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ABSTRACT During the years 2018-2024, considerable advancements have been achieved in the use of deep
learning for side channel attacks. The security of cryptographic algorithm implementations is put at risk by
this. The aim is to conceptually keep an eye out for specific types of information loss, like power usage, on a
chip that is doing encryption. Next, one trains a model to identify the encryption key by using expertise of
the underpinning encryption algorithm. The encryption key is then recovered by applying the model to traces
that were obtained from a victim chip. Deep learning is being used in many different fields in the past several
years. Convolutional neural networks and recurrent neural networks, for instance, have demonstrated efficacy
in text generation and object detection in images, respectively. In this paper, we have presented a review on
deep learning models for encryption techniques against side channel attacks with a comparison table. Also,
we have detailed the necessity of hybrid deep learning models for enhancing encryption techniques against
these side channel attacks.

INDEX TERMS Convolutional neural networks, deep learning, encryption, review, side channel attacks.

I. INTRODUCTION

In computer and communications systems [1], security has
long been a prominent problem, and much research has been
done to solve it [2]. Cryptographic algorithms, which include
the likes of symmetric ciphers, public-key ciphers, and hash
functions, are a series of primitives that can be used to develop
security mechanisms that are geared toward achieving certain
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objectives [3]. Network security protocols such as SSH and
TLS, for example, incorporate these primitives in order
to provide authentication between communicating entities,
as well as to ensure the confidentiality and integrity of data
that is communicated. In point of fact, all these security
precautions do is identify the functions that are supposed
to be taken, but they don’t specify how those duties are
supposed to be carried out. For example, the specification
of a security protocol is typically unaffected by the imple-
mentation of encryption algorithms in software running on
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a general processor or by using specialized hardware units.
This is true regardless of whether the memory used to store
intermediate data during these computations is connected to
or independent from the computing unit.

Kocher [4] first proposed employing side-channel analysis
as a way for regaining access to the key via the use of
time series analysis back in 1996.The subsequent widespread
use of algorithms like the RF (random forest) [5] and a
support vector machine (SVM) [6] in the early machine
learning algorithms sparked research on side-channel attacks
founded on machine learning [7]. Machine learning-based
side-channel attacks fall into two separate groups: supervised
and unsupervised, depending on whether the attacker and the
attack victim are using the same experimental equipment.
The profile-based attack [8] along with the non-profiling
attack [9] are corresponding to these two categories. Simple
energy analysis for non-profiling attacks, such as differential
power analysis (DPA) and differential energy analysis (SPA)
[10], mutual information analysis, correlation energy analy-
sis, and correlation power analysis (CPA). There have been
discussions that Mutual Information Analysis (MIA) [11] can
exist in multiple variants. Profiling attacks, as opposed to
non-profiling attacks, consist of two stages: attack testing and
training set analysis and learning. Random attacks [12] and
template attacks [13] are two instances of profiling attacks.
The only way to know whether a product is good is to try it
out. Neural networks are the basis of deep learning, a subtype
of machine learning. At the same time, it is also an innovative
technology that is at the forefront of the third renaissance of
artificial intelligence. Maghrebi and others [14] investigated
the potential of deep learning models such as MLP and CNN
by combining deep learning with side-channel analysis. This
was the first of its kind. A lot of people are now looking at
side-channel analysis that uses deep learning [15].

A. MOTIVATION

Even if physical encryption techniques on both software and
hardware are impervious to side-channel attacks, they are
not impossible. An adversary can recover the encryption
key and decipher encrypted data by taking advantage of
information-dependent leakage sources such as power, time,
noise, and radiation. It is necessary to build defenses in order
to prevent these attacks on computer systems. Because of
its ease of use and little influence on background noise,
power analysis has proven to be the gold standard for side-
channel inquiry. By analyzing trends in power consumption
and data use, devices are able to decrypt encryption. Encryp-
tion systems are often tougher to attack because devices
have defenses against power analysis methods at different
abstraction levels. But these safeguards can make the cryp-
tographic system bulkier, use more power, or take up more
space, all of which reduce security. Protecting information in
cyberspace requires striking a balance between price, power,
area, and safety. To better understand the implementation’s
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security and cost, it is helpful to explore possible power
analysis attacks and responses at different abstraction levels.
By combining deep learning methods with datasets from
cryptographic devices, this research aims to provide light on
differential power analysis attacks.

B. CONTRIBUTION
In this section, our contributions are included as follows:

1) We have discussed the various types of side channel
attacks, its taxonomy and the importance of encryption
techniques against them.

2) We have explained a detailed review of the deep
learning models for encryption techniques against side
channel attacks and presented a comparison table of
them.

3) Finally, we have detailed the necessity and importance
of hybrid deep learning models for enhancing encryp-
tion techniques against side channel attacks.

Various challenges are encountered when employing deep
learning models to enhance encryption techniques against
side channel attacks. These challenges arise due to the intri-
cate nature of both encryption and deep learning methods as
well as individual characteristics of side channel attacks.

o In order to train, deep learning algorithms need large
amounts of data. Side channel attack data is difficult
to collect due to privacy concerns and the need for
specialized equipment.

o The training and inference processes of deep learning
models are computationally complex. Integrating these
models into encryption systems while maintaining per-
formance and resource economy can be challenging,
especially in environments with limited resources.

o The nature of encryption and side channel attacks are
evolving in response to new cryptographic techniques
and defenses. In order to be effective, hybrid models
need to adjust to these changes.

o When dealing with sensitive information, privacy con-
cerns arise due to encryption and side channel attacks.
Whether in training or inference, the hybrid model must
keep sensitive data secure.

There are still certain gaps in the research on deep learning
models for side channel attacks. Research is necessary in the
following direction:

1) Strengthened encryption using deep learning models
should be able to withstand attacks from adversaries.

2) It is possible for deep learning algorithms to perform
well on certain datasets and environments, but they can
not be able to adapt to new data or side channel attack
situations.

3) In machine learning, deep learning models often
require vast quantities of training data that are difficult
to obtain for side-channel attack datasets due to privacy
concerns and lack of access to confidential information.
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4) In order to enhance encryption against side channel
attacks, deep learning models have to be assessed with
predefined criteria.

In section II, we have presented the literature review
related to deep learning-based side channel analysis meth-
ods. Section III explains the description of datasets for side
channel analysis. In section IV, we have shown the data
pre-processing process and its results. Finally, section V
presents the conclusion of our study on hybrid deep learn-
ing models for enhancing encryption techniques against side
channel attacks.

II. LITERATURE REVIEW

In this section, we have reviewed the state of art methodolo-
gies related to deep learning-based encryption techniques for
side channel attacks. Here, this chapter starts with the brief
explanation of side channel attacks (SCAs). Also, it explains
the side channel taxonomy, analysis, power analysis attacks
like simple power analysis [16], differential power analy-
sis [17], machine learning and deep learning methods for
SCA [18].

Lately, side-channel attacks have drawn the attention of
researchers and security specialists worldwide [19]. They use
a range of cipher-cracking techniques to first create coun-
termeasures, and then they offer suggestions for enhancing
the security of the cyphers. Some researchers employ deep
learning models to perform side-channel attacks. Convolu-
tional neural networks, or CNNs, were the main instrument
they employed to illustrate the effectiveness of their attacks
and provide instructions on how to execute them. There have
been three main phases in the development of side-channel
attacks all through history:

1) The identification and utilization of various side-channel
information sources for the goal of critical analy-
sis characterize this phase of the SCA, which ran
from 1996 to 2000. It was discovered in 1996 [20]
that RSA can potentially be broken by abusing the
algorithm’s execution time. In 1998, the issue of DES
breakage was tackled using the power consumption
leaking model. Electromagnetic radiation is also able
to be exploited efficiently for side-channel attacks,
according to research done in 2000 by Quisquater and
Samyde [21].

2) The initial years of the SCA’s establishment (2001-
2010). The main characteristic that sets this stage apart
is the growing attention that is paid to SCA evalu-
ation, countermeasures, and applications, along with
the identification of new leakage models. The DPA
contest, a side-channel analysis competition, was estab-
lished in 2008 [22]. The machine learning foundation
for several later investigations was established by the
traces gathered from this DPA competition. 2010 saw
a significant increase in the usage of watermarks, fault
sensitivity, and flash memory pumping as side-channel
attack techniques.
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3) The SCA’s highest point of development (after 2011)
[23]. The fundamental characteristic of this level is
the increased utilization of cross-domain technologies
for SCA. Specifically, convolutional neural networks
(CNN) and multi-layer perceptrons (MLPs) are becom-
ing more and more prominent deep learning tech-
niques. Energy trace misalignment, camouflaged AES
implementations, and jitter-based countermeasures are
all evaded by CNNs.

A. SIDE-CHANNEL ATTACKS

An attack that is known as ‘‘side channel attack™ [24] is
one where attacker is successful in obtaining confidential
data out of actual deployment of crypto-system. There-
fore, analysis of side-channel was cryptography’s subfield
of that focuses on implementing an electronically systems
rather comparatively of cryptographic algorithm’s flaws that
are utilized. It is in contrast to traditional approaches to
cryptography, which examine the weaknesses of the algo-
rithms themselves. In this kind of attack, the attackers can
glean information from a number of sources, including as
timing data, power utilization, the sound produced by gad-
gets and leakage of electromagnetic signals. Different kinds
of side channel attacks, some of which include electro-
magnetic attacks, cache attacks, software implementation
attacks, timing attacks and others. Fig. 1 illustrates most
simple model about side-channel attack that can be used
against a cryptosystem. In the majority of instances, the
attacker is not aware of the cryptographic algorithms that are
implemented in device or system; nonetheless, by knowing
about deployment physically of cryptographic algorithms,
attackers are able to discover essential information about
the target.

Plaintext
Message .
Cryptographic Implementations

(DES, RSA, AES algorithms) Ciphertext

Device Keys —»| Output

Leaking Information through
"Side-Channel"

FIGURE 1. A block diagram of cryptography system with side-channel
attacks.

In this research work, we put a lot of emphasis over pow-
ered analysis attack that belongs to most unique categories
of side-channel attack. The discussion of attack of power
analysis will take place over consequent part.

1) ANALYSIS OF SIDE-CHANNEL

Analysis of Side-channel, often known as SCA’s, takes
into consideration those attacks, which that are directed
against the implementations of algorithms rather than the

188437



IEEE Access

A. A. Ahmed et al.: Review on Hybrid Deep Learning Models for Enhancing Encryption Techniques

weaknesses in the methods themselves [25]. The main goal of
side-channel analysis is to determine which data is likely to be
processed by comparing the actual (measured) leakage with
certain hidden, data-dependent assumptions about physical
leakages. Such is accomplished by comparing certain hidden
predictions of the physical leakages. It is important to be
able to model leakages (to make data forecasting) having
competent comparing tools in order to successfully take
out confidential data. This is needed in order to extract the
information efficiently (distinguisher). By simulating real-
world conditions, a leakage model can assess the extent to
which a device is physically defective [26]. Using either the
Hamming weight of the hypothetical data or the Hamming
distance between the registers that hold the data values at
two distinct times, the two most popular and well-supported
leakage models draw on these two concepts.

The divide-and-conquer [27] technique is one that is often
used in side-channel analysis. This strategy aims to recov-
ering important parameters of chunks (for instance, sub-key
bytes that are found in AES), which makes strategy feasible
computationally. Thus, indicating procedure outlined above,
has to be applied to each sub-key until the original key
k, which contains all of its bits, can be retrieved. In most
situations, recovering only one sub-key is sufficient to show
that there is a weakness in the implementation of the security
measure.

2) SCA TAXONOMY

Two types of attacks that can take place in the territory
controlled by the SCA are two-stage attacks and direct
attacks [28]. The attack with directed attack, often referred to
as a non-profiling attack, collects a considerable number of
data from the device they are aiming their attack at and then
uses statistical techniques to extrapolate sensitive information
from those measurements. Commonly found instances of
attacks like these are differential power analysis (DPA) and
simple power analysis (SPA) [29]. Even if they assume that
the attack is less capable, direct attacks can need millions of
countermeasures to get crucial information.

The strong attacker [30] in a two-stage attack, also known
as a profiling attack, owns a replica of the target device that
is either identical to it or at least relatively equivalent to it.
This is done in order to profile the target. Once the target
device has been cloned, the attacker attacks it. This attack
is comprised of two stages: the pre-attack phase and the
attack phase.

A fictional leaky statistical distribution is the only thing
that can come close to approximating the distribution of side-
channel data, which is the foundation upon which profiling
approaches are built. The template attack is the oldest and
most well-known method for profiling attacks. In this kind
of attack, an attack makes assumption that, leakage tracks a
multiple-varying Gaussian distribution. Profiling process will
continue with the subsequent step in evaluating parameters
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of statistical directed over Gaussian mixture prototype. As a
result, model gets constructed pertaining to every potential
hypothetic kind of leakages. During phases of attack, attacks
will estimate chance that fresh side channel measurement
(one that is now under the attacks) related to particular
groups through making use of function of probability density
function that was computed using the approximate statistics.
Even while an attack of profiling requires additional powered
attacks compared to non-profiling, this nevertheless manages
to break the target with a great deal fewer traces than direct
attacks do; in certain instances, only a single trace is suffi-
cient.

Later on, techniques of machine learning were used in
order to profile attacks, and in this particular instance, the
profiling set is utilized in order to automatically learn the
statistics of an unknown leaking distribution. To avoid mak-
ing assumptions about the distribution of leaks, machine
learning can construct the profile model independently of
template attacks. Machine learning has several advantages,
such as these.

Conventional machine learning, in which feature engi-
neering is frequently done prior to an attack, can be fur-
ther subdivided into two distinct categories: deep learning,
in which raw features or an optimal trace time period are
utilized; and deep learning, which is a subset of conventional
machine learning [31]. We include a variety of resources
for readers who can be interested in machine learning mod-
els, including [32], despite the fact that the first class of
machine learning models is not the primary topic of this
study. In addition to that, we provide a summary of the
side-channel analysis that is based on machine learning [33].
The following is a list of the key differences that can be found
between [34] and our work: Because [35] was documented
within early periods of deep learning-dependent SCA (in
early 2018), this merely covers small number of deep learning
jobs. Furthermore, because [36] is surveyed tasks providing
in-depth data regarding correlated work without systematiz-
ing knowledge, we only look into deep learning-based SCA.
This is because [37] was documented within earlier periods
of deep learning-based SCA.

3) COUNTERMEASURES
The examination of CNN behavior over side-channel infor-
mation that was conducted by Samiotis and others [38]
involves different categorization situations. They began by
evaluating CNN’s behavior on 4 separate side-channel data’s
datasets before moving on to compare their models to more
age-old machine learning (ML) approaches [39] and CNN’s
prototype that was found within existing body of academic
research. In our work, we have used CNN as well as models
of RNN [40]. Differences amongst such 2 models were rep-
resented by us in terms of their precision and performance.
Maghrebi, Portigliatti, Prouff, and others [41] were the first
people to apply the techniques regarding deep learning to
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problem of side-channel attack. They compared efficacy of
their proposed attacks to that of the most common machine
learning and template attacks in order to evaluate the use-
fulness of their ideas. They carried out its attacks over
3 distinct sets of information through estimating required
amount of traces and then used those calculations. They were
able to show that their attacks were more effective than the
most recent and cutting-edge profiled side-channel attack.
We looked at side-channel attacks by utilizing 2 separate
information-sets. In upcoming time, we want to improve our
study through doing it with the help of other datasets.

Picek and others [42] investigated the efficacy of a variety
of machine learning techniques by taking into consideration
a wide range of factors relevant to profiling Side-Channel
Analysis (SCA). They also suggested employing convolu-
tional neural networks, often known as CNNs, in order to get
effective results while performing profiled SCA. However,
we have shown that by making adjustments to the hyper-
parameters, it is feasible to construct an RNN model that will
perform better than model of CNN.

Picek, Kim, Hanjalic, Heuser and others [43] were able
to get outstanding results with the CNN model that they
developed by making use of the random delay countermea-
sure. This was made possible by the fact that the results
were not dependent on the length of the delay. They sug-
gested using techniques of deep learning as well as noise
into the evaluation of the side-channel investigation. Since we
found that recurrent neural networks (RNN5s) give the best fit
sequential data and for time series, we’ve decided to use them.
As a result, evaluation of our results by us will be done and
comparing them to conclusions of previous studies based on
machine learning or CNN.

In addition, several investigators used machine learning
(ML) methods [44] in order to extract data out of crypto-
graphic systems that are either protected or not guarded. The
vast majority of them center their attention on two meth-
ods that have garnered a lot of attention recently: Random
Forest (RF) and Support Vector Machine (SVM). Research
was done by Gierlichs, Verbauwhede, De Mulder, Hospodar,
and others [45] on the use of machine learning to side-
channel analysis. They aimed their efforts on analysis of
power, which, when performed, discloses enormous amounts
of data on the cryptographic key that is being processed
through power traces. In addition to that, the classification
approach that they utilized was called LS-SVM. In the course
of our investigation on power-analysis attacks, we made use
of two of the most well-known neural networks (CNN and
RNN). Utilizing SCA defenses to protect implementations is
considered to be common practice. The statistical connection
between intermediate values and traces can be severed by the
use of countermeasures (e.g., EM emanation or power con-
sumption). Masking and concealment remain 2 fundamental
subcategories that make up SCA countermeasures.

During the process of masking, each intermediate value is
covered over with a randomly generated value (mask). Using
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random masks, the link that existed between the measure-
ments and the concealed data is severed so that the results can
be more accurate. Two types of masking that are often used
are known as arithmetic masking and Boolean masking [46].
Contrarily, goal of hiding information was in providing the
impression that measurements are random or continuous.
When anything is hidden, the only thing that changes is
signal-to-noise ratio (SNR). Concealment can occur in tem-
poral domain (for example, via desynchronization, random
delay interruptions, or jitter) as well as the amplitude domain
(for example, by introducing noise to the signal). The power
level of the attack directly influences the selection of appro-
priate countermeasures. An attack with infinite side channels
and measuring capabilities may, in theory, avoid detection by
concealing countermeasures.

In a similar vein, an attack who has access to mask shares
during a profiling phase has the potential to, in the worst-case
scenario, defeat a masking countermeasure that takes into
consideration a first-order masking. Thus, highly protected
targets can use high-order masking techniques or conceal-
ment and masking countermeasures.

B. POWER ANALYSIS ATTACK

A kind of side-channel attack known as a ‘““power analysis
attack” involves attacking the device or system being targeted
by utilizing the amount of power being used as the informa-
tion that is being leaked. An electrical device is expected to
carry out cryptographic technique execution such as RSA,
AES, and DES and when this occurs, the device is supposed
to make use of electricity in a certain manner. DES, AES, and
RSA are examples of such methods. In order to successfully
execute the cryptographic algorithms, a large quantity of
power is necessary. During the course of the computation,
the attack keeps an eye on how much power is being used
by the gadget. These power consumptions are afterwards
recorded in a computer as power traces in order to facilitate
a further and more in-depth analysis. The attacker makes use
of every strategy that is at his disposal in order to make an
attempt to extract information about the algorithm’s secret
key from the power traces that have been captured. After
doing painstaking investigation using a number of methods,
the attack is successful in unearthing every vital piece of
knowledge about the cryptosystem, including the device key.

Fig. 2 depicts one possible arrangement for a power anal-
ysis attack to illustrate the point. Power analysis attacks
typically need the use of a digital oscilloscope, a personal
computer, and the device that is being targeted.

The attacker makes a connection between the target device
and an oscilloscope that is outfitted with probes. In essence,
the equipment that is the focus of the investigation employs
a cryptosystem of some type and is operating on one of
the encryption algorithms. When monitoring and recording
the power consumption of the target device, the attacker
will utilize a sample rate that has been previously agreed
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Plaintext
Message
Cryptographic Implementations(DES,

RSA,AES algorithms) —> Ciphertext Output

Device Keys
—

Leaking Information through
"Side-Channel"

Storing power traces
into Computer

Oscilloscope for

2 tore Power
capturing power traces

Traces

FIGURE 2. A block diagram of a power analysis-based attack model.

upon. They are given the cluster of dots that contains the
measurements of the voltage levels. Each of these safeguards
is referred to by its formal term, which is power traces.
This particular power traces accumulation is deposited on
standalone computer system. The attack is able to analyze
and alter the collected power traces with the help of common
data processing tools with this capacity (Python, MATLAB,
etc.). A positive aspect of the situation is that the attack does
not comprehend the encryption method that the target device
employs. To completely grasp the cryptosystem and be in
a position to launch an attack all that is required is for the
person to inspect the power traces in the appropriate manner
and to make educated assumptions. Template-based analysis,
Simple power analysis (SPA), horizontal power analysis and
differential power analysis (DPA), and are only some of the
many varieties of power analysis attacks (HPA). We will
quickly discuss 2 significant kinds in order to familiarize
readers with them.

1) SIMPLE POWER ANALYSIS

Most fundamental iteration of power analysis attack concern-
ing side channel is referred to as an SPA. During this attack,
one or more power traces will be watched and analyzed, and
the attacker will make an effort to extract as much data and
logic as possible from these traces. Additionally, the attacker
will make an effort to get additional knowledge on the system
or item that is the target of their attack. Afterward, by making
use of the information that was obtained, he or she is able to
determine all of the actions that are carried out by the device
that is the object of the investigation. The individual may,
at long last, be capable of determining the cryptographic key.

The single power trace of a cryptographic algorithm is
shown in Fig. 3. The pattern of the dataset can be detected
if one looks closely enough.

The Single-Phase Analysis (SPA) technique is a way for
rapidly discovering the target system’s knowledge as well as
the secret key by making use of a single or a limited number
of powered traces.

2) DIFFERENTIAL POWER ANALYSIS (DPA)
The term ““non-profiled attacks™ is also used to refer to DPA
attacks [48] on occasion. When an attack lacks fully control
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FIGURE 3. The power trace of a DES encryption [47].

Cryptographic operation in closed
device (Smart card reader)

Side-Channel Power Traces

I I
Unknown fixed Key Random Ciphertext
l Random Message

!

Mathematical Analysis tools for data
analysis (Key Hypoteheses)

Predicted Key or Actual Key

FIGURE 4. A differential power analysis of attack.

to closed equipment, such the smart cards used by financial
institutions, they are more likely to carry out an attack called
attacks of non-profiled. Therefore, it is only permissible for
him or her to consist of restricted amount of side-channel
power traces concerning to operation of cryptograph that uses
predetermined value of secret key that cannot be discovered.
During these particular attacks, attack could attack to subse-
quent data obtained out of attacking gadgets [49]:

1) One of them is a static private key, denoted by the letter
k, which is included into a key space.

2) Messages and inputs that are completely at random.

3) Outputs generated at random and a text cypher.

In order to obtain information and the key, attack-
ers first accumulate side-channel traces and consequently
mix entirely such data in order to perform analyzing
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mathematically or important hypothesis utilizing several
well-known algorithms or tools for data analysis. This allows
the attacker to infer information and obtain the key.

The implementation of differential power analysis attacks
is going to be a component of the research that we do for
our thesis. We consist of two datasets: primarily consists of
real information, and remaining consists of simulated infor-
mation. The actual data are in the first dataset.

Fig. 4 depicts the most basic version of an attack that can be
carried out against a cryptographic system by making use of a
differential power analysis. Our dataset contains information
on closed devices, which implies side-channel traces with
known ciphertext, known messages and fixed unknown keys.
This information can be found by searching for ‘“‘closed
devices” in the search bar. In order to produce an educated
forecast about the procedure, we examine the trace data and,
using the two most common neural network methodologies
(CNN and RNN), anticipate information pattern. This allows
us in making an informed prognosis. We mapped message-
ciphertext couple based on the value of a certain key in its the
space.

C. TECHNIQUES OF DEEP LEARNING

Deep learning is a method that’s becoming more popular for
use in algorithms of machine learning. With deep learning’s
area, a prototype can simulate functioning of human brain
by picking up knowledge from previous experiences and
becoming better at carrying out certain tasks. Deep learning
was found to be applied in different modern applications,
including self-driving cars [50], pattern identification, face
detection, digital image processing, and others. The selection
of deep learning techniques over others is because deep learn-
ing ability to process large volume and high dimension data
efficiently and model complex and hard-to-some patterns.
When it comes to certain tasks such as identifying images,
deep learning approaches including the Convolutional Neural
Networks excels due to the best and efficient hierarchical
features extraction from the raw inputs overpowering the tra-
ditional forms of approach. RNNs are other advanced models
that perform well in applications involving sequential data
since they understand the long-term dependency better than
other models. The superiority is most visible when it comes to
different evaluations and metrics of performance in different
fields where deep learning models much of the time set a
record, surpassing the performance of traditional machine
learning models.

1) CONVOLUTIONAL NEURAL NETWORK (CNN)

Image processing, data analysis, problem categorization, and
image analysis are some of the most common applications of
convolutional neural networks (CNN), which are also known
as convNet in certain other settings. These networks are
quite well known and are used often. Convolutional layers,
as opposed to the more typical hidden layers, are what set
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FIGURE 5. A top-level view of convolutional neural network model.
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FIGURE 6. An illustration of AES algorithm.

CNN apart from other kinds of neural networks. Before
continuing on to the subsequent convolutional layers, the
data that was entered into the model is first altered by these
convolutional layers. Convolutional operations are what are
employed to make these kinds of changes to the data. A CNN
model works on the assumption that the inputs are images,
and that these images already have the properties that the
model needs to encode.

Each convolutional layer makes use of a certain amount of
filters or kernels in order to locate the specific characteristics
in the images or patterns that we are searching for. In these
filters, there are a total of n dimensions. All the way through
convolution process, these kernels and filters are being used.
In order for the output to be passed on to subsequent neurons
present within neural networks, filters will first compute
product of input and filter data. Filter settings are applied on
top of the values of the input data. An n-dimensional array is
used to store the results of the convolution operations, which
can be referred to as either an activation map or a feature map.
As we apply more filters, we will be better able to recognize
and pull-out certain features from the incoming data. CNN
uses convolutional layers, which function according to the
basic concept outlined above, in order to recognize properties,
present in images.

When working with a large data volume, such as when
working with a large number of images, the operations of the
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convolution layer will take a significant amount of time to
complete. If this is the case, the number of parameters utilized
in the convolution technique can be reduced to allow for the
usage of pooling layers. We have the option of using three
distinct pooling layers, including the maximum, the average,
and the sum.

The operation of a CNN network is seen in Fig. 5. refer-
ence [6], was retrieved from a piece of paper that was in the
room.

D. ADVANCED ENCRYPTION STANDARD (AES)

The Advanced Encryption Standard, or AES, is a different
form of symmetric encryption mechanism than triple DES.
AES, which is very much like DES, is included in the cate-
gory of block cyphers. The functioning of the system requires
keys of 128-256 bits and data that is 128 bits long.

The technique shown in Fig. 6 is an example of a typical
kind of encryption.

AES uses an iterative method of operation, in contrast
to the Feistel encryption method. In actuality, it does its
computations with the help of bytes rather than bits. Plaintext
communications with an AES key of 128 bits will take up
a total of 16 bytes due to the fact that these were organized
with 4 x 4 matrixes. Amount of AES rounds is completely
random. As an instance, 128-bit key were necessary for about
10 rounds, 192-bit key are necessary for 12 rounds, 256-bit
keys are necessary for 14 rounds.

The decryption procedure within AES method is just the
encryption process performed in reverse order. AES is used
in a significant amount of today’s computer hardware and
software.

E. RELATED WORKS ON SCA

With their groundbreaking work, Maghrebi and others [51]
first used CNNs for side-channel attacks. They use deep
learning techniques such as MLP [6], CNN [7], and LSTM [8]
to assess and contrast traditional machine learning methods.
Among these methods are SVM [10] and random forest [9].
Their study’s conclusions demonstrate the superiority of deep
learning over traditional machine learning techniques and the
favorable results that follow. They demonstrate this with two
distinct datasets: one uses an implementation with no protec-
tion at all, and the other makes use of a countermeasures for
masking. Furthermore, their findings demonstrate that CNNs
typically outperform competitors on both datasets.

The ASCAD database, also known as the side-channel
assessment dataset, is made available by the authors in [9].
The authors originally presented this database, which has
been utilized in numerous investigations by other academics.
Following the dataset introduction, they look into the impact
of the hyperparameters to determine which CNN and MLP
designs will work best. The results of Prouff and others
study [52] indicate that when a CNN encounters mismatched
traces, its kernel volume rises and its behavior improves.
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It is a little odd, though, that they fail to clarify why raising
the kernel actually makes the attack more potent. We think
this is a remarkable discovery that definitely warrants further
discussion.

Since these two experiments demonstrate that CNN func-
tions well in a variety of settings [10], [11], [12], more
research on CNN’s behavior was done. CNN’s performance
was contrasted with that of other ML techniques, for instance
Random Forest [9], XGBoost [ 10], and Naive Bayes, by Picek
and others [2]. They are mostly interested in finding out
what conditions lead to CNNs outperforming the previously
described methods. Their study’s conclusions indicate that
CNNs can only enhance performance overall. They claim that
when traces are not pre-processed, noise levels are reduced,
and information dimensions are increased (that is, when there
are numerous features with numerous traces), CNNs perform
at their best. On the other hand, performance from ML meth-
ods can be nearly equal to that of CNNs. An important finding
is that ML techniques require far less processing power than
CNNs. Consequently, the researchers are somewhat dubious
about CNNs’ use.

Subsequent investigation revealed that convoluted neu-
ral networks (CNNs) could potentially outperform advanced
solution for the given datasets. The measurements for every
single one of the datasets came from an implementation
with a hidden countermeasure. In order to demonstrate that
CNNSs can synchronized misaligned traces with determining
the attributes of more important traces, the authors of [3]
conducted tests. As a result, we were able to categorize
assets. In addition to these findings, the researchers detail the
procedure of carrying out this attack using unprocessed raw
trace data. This attack differs from a template attack in that
it doesn’t involve the attacker independently reorganizing the
traces and choosing the points-of-interest. The results demon-
strate that CNNs are useful even in cases when the paths are
not aligned. However, due to the scale and intricacy of the
design of CNN beneath the surface, overfitting is a possibility.
They provide two approaches for augmenting training data
using misaligned trace data. To demonstrate the effectiveness
of the data supplementation choices for misaligned traces,
demonstrations are conducted.

Hybrid deep learning is the key to preventing overfit-
ting in the misaligned data in trace scenarios which are
sophisticated and requires a combination of RNNs and
CNNs. Consequently, this method succeeds in circumvent-
ing the designed complicatedness and subtleness of the
CNN architecture. RNNs and CNNs are utilized together
to increment generalization and minimize overfitting, hence
the hybrid architectures. CNNs are good with spatial cor-
relations and feature hierarchies, while RNNs are better at
acquiring sequence relations, which gives them the ability to
find useful temporal patterns out of misaligned trace data.
In cases of complicated data structure as in case of mis-
aligned traces, hybrid methods which combine RNN and
CNN can be the answer and will help in improving scalability
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and performance of deep learning systems in challenging
situations.

The findings of [4] are corroborated through Kim and
others [5], showing their CNN framework performs at leading
edge on data set of RD. This lends more credence to the
findings of [4]. Notably, as compared to data set of DPAv4,
that are considered to be fundamental information set, ideal
network of their need less attacks traces in order to recovering
RD dataset key [6]. During their study [6], Authors experi-
mented with a wide range of information sets and topologies.
According to the findings of these trials, no single design
works well with every collection of data. Thus, it is still
crucial to choose a structure that makes sense in relation
to the problems that are at hand. Furthermore, they offer
proof that adding distortion to a network’s primary substrate
improves performance by lowering the rate of overfitting.
This is recommended to make greater noise levels benefi-
cial when utilizing smaller datasets, whereas larger datasets
require lower noise levels to get optimal performance.

According to these studies, there are two key character-
istics of traditional news networks (CNNs) that make them
appropriate for side-channel study. First of all, they are able
to independently and independently identify the most sig-
nificant elements. Consequently, obtaining higher behavior
did not require doing previous processing on traces. We con-
sidered this to be a significant benefit over more traditional
methods. The authors of [7] state that preparation processing
is prone to errors and that poor choice of Pol decreases per-
formance. CNNs can recognize features regardless of where
they are located inside feature vectors due to their spatial
invariance. This is the second advantage of CNN use. CNNs
can exhibit good performance on datasets resulting from
disguised countermeasure implementations because of this
feature. The approaches employed in the research project that
we have been talking about so far are common procedures in
the deep learning community. Further investigation has led
to the recommendation that novel and creative strategies be
employed, especially created for side-channel attacks with
the goal of exploiting a few characteristics.

Researchers proposed a CNN architecture using side-
channel attack domain data [8]. The leaky model determines
if the data supplied for the development of neural networks
is ciphertext or plaintext. The part of a CNN architecture
that receives the domain knowledge to be used as a new
feature vector is the classification block. In their creative
endeavors, they contrast and compare a number of architec-
tural ideas presented in different literary works alongside and
without the construction they themselves possess provided.
They demonstrated how better performance can be achieved
for both protected and non-protected information by utiliz-
ing domain knowledge in design. However, this approach is
inappropriate to employ if profile trace is produced with a
fixed key. Given that models are useless without properly
tuned architecture and hyperparameters, Zaid and others [9]
place a premium on these areas. They show how important it
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is to understand hyperparameters in order to effectively use
an architecture. As a solution to this problem, the authors
provide three visualization methods: weight visualization,
gradient visualization, and heatmap. These methods simplify
the process of reading and understanding hyperparameters.
By giving an opponent, the ability to assess each hyperpa-
rameter’s influence independently, these strategies facilitate
the process of setting and fine-tuning the hyperparameters.
They also suggest implementation solutions for both secured
and unprotected contexts using these three visualization tech-
niques. Adjust the CNN kernel measures to 50 percent of
the maximum randomized delay for datasets that include a
hidden countermeasure. Articles from deep learning forums
propose, increasing the number of substrates relative to the
number of neurons within each layer [10]. Through the
development of designs and testing across all of the publicly
accessible datasets using the approaches they provided, they
enhanced state-of-the-art working with respect to complete
information sets, resulting in an overall performance increase.
While their method provides state-of-the-art performance for
all publically available datasets, the selection of hyperparam-
eters is often made arbitrarily. For instance, the authors don’t
clarify how or why particular learning rates were established
for a limited number of particular datasets.

Pfeifer and Haddad [11] suggest using the spread layer,
a deep learning layer. As the first of its type, this layer would
be created with side-channel attacks in mind. Haddad and
Pfeifer demonstrated in their research that this layer would
not perform well without a substrate. Profiling expedites
learning by reducing the amount of traces used. These results
were exciting for the groups involved in side-channel analysis
since they imply that there was a reason to design substrates
specifically designed to exploit traces’ side-channel capabil-
ities. This is due to the fact that these results suggest that
there is an incentive to design layers specifically designed
to exploit the side-channel characteristics of traces. Details
regarding the layer’s hyperparameter setup or the reasons for
the outcomes this layer can provide. We will look into the
propagation layer in great depth and fix some of its flaws in
chapter 4, which will address these problems.

Kim and others research [12] indicates that the deep CNN
framework performs wonderfully for SCAs. Even yet, there
are still certain problems with the deep neural network train-
ing process. The main problem is that gradients can either
develop or vanish during DNN training. This makes the
process challenging. We will discuss recent developments
with the introduction of deep neural networks to address the
previously listed problems in the areas that are relevant.

The problem of parameter initialization has received a
fair amount of attention; variables are frequently chosen at
arbitrary from a Gaussian spectrum. Glorot and Bengio [13]
substantially revised this and concurrently established a
completely new initialization technique known as Xavier’s
initialization. Parameter values are computed using this
method, which takes inputs and outputs into consideration
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and uses a Gaussian distribution. Many large deep learning
libraries employ this technique to initialize their parameters,
and it is currently accepted as standard practice.

Scholars investigating deep neural network architectures
discovered that a number of distinct studies had difficulties
with their designs’ convergence. For instance, the widely
utilized VGG architecture, which at first is trained over the
course of four phases, encountered convergence issues. After
that, further layers are added to the network, and training
is done at every turn to make sure it converges appropri-
ately [14].

He and colleagues describe a novel technique for deep
CNN initiation in their publication [15]. Their research indi-
cates that the Xavier initial is not suitable for usage with the
ReLU, even though it was intended to function with linear
activations. Furthermore, they contend that it is more difficult
for deeper networks to converge to a point. “He” initial-
ization is supplied by them as a remedy for such problems,
which, when compared to other initialization techniques,
improves the degree of convergence of deep neural networks
and was created especially for CNNs using ReLU. An alter-
nate initialization technique called LSUYV initialization is put
forth in [16], [17]. Instead of being designed with ReLU
as the function of activation in mind, this approach has
more generic qualities and can be used to a variety of other
architectural types. They carry out experiments to support
their claims, offering proof of the approach’s feasibility. The
significance of precise initialization for network parameters
for the convergence of deep neural networks has been demon-
strated by both research sets. The published study has only
recently started to investigate real-world SCA scenarios in
which the profiling and attack traces came from the same
devices. The fact that the same key was used for the attack
path and the profile track wasn’t unusual, though. Because of
this, the findings of these investigations could directly lead to,
give a false impression of the efficacy of certain therapy, such
as DL, ML, and TA. This has led the SCA community to begin
building a more realistic atmosphere where a range of devices
are being utilized to gather attack and profiling evidence.

Recent research has shown that even identical gadgets can
differ in certain ways. Because of this, there can be very
little variations in these devices’ measurements, resulting in it
more challenging to identify true SCAs [18]. This is because
devices could differ in features, even if they are similar. These
two studies demonstrate how underestimated the value of
SCAs in warfare scenarios are the findings of the existing
available research. Therefore, conducting additional study
within the context of mobility is imperative.

The authors of [52] provide a method that can be used to
boost the efficacy of attacks in a circumstance where they
are movable. Their technique solves the problem of measure-
ments being different on identical devices by constructing a
profile that makes use of measurements taken from a large
number of duplicate devices. They accomplished this and
demonstrated that they could get 99% accuracy on the test
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traces, which allowed them to pass the SCA and receive their
certificate.

Around the same time, Bhasin and others [53] published
a technique that was quite similar to address the variance
that occurred amongst devices that were otherwise identical.
In order to construct the training and validation set for their
method, they make use of traces collected from a number of
devices that are identical to one another. They show that their
strategy is superior to use of a standalone gadgets pertaining
to validation and training in portable environment by demon-
strating its superior performance. In addition, they notice in
their research that the efficacy of the attack decreases when
additional traces were utilized in phase of profiling. This
could be an indication that the networks are overspecializing
in some areas.

In addition, the article [54] explains that distinct datasets
react to diverse topologies in a variety of unique ways. This
highlights how important is selecting an appropriate archi-
tecture and hyperparameters for issues that is currently being
addressed. To continue, the authors point out that, according
to the information presented in [55], improving size of kernel
yields in rise of misaligned trace’s performance. Neverthe-
less, kernel size influence is not primary contribution of their
study, they fail in provide a great deal of detail on the topic
of the kernel size’s influence. Reference [56] shows that deep
CNNs can perform effectively even with misaligned traces
and passably even with masked traces. This is in addition to
the kernel size. As a consequence of this, it is abundantly
evident that all past efforts have concentrated only on the
designs that provide the maximum performance and have not
addressed the influence of certain hyperparameters. In the
current investigation, the kernel and depth of CNNs are of
particular importance for scenarios where counter-measure,
such as masking or random delay, is used. In addition, we are
interested in determining whether or not there lies correlation
amongst size of kernel and network’s depth. In addition,
through differentiating between countermeasures, we plan to
investigate whether or not generalizing is feasible to architec-
ture depth and kernel size and for particular counter-measure.

Side-channel attacks have recently garnered a lot of atten-
tion from academics and security professionals all over the
world. They devise countermeasures by employing a variety
of cipher-cracking strategies, and afterward they offer rec-
ommendations regarding how to beef up the effectiveness of
these countermeasures. Deep learning models are used by
certain researchers in order to carry out side-channel attacks.
The majority of the time, they relied on convolutional neural
networks, often known as CNNs, to showcase their attacks
and demonstrate how successful they were.

The examination of CNN’s effect over side-channel infor-
mation that was carried out by Samiotis et al. [57] included
a variation of different grouping saturation. They began by
evaluating CNN’s performance on 4 separate side-channel
information-sets data before moving on to compare their
models to older machine learning (ML) approaches and a
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model of CNN that was found inside existing body of aca-
demic research. In our work, we have used CNN as well as
RNN model [58], [59]. It shows that the differences between
such models in terms of their precision and performance.

Kim, Picek, Heuser, Hanjalic, and others [60] were able to
attain outstanding performance while using the random delay
countermeasure because of the CNN model that they devel-
oped. They suggested using techniques of deep learning as
well as noise into the evaluation of the side-channel investiga-
tion. Since we found that recurrent neural networks (RNNs)
give the best fit for sequential and time series data [61], we’ve
decided to use them. As a result, we aim at evaluating our
outcomes and comparing them to conclusions of previous
studies based on machine learning or CNN.

Table 1 shows the comparison various encryption tech-
niques for side channel attack based on deep learning models.

In addition, several authors have used machine learning
(ML) schemes [71] in order to extract data out of crypto-
graphic systems that are either protected or not guarded. The
vast majority of them center their attention on two methods
that have garnered a lot of attention recently: Random Forest
(RF) and Support Vector Machine (SVM). Verbauwhede,
De Mulder, Gierlichs, Hospodar, and others [72] conducted
research on uses machine learning with process of analyzing
side-channel performances. They fixated their efforts over
analysis of power, which, when performed, reveals significant
quantities of data regarding the cryptographic key that is
being processed via power traces. In addition to that, the
classification technique that they used was called LS-SVM.
We investigated power-analysis attacks by applying 2 of most
famous neural networks available (CNN and RNN).

Using a pharmacogenetics model, the authors of the arti-
cle [73] were able to successfully match the genotype of a
patient to the appropriate dosage of a particular medicine.
Additionally, they were able to retrieve user face images
from the training stage of a face recognition system by using
neural network models [74]. This was a really remarkable
accomplishment.

To determine if a given data entry is an element of the
training set, Shokri and others [75] created a membership
inference technique. Black-box access to a model was nec-
essary for this method. Tramer and others [76] presented a
model inversion attack by exploiting the relationship between
searches and levels of trust on a range of machine learn-
ing models, including logistic regressions, DNN, and so
on. Despite the attacks [77] that exploited the training sets’
privacy issues, Hua and others [78] introduced a novel tech-
nique to reverse engineering the underlying network data.
They infer details of the network architecture, including the
quantity of tiers and the size of the characteristic maps for
every layer, by examining the sequences of memory access.
Additionally, they demonstrated that even in cases when
memory access was detected whilst in the *“zero pruning”
phase of the procedure, the weight values could still be recov-
ered. The primary distinction between our strategy and other
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TABLE 1. Comparison various encryption techniques for side channel
attack based on deep learning models.
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approaches previously documented is the attack’s objective.
An attempt is made to analyze the escape at the inference
stage in the suggested methodology. The strength of the side
channel allows us to reconstruct an image from runtime inputs
without the need for network models or training set samples.
This allows us to recreate the image.

The secret keys that are kept inside cryptographic
equipment can be retrieved by exploiting any electrical
side-channel leakage in the apparatus. In popular symmetric
encryption systems like DES [2] and AES [3], attack-
ers can find the secret key by comparing and analyzing
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the differences between several power traces with different
inputs. In the channel on the power side, Eisenbarth and
Msgna [79] demonstrated how to retrieve the type of instruc-
tion that was carried out by the CPU by making use of a
hidden Markov model. This was accomplished in order to
do so. Liu and others [80] were able to precisely locate each
instruction instance while the program was being executed
by using a modified version of the Viterbi algorithm. The
creation of a “power template” is a technique that is fre-
quently utilized in the process of breaking the secret keys of
cryptographic systems. They begin by estimating a leaking
model with the private keys and the collected power traces.
Next, they put this model to use to predict the keys based on
the online power traces that are collected during the runtime.
This is very similar to the strategy that we recommended.
Despite the fact that the overall process is very similar, one of
the most difficult parts of creating ‘“power traces” is finding
an appropriate attacking surface.

To improve the ability of deep learning models to migrate
learning and generalize across different devices, implemen-
tations, or operating conditions would require more study.
It is therefore necessary to apply domain adaptation and
transfer learning techniques that consider hardware designs,
software settings and variables in order to facilitate smooth
flow of information from source domain to target domain.
Additionally, research should come up with robust method-
ologies that can assess model performance under diverse
circumstances so as to ensure consistent and reliable behav-
ior across platforms and deployment conditions. This will
make deep learning models more adaptable and generalizable
thereby making them useful in various real life applications
across domains and environments. To resolve security issues
in deep learning systems, an in-depth understanding of model
predictions and vulnerabilities especially side channel attacks
is necessary. Interpretability research tries to understand the
decision making process of deep learning algorithms with
a view to helping stakeholders analyze and reduce risks.
Researchers can improve understanding of model predictions
and malicious attacks by developing interpretable models
and methodologies. Assurance of trustworthiness in essential
applications demands that sensitive data be protected through
fortification of deep learning models against security attacks.

Ill. DATASET

In this part, we go even deeper into the datasets that were used
for the study and discuss them in further detail [3]. Several
different AES implementations were used in order to col-
lect these traces, which range from unprotected to protected
states. We go over the process of acquiring the traces for each
dataset, as well as identifying which S-box is being targeted.

A. ASCAD

This repository of ASCAD was shown through [4]. This
database was structured in a manner that is similar to database
of MNIST, it contains fifty thousand profile traces in addition
to ten thousand attack traces. A masked version of AES-128
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TABLE 2. Power traces values.

Power Traces Time
0.015918 9.56E-07
0.015417 9.65E-07
0.01738 9.56E-07
0.01904 9.56E-07
0.019448 9.56E-07

running on an AVR microcontroller using 8 bits of power
for processing (ATmega85515) was used to get these traces.
The traces were produced by electromagnetic radiation, and
it was this emission that was recorded. The raw traces that
constitute the database include the measurements that were
taken throughout the whole encryption process. In addition,
researchers have already pre-chosen a raw trace’s window
which corresponds to S-box execution of sub-key 3 hav-
ing seven hundred different characters. In the course of our
research, we make use of this portion of the dataset.

B. DPAV4

The DPA contest version 4 has a total of 100 000 traces, each
of which possesses a total of 3000 attributes [S]. Due to the
fact that the traces leak first-order data [6], the S-box output
can only be utilized as an unprotected dataset. This is because
it is impossible to use this dataset to store protected data.

C. RANDOM DELAY

There are a total of 50,000 traces in this dataset, and each trace
consist of 3,500 attributes. Random delay defense mechanism
that is described within [7] was created with the help of an
Atmel AVR microcontroller [8] that has 8 bits. In this dataset,
our attention is focused on the very first key byte [9].

D. PORTABILITY

Traces for such collection came out of a single gadget,
and they were gathered with the use of a near-field elec-
tromagnetic probe [10]. An Arduino Uno [11] with an
unprotected AES-128 implementation [12] loaded onto an
AVR Atmega328p [13] serves as the measuring equipment
that was utilized to capture the data. The name given to this
dataset is Porta. This dataset has a total of 50,000 attack
traces and profiling, every one of those traces includes a set
of 500 attributes [14].

IV. DATASET PROCESSING

A. DATASET STRUCTURE

The pattern of our dataset, how we preprocess it, and how we

put it up for our model are all covered in the first section.
Out of 50,000 traces, Table 2 displays a small number of

power trace readings. In this case, we will simply discuss

the values of the power traces and demonstrate how we

preprocessed these numbers to make the model function.
Data sets have the following characteristics:

1) Time-series data make up the data values.
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TABLE 3. DPA contest v1 dataset.

File name Trace Counts File Sizes
secmatv120060408019.zip 81.088 4Gbytes
secmatv3 2(?070924 31.569 1Gbytes
des.zip
secmatv3 2(_)071219 67.753 6Gbytes
des.zip
TABLE 4. Toggling count dataset.

Filename Total Traces Count File Size
0_key message ciphertextl.csv 48 SKB
1_key message_ciphertextl.csv 48 SKB
0_key message ciphertextl.csv 48 SKB
1_key message_ciphertextl.csv 48 SKB
0 key message ciphertextl.csv 48 5KB

2) The power used by the operation is represented by the
power trace values.

3) Following the retrieval of DPA Contest v1 data, various
message, key, and ciphertext combinations are used to
produce hundreds of CSV files including power traces.

4) We can extract the CSV file by executing the C pro-
gramming code that was supplied on the DPA contest
website.

5) Two columns are included in every CSV file: one for
time as well as another for the quantity of electricity
used. In this example, the time is meaningless because
we are merely interested about power examines and not
the date the data was taken.

All of the datasets that we’ll use in our research are time-
series data. As a result, each data point in our series is
successively sampled at equal time periods. The data points’
chronological arrangement is determined by the time of col-
lection.

Enclosed power trace measurements from an acquisition
platform are included in the DPA Contest v1 Dataset. Table 3
shows the DPA Contest vl Dataset features. Telecom Paris-
Tech is the owner of these traces and has gathered and
preserved them. Data in “.bin” format is tracked in terms
of power consumption. A C-program file called ‘““agilent bin
reader.c” has also been given to convert “.bin” files into
“.csv” files.

Voltage is displayed as power usage traces in the datasets.
Nanovolts (1e-9 nV) are used to express the voltages.

Verilog simulated datasets will be utilized in our studies.
These dataset files will include time and toggling counts.
A dataset’s values are derived from particular key-pairs,
cipher-text, and plain text combinations.

In these datasets, the filename is made up of Plain-text,
Cipher-text, Keys, and either encryption or decryption (0
or 1). The files contain information about time and toggle
counts. The dataset’s organizational structure is displayed in
Table 4.

Experimental Dataset: These datasets are experimental and
were gathered using the Artix-7 FPGA board. There are
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single and double differential I/O standards in the Artix-7
evaluation kit.

B. DATASET CLEANING AND VISUALIZATION

Here, we describe the data cleaning process for the three
datasets. It contains raw data, noisy data, and so on. There-
fore, our objective is to clean these datasets before proceeding
with the validation and training of them in neural networks.

To clean the datasets, we’ll apply methods from digital sig-
nal processing. The Hanning and Hamming window routines
will be used. The following illustrates the outcomes of using
digital signal processing operations on our SCA DPA contest
files.

Fig. 7 of the DPA contest datasets is created by using the
Hanning and Hamming window functions. In the image, the
y-axis represents time, while the x-axis represents the power
traces in voltage. It’s clear that the datasets were leaked, and
most of the noise has subsided.

Since the toggling count datasets employ simulation data
values from Verilog HDL, no digital signal processing tech-
niques are needed. Fig. 8 shows DPA contest dataset after
applying windowing functions. Here are the toggling count
dataset patterns, as seen in Fig. 9. The figure shows how the
detection of the data changes results in a big spike.

C. DEEP LEARNING EXPERIMENTS

In this section, we will examine 3 distinct DL experiments
using the toggle count and DPA contest datasets. We have
utilized RNN and CNN as our DL technique.

First experiment: Using predictions DES sessions from
the DPA contest and toggled count data sets, and then we
compare CNN and RNN models. We compare the accuracy
and loss of these 2 models. We compare the execution times
of the 2 models, with similar data sets.

DES and nonDES are the two groups into which we split
our datasets for the second experiment. We use CNN and
RNN models for this. We compare and evaluate the perfor-
mance of these two models.

Third Experiment: In this last experiment, we evaluate how
well the hybrid model (CNN-RNN) maps a particular key for
the combination of plaintext and the ciphertext according to
whether side-band information is present or not.

1) PREDICTION OF DES ROUNDS
DES algorithm uses 16 cycles for both encryption and
decoding. We discuss deep learning techniques for DES
round prediction in this section. The DES rounds have been
predicted using CNN, RNN, and a hybrid model called CNN-
RNN. We forecast DES rounds using toggled counts and DPA
contest data sets. Lastly, the CNN, RNN, and CNN-RNN
models are compared in terms of their accuracy and model.
We will state again that our primary aim was not only to
use a CNN or RNN models, but rather a hybrid (CNN-RNN)
model. Our goal in developing this hybrid model is to achieve
an accuracy level comparable to that of RNN and CNN.
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FIGURE 8. The results of windowing operations on DPA contest data.

A range of metrics, such as the starting point, the quantity
of epochs, the simulation speed, precision, and the model
loss, will be used to assess the models’ performance. Since
the datasets are not categorized in this case, the definition’s
arbitrary baseline is 100 percent. We have 50,000 unique
values for keys, ciphertext, and plaintext, all generated at
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random using the baseline criteria. On the other side, without
a constant key, ciphertext, or plaintext value, our baseline will
most often be 0.

2) CLASSIFICATION OF TWO CLASSES: DES AND NON-DES
The procedure for DES and non-DES class classification
utilizing side-channel datasets is detailed in this part. Here,
we assume that the attacker has sufficient ability to decipher
the plaintext and ciphertext as well as the key values for
certain permutations of the two. An attacker is interested in
using DL techniques to separate their datasets into DES and
non-DES classes now that they have access to the traces left
by previous cryptography technologies. In order to categorize
the datasets as DES or non-DES, we have used the RNN
model and the LSTM network.

In this case, we have 68000 datasets that are DES and
55000 datasets that are non-DES (AES). Dividing the datasets
into two groups will be the primary objective. Our goal is
to train a model that will correctly identify AES datasets
as non-DES with a classification of 0. Furthermore, DES
datasets will have a label of 1 to denote that they are DES
datasets.

The arbitrary and typical baselines in our dataset are con-
sidered in two baselines. Some of the factors we consider
while assessing the performance of the 2 models are the
execution duration, loss, and accuracy of each model for a
predefined no. of epochs.

Since there are two categories here, DES and non-DES,
the random baseline is 50%. Based on the model, it will be
classified as DES if it is 1, and non-DES (AES) if it is 0.

The most common starting point: A total of 68000 DES
datasets and 55000 non-DES (AES) datasets were used for
the classification task. At 55.28 percent, it is the most typical
baseline. Using the most popular baselines as a guide, we split
123000 DES records over 68000 datasets.

3) HYBRID MODEL (CNN-RNN) FOR MAPPING KEYS

The key values for a given plaintext/ciphertext combination
can be derived using the hybrid model. We offer two separate
pieces. Initially, we feed encryption/decryption bits (0/1) and
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plaintext and ciphertext to the neural network. The NN mod-
els’ output for a specific set of plaintexts and ciphertext will
match the key exactly.

The following set of inputs is given into the neural network:
side-band data (toggled count quantity), ciphertext, plaintext,
and the encryption/decryption bits (0/1). A set of keys map-
ping to a 56-bit key space is the anticipated result. Next, the
effectiveness of key mapping is evaluated with and without
the addition of a sideband.

a: KEY NAPPING WITHOUT SIDE-BAND INFORMATION

A hybrid (CNN-RNN) model will be created using 3 inputs:
ciphertext, plaintext, and a 1-bit encryption or decryption key.
The two text formats are in hexadecimal 16-byte format. The
way the hybrid model works can be summarized as follows:

1) First, the hexadecimal data is converted to binary
numbers. Consequently, the output is ciphertext with
64 bits of data, plus a one-bit key for encryption and
decrypting. The network receives 129 bits of binary
information as input.

2) Next, we just take into account a machine under-
standing multi-class logistical regression model, which
converts inputs from two or more items to the matching
3rd element. Accordingly, we utilized softmax in the
last layer. Softmax is known to generate the odds for a
given input to a certain outcome.

b: KEY MAPPING WITH SIDE-BAND INFORMATION

The same approach is used to get the key value for a certain
plaintext-ciphertext combination in this key mapping task.
All of the input parameters are varied. In this instance, the
model’s inputs are side-band data (values from toggling count
amount data), ciphertext, encryption/decryption keys, and
plaintext. The purpose of using side-band information as
an additional input parameter in the hybrid model is to see
whether it can improve accuracy or outcomes compared to
not using it. Here is how the process works:

1) Asin the prior challenge, we will convert our ciphertext
and plaintext from hexadecimal to binary numbers.
Within the NN model, 129bits of binary input are
used in conjunction to 1-bit encryption/decryption keys
respectively. We have these inputs in addition to side-
band data.

2) Softmax comes before the output layer in the same
manner. Softmax provides us with the multi-class
regression probability. A key value derived from
the key-space for a certain pair of plaintexts and
ciphertext-which also contains extra information-is
mapped onto the model.

In this experiment, a number of factors are used to test
the effectiveness of two RNN models, including execution
time, accuracy and loss over a predefined number of epochs,
utilization of memory for model storage spaces.

Cybersecurity is confronted with a number of challenges
by side channel attacks using deep learning. These models are
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not easily generalizable to other devices or implementations
because hardware variations and target system countermea-
sures. Unpredictability and side channel noise weaken the
training and durability of the model. Neural network archi-
tectures that extract substantial information from side channel
input need deep learning and side channel analytical abilities.
Important issues also include addressing ethical concerns
about their use and making sure these models are adversarial
resilient.

Side channel attacks based on deep learning have several
limitations, but they are promising nevertheless. For pri-
vate or constrained systems, obtaining the massive amounts
of labeled data needed for training could be a challenge.
Because of differences in hardware, operating conditions,
and countermeasures, these attacks could also struggle to
generalize across devices or implementations. Side channel
input presents extra challenges due to its inherent noise and
unpredictability, perhaps.

It is necessary to develop hybrid encryption systems to
bridge research gaps in deep learning-based encryption meth-
ods for side-channel attacks.

o Deep learning based encryption needs to be attack
resilient. In order to understand these models’ decision
making process during a side channel attack, modeling
interpretability is needed. To improve resilience assess-
ment and security measures, researchers need to be able
to make intelligence of how models operate and predict.

o There are certain factors that need consideration when
designing scalable and efficient deep learning-based
encryptions. Methods of such kind should handle huge
amounts of data with fewer resources used and com-
plex calculations involved. Knowledge is essential about
training models that remain resistant despite hardware
changes, software modifications or environment alter-
ations.

« Encryption efficiency couldn’t achieve the maximum
due to conventional deep learning-based encryption thus
increasing the cost of computation. These approaches
should be optimized for both efficiency and security so
as they can function in real world systems. One must
understand whether adversarial attacks could target dif-
ferent deep learning based encryption systems.

Hybrid deep learning models could potentially offer more
protection against side channel attacks. However, there are
still unfulfilled research gaps concerning deeply integrated
learning of hybrid methodologies for the encryption of side-
channel attacks.

V. CONCLUSION

We have demonstrated in this research work that the possible
practical problems that could arise from applying DL-based
SCA on power oriented traces with an excessive amount
of samples. Here, our contribution shows the importance
of hybrid deep learning models for enhancing encryption
techniques against side channel attacks. Hybrid systems,
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which integrate the benefits of two distinct approaches, have
long been recommended as best practices. Even in situations
when there is a notable decrease in the amount of accessible
data, the architecture can reliably identify the proper key
because it was trained using more advanced features. Since
the gadget can successfully extract the right key even in
challenging real-world situations, more research is required
to ascertain how robust the design is. The unique architecture
is nevertheless able to show the proper key, for example,
in a circumstance where the data quantity is one-fifth of
what is generally there, or the data are downsampled to
half. The efficient design’s ability to successfully recover
the right key from desynchronized traces further demon-
strates the architecture’s adaptability, as demonstrated by
tests done on two different datasets. The traditional DL
methods majorly suffers from the limitations such as low
efficiency of encryption model (95%) and low accuracy in
detection of SCA. Hence, further improvement of these mod-
els is necessary and this can be achieved through the Hybrid
DL methods.

In our future research, we want to investigate a number
of effective hybrid deep learning strategies, such as parallel
architectures and the Early Stop, with the goal of maximum
improving the performance of neural networks against non-
profiled attacks. Future advancements in hybrid deep learning
methods for the encryption of side-channel attacks are antic-
ipated to include new algorithms, theoretical insights, and
practical applications. At the times when threats are dynamic,
the encrypted hybrid deep learning system makes more
secure, effective, and user-friendly.
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