the MLP-SVMmodel is employed to detect series arc
fault.

1. The experimental results show that after load recog-
nition, the average accuracy of series arc fault detection
usingMLP-SVMmodel increases from 98.028% to 99.802%,
while training time decreases from 57.4233s to 0.2284s.

2. Furthermore, the MLP-SVM model is employed to
overcome the problem of the arc fault properties of specific
loads are not significant. The accuracy of the MLP-SVM
model for identifying arc fault in loads with negligible current
waveform features of series arc fault, such as dust catcher,
exceeds 99%.

The method suggested in this research eliminates the
effects of complicated loads on arc detection and improves
arc fault recognition.

CONFLICT OF INTEREST STATEMENT
The authors declare no potential conflict of interests.

REFERENCES
[1] Fire Department of Ministry of Public Security, China Fire Yearbook

(2004–2010, 2012–2013), China Human Re-sources Press, Beijing, China,
2004.

[2] Fire Department of Ministry of Public Security, China Fire Yearbook
(2011), Int. Culture Publishing Company, Beijing, China, 2011.

[3] Fire Department of Ministry of Public Security, China Fire Yearbook
(2014–2018), Yunnan, China, 2014.

[4] Y.-X. Luo, Q. Li, L.-R. Jiang, and Y.-H. Zhou, ‘‘Analysis of Chinese fire
statistics during the period 1997–2017,’’ Fire Saf. J., vol. 125, Oct. 2021,
Art. no. 103400.

[5] C. Xu, J. X. Sun, J. G. Wang, and Y. Luo, ‘‘Study of fault arc protection
based on UV pulse method in high voltage switchgear,’’ Advanced Mate-
rials Research, vol. 853, no. 853, pp. 641–645, 2013.

VOLUME 12, 2024 100197



N. Wu et al.: Research on Series Arc Fault Detection Method Based on the Combination

[6] L. Zhao, Y. Zhou, K.-L. Chen, S.-H. Rau, and W.-J. Lee, ‘‘High-speed
arcing fault detection: Using the light spectrum,’’ IEEE Ind. Appl. Mag.,
vol. 26, no. 3, pp. 29–36, May 2020.

[7] C. Vasile and C. Ioana, ‘‘Arc fault detection & localization by
electromagnetic-acoustic remote sensing,’’ in Proc. IEEE Radio Antenna
Days Indian Ocean, Oct. 2016, pp. 1–2.

[8] A. Mukherjee, A. Routray, and A. K. Samanta, ‘‘Method for online detec-
tion of arcing in low-voltage distribution systems,’’ IEEE Trans. Power
Del., vol. 32, no. 3, pp. 1244–1252, Jun. 2017.

[9] Q. Xiong, S. Ji, L. Zhu, L. Zhong, and Y. Liu, ‘‘A novel DC arc fault
detection method based on electromagnetic radiation signal,’’ IEEE Trans.
Plasma Sci., vol. 45, no. 3, pp. 472–478, Mar. 2017.

[10] J. Lezama, P. Schweitzer, S. Weber, E. Tisserand, and P. Joycux, ‘‘Arc fault
detection based on temporal analysis,’’ in Proc. IEEE 60th Holm Conf.
Electr. Contacts (Holm), Oct. 2014, pp. 1–5.

[11] G. Artale, A. Cataliotti, V. Cosentino, D. Di Cara, S. Nuccio, and G. Tinè,
‘‘Arc fault detection method based on CZT low-frequency harmonic cur-
rent analysis,’’ IEEE Trans. Instrum. Meas., vol. 66, no. 5, pp. 888–896,
May 2017.

[12] Q. Lu, Z. Ye, Y. Zhang, T. Wang, and Z. Gao, ‘‘Analysis of the effects of
arc volt–ampere characteristics on different loads and detection methods
of series arc faults,’’ Energies, vol. 12, no. 2, p. 323, Jan. 2019.

[13] E. Tisserand, J. Lezama, P. Schweitzer, and Y. Berviller, ‘‘Series arcing
detection by algebraic derivative of the current,’’ Electr. Power Syst. Res.,
vol. 119, pp. 91–99, Feb. 2015.

[14] J. Hui and J. Yuan, ‘‘Neural network-based adaptive fault-tolerant control
for load following of a MHTGR with prescribed performance and CRDM
faults,’’ Energy, vol. 257, Oct. 2022, Art. no. 124663.

[15] J. Hui, Y.-K. Lee, and J. Yuan, ‘‘Adaptive active fault-tolerant dynamic
surface load following controller for a modular high-temperature gas-
cooled reactor,’’ Appl. Thermal Eng., vol. 230, Jul. 2023, Art. no. 120727.

[16] J. Hui, Y.-K. Lee, and J. Yuan, ‘‘Load following control of a PWR with
load-dependent parameters and perturbations via fixed-time fractional-
order sliding mode and disturbance observer techniques,’’ Renew. Sustain.
Energy Rev., vol. 184, Sep. 2023, Art. no. 113550.

[17] J. Hui and J. Yuan, ‘‘Chattering-free higher order sliding mode controller
with a high-gain observer for the load following of a pressurized water
reactor,’’ Energy, vol. 223, May 2021, Art. no. 120066.

[18] J. Li, G. Zou, W. Wang, N. Shao, B. Han, and L. Wei, ‘‘Low-voltage series
arc fault detection based on ECMC and VB-SCN,’’ Electric Power Syst.
Res., vol. 218, May 2023, Art. no. 109222.

[19] Q. Lu, T. Wang, B. He, T. Ru, and D. Chen, ‘‘A new series arc fault
identification method based on wavelet transform,’’ in Proc. 43rd Annu.
Conf. IEEE Ind. Electron. Soc., Beijing, China, Oct. 2017, pp. 4817–4822.

[20] X. Han, D. Li, L. Huang, H. Huang, J. Yang, Y. Zhang, X. Wu, and Q. Lu,
‘‘Series arc fault detection method based on category recognition and
artificial neural network,’’ Electronics, vol. 9, no. 9, p. 1367, Aug. 2020.

[21] Q. Gong, Q. Gao, X. Qu, K. Peng, L. Feng, and C. Xiao, ‘‘Low-voltage
AC series arc fault location method based on RBF neural network,’’ Electr.
Power Syst. Res., vol. 229, Apr. 2024, Art. no. 110176.

[22] J. Jiang, Z. Wen, M. Zhao, Y. Bie, C. Li, M. Tan, and C. Zhang,
‘‘Series arc detection and complex load recognition based on principal
component analysis and support vector machine,’’ IEEE Access, vol. 7,
pp. 47221–47229, 2019.

[23] N. Qu, J. Zuo, J. Chen, and Z. Li, ‘‘Series arc fault detection of indoor
power distribution system based on LVQ-NN and PSO-SVM,’’ IEEE
Access, vol. 7, pp. 184020–184028, 2019.

[24] Arc-Fault Circuit-Interrupts, document UL1699, 1999.
[25] National Fire Protection Standardization Technical Committee Fire Detec-

tion and Alarm Sub-Technical Committee, document GB14287.4-2014,
2014.

[26] National Technical Committee for Standardization of Low-voltage Electri-
cal Appliances., document GB/T31143-2014, 2014.

[27] T. Yu, X. Li, Y. Cai, M. Sun, and P. Li, ‘‘S2-MLP: Spatial-shift MLP
architecture for vision,’’ in Proc. IEEE/CVF Winter Conf. Appl. Comput.
Vis. (WACV), Waikoloa, HI, USA, Jan. 2022, pp. 3615–3624.

[28] R. Lin, Z. Zhou, S. You, R. Rao, and C.-C. J. Kuo, ‘‘Geometrical interpre-
tation and design of multilayer perceptrons,’’ IEEE Trans. Neural Netw.
Learn. Syst., pp. 1–15, Feb. 2022.

[29] N. Innan, M. A. Z. Khan, B. Panda, and M. Bennai, ‘‘Enhancing quantum
support vector machines through variational kernel training,’’Quantum Inf.
Process., vol. 22, no. 10, p. 374, Oct. 2023.

[30] S. Saha, A. Saha, T. K. Hembram, B. Kundu, and R. Sarkar, ‘‘Novel
ensemble of deep learning neural network and support vector machine
for landslide susceptibility mapping in Tehri region, Garhwal Himalaya,’’
Geocarto Int., vol. 37, no. 27, pp. 17018–17043, Dec. 2022.

[31] Y.-B. Zhang, P.-Y. Xu, J. Liu, J.-X. He, H.-T. Yang, Y. Zeng, Y.-Y. He, and
C.-F. Yang, ‘‘Comparison of LR, 5-CV SVM, GA SVM, and PSO SVM
for landslide susceptibility assessment in Tibetan Plateau area, China,’’
J. Mountain Sci., vol. 20, no. 4, pp. 979–995, Apr. 2023.

[32] L. W. Zhang, Research on Correlation Algorithm for Power Load Pattern
Recognition. Shijiazhuang, China: Shijiazhuang Railway University, 2013.

[33] Z. Dongsong, Research on Load Identification Technology Based on SVM.
Chengdu, China: Hangzhou University of Electronic Science and Technol-
ogy, 2017.

[34] D. Aihua, K. Linjuan, and D. Jingjing, ‘‘Fault arc detection method based
on mutation theory information fusion,’’ J. Power Syst. Automat., vol. 28,
no. 5, pp. 35–40, 2016.

NENGQI WU was born in Loudi, Hunan, China.
He received the B.Eng. degree from Hebei Univer-
sity of Engineering, in 2023. He is currently pur-
suing the master’s degree in electrical engineering
with China University of Mining and Technology,
Beijing. His major is electrical engineering and
automation. His research interest includes ac series
fault arc detection.

MINGYI PENG was born in Yichun, Jiangxi,
China. He received the B.Eng. degree in electrical
engineering and automation from Chongqing Jiao-
tong University, Chongqing, China, in 2023. He is
currently pursuing the M.Eng. degree in electrical
engineering with China University of Mining and
Technology, Beijing. His research interests include
applications in arc detection for ac and dc faults.

JIAJU WANG received the B.Eng. degree in
electrical engineering from Northwest Minzu Uni-
versity, in 2021. He is currently pursuing the M.S.
degree in electrical engineering with the School
of Mechanical and Electrical Engineering, China
University ofMining and Technology, Beijing. His
research interests include power system protection
and control.

HONGLEI WANG received the bachelor’s degree
from Henan Institute of Science and Technology,
in 2020. He is currently pursuing the master’s
degree in electrical engineering with China Uni-
versity of Mining and Technology, Beijing. His
research interests include coal mine electrical
safety, intelligent power supply and distribution,
and fault arc detection technology.

100198 VOLUME 12, 2024



N. Wu et al.: Research on Series Arc Fault Detection Method Based on the Combination

QIWEI LU received the B.S. degree in electrical
engineering from Heilongjiang University of Sci-
ence and Technology, Harbin, China, in 1997, and
the M.S. and Ph.D. degrees from China Univer-
sity of Mining and Technology, Beijing, China, in
2002 and 2006, respectively. From 2013 to 2014,
he was a Visiting Scholar with the Future
Renewable Electric Energy Delivery and Manage-
ment (FREEDM) Systems Center, North Carolina
State University, Raleigh, NC, USA. He is cur-

rently a Professor with the School of Mechanical Electronic and Information
Engineering, ChinaUniversity ofMining and Technology. His research inter-
ests include dc distribution systems, fault detection, locomotive regenerative
braking energy recovery, and electrical safety.

MINGZHE WU (Member, IEEE) received the
B.Sc. degree in electrical engineering from China
University of Mining and Technology, Beijing,
China, in 2019, and the Ph.D. degree from
the University of Alberta, Canada, in 2023.
From 2017 to 2019, he was a Research Assistant
with the Department of Electrical Engineering,
Tsinghua University, China, involved in power
system resilience and multilevel converters. He is
currently a Lecturer with the Department of Elec-

trical Engineering, China University of Mining and Technology. His current
research interests include topology, modulation, and control of high-power
converters.

HANNING ZHANG was admitted to China
University of Mining and Technology, Beijing,
in 2022. He is currently pursuing the bachelor’s
degree in electrical engineering and automation.
His main research interests include power elec-
tronics and power transmission technology.

FANFAN NI is currently pursuing the bache-
lor’s degree in electrical engineering with China
University of Mining and Technology, Beijing.
His research interests include coal mine electrical
safety, intelligent power supply and distribution,
and fault arc detection technology.

VOLUME 12, 2024 100199


