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ABSTRACT Accurate detection of water holdup in oil-water two-phase flow is crucial for optimizing
production and improving crude oil recovery. The transmission lines method is currently one of the
few effective methods to measure the water holdup of oil-water two-phase flow. However, variations in
temperature and mineralization will alter the dielectric constant and conductivity of the oil-water mixture
respectively, posing challenges for precise water holdup measurement. The complex nonlinear relationship
between these factors limits the prediction range and accuracy of widely used models, such as the BP neural
network and Support Vector Machine (SVM). In order to overcome these issues, this paper establishes
a multi-sensor oil-water two-phase flow indoor experiment system and studies the complex relationship
between the phase shift of sensor signal and influencing factors. On this basis, this paper proposes a combined
water holdup prediction model (BO-XGBoost) of Bayesian optimization (BO) algorithm and extreme
gradient boosting (XGBoost). The results demonstrate that the XGBoost model outperforms traditional
BP neural network and SVM in predicting water holdup across the full range of 0%-100%. The average
absolute error of the BO-XGBoost model is only 1.50%. The above research achieves a full-range, high-
precision water holdup prediction, providing a new solution for oilfield development and possessing practical
engineering significance.

INDEX TERMS BO-XGBoost, XGBoost, BP, SVM, transmission lines method, water holdup.

I. INTRODUCTION

The water holdup of oil-water two-phase flow is a key
parameter that reflects the production status of oil fields.
It provides direct basis for evaluating the productivity of
oil wells, predicting the development life of oil wells, and
optimizing the extraction and transportation process of crude
oil [1], [2]. Real-time accurate measurement of the water
holdup of each layer of the oil well can provide a reference
for effectively plugging the layers with excessive water
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holdup during injection and production, and avoid the “empty
pumping” of oil production machines. It not only improves
the extraction efficiency of oil wells, but also avoids the
waste of human and material resources, which is of great
significance to the development of oil fields.

At present, the common methods for measuring water
holdup mainly include capacitance method [3], conductance
method [4], acoustic wave method [5], radio frequency
method [6] and transmission lines method [7]. The capac-
itance method uses the proportional relationship between
the capacitance and the dielectric constant of the oil-water
mixture for detection, but in high water holdup, the water
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phase connection reduces the resolution. It is generally
suitable for the water holdup less than 50%. The conductance
method uses the different conductance of the oil-water
mixture to detect, which is generally applicable to the
water holdup higher than 50%. It loses the resolution that
oil forms continuous phase under low water holdup. The
acoustic wave method utilizes the lost energy during the
transmission process caused by the scattering and reflection
of sound waves at the oil-water interface. However, it has poor
resolution for dispersed oil slugs in water, and is fit for oil-
water two-phase flow with low mixing speed and high water
holdup. The radio frequency method relies on the attenuated
variation of the amplitude of the radio frequency signal
caused by the difference in the oil-water mixture medium. But
it is easily affected by the uneven distribution of the oil-water
mixture and measures difficultly under low water holdup,
there is also the risk of radiation leakage. In comparison,
the fundamental principle of the transmission lines method
is to use the phase shift of initial and terminal signals of the
transmission lines that has a monotonic relationship with the
dielectric constant of the fluid detected to measure the water
holdup [7], [8]. Both theoretical analysis and experiments
have shown that this method is valid at the water holdup
from 0% to 100%. It can be well applied to monitoring and
evaluating the production wells.

However, the actual application has shown that the
dielectric constant of downhole mixed fluid decreases with
the rising temperature, and the conductive current between
transmission lines increases with the rising mineralization.
Accordingly, it is still influenced by the temperature and
mineralization of the downhole fluid, thus causing measure-
ment error. Although methods such as increasing the emission
frequency of signal and covering the insulation layer have
been adopted to reduce the impact of mineralization on
measurement, the measurement error caused by the above
factors cannot be eliminated completely. Therefore, it is
extremely important to choose a method that can correct the
affection of temperature and mineralization.

Due to the complexity of downhole situation, there is a
non-linear relationship between the influencing factors and
the measurement results of the water holdup [9]. Therefore,
it is generally difficult to establish a suitable mathematical
model for the problem of multiple factors affecting the
measurement of downhole water holdup [10], [11], [12].
Domestic and foreign scholars have also done extensive
research work. Zhou et al. [13] used a multi-parameter
coupled BP neural network model to predict the water holdup
and achieved good test results in the range of water holdup
from 60% to 100%. However, the types and number of test
samples are too few to be general. In view of the problems
that BP cannot seek the global optimal solution and has slow
convergence speed. Chang and Chen [14] proposed the BP
neural network model improved by heuristic improvement
and numerical optimization method to predict the water
holdup of crude oil, which enhanced the convergence speed
and prediction accuracy. But there is still a large prediction
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error at low water holdup. On this basis, Zhang and Xia [15]
established a soft sensor model based on RS-SVM classifier
and GA-NN model to predict the water holdup, which was
capable of segmented prediction of water holdup. However,
its generalization ability is poor owing to the small number
of model samples.

In order to overcome the certain limitations of traditional
prediction models in prediction range and accuracy, this paper
uses an integrated learning algorithm XGBoost to correct the
effects of temperature and mineralization. Compared with
traditional BP neural network and SVM, the XGBoost model
has the advantages of higher prediction accuracy and wider
prediction range. The other parts of the paper are organized
as follows. Section II theoretically analyzes the influence
of electrical parameters of oil-water mixture. Section III
introduces the water holdup experimental device based on
the transmission lines method and studies the effects of
temperature and mineralization on the measurement results.
Section IV constructs water holdup prediction models of
machine learning algorithms, then compares and analyzes
their prediction performance. Finally, the conclusions are
given in Section V.

Il. EFFECT OF TEMPERATURE AND MINERALIZATION ON
THE ELECTRICAL PARAMETERS OF OIL-WATER MIXTURE
A. EFFECT OF TEMPERATURE ON THE DIELECTRIC
CONSTANT OF OIL-WATER MIXTURE

In the downhole environment, the dielectric constant of
the oil-water mixture varies with the temperature. The
relative permittivity of oil is slightly affected by temperature,
generally between 2.2 and 2.5, while the relative permittivity
of water is greatly affected by the temperature. Table 1
reflects the relationship between them [16].

TABLE 1. Relative permittivity of water at different temperatures.

(°C) 10 20 30 40 60 80 100
£ 838 80 76 73 668 610 557

The quadratic relation fitted to the relative permittivity &,
of water and the temperature ¢ is shown as equation (1).

& = 91.1238 — 0.5077¢ + 0.0015¢> )

When the water holdup of the oil-water mixture varies, its
dielectric constant also varies obviously. According to the
distribution state of oil and water, its equivalent dielectric
constant is:

em = [VEo(1 = Vi) + (Y V/E)I? 2)

In equation (2), &, is the equivalent dielectric constant of the
oil-water mixture, &, is the relative permittivity of crude oil,
Y,, is the water holdup of the oil-water mixture, ¢, is the
relative permittivity of the water.

By substituting equation (1) into equation (2), the rela-
tionship between the equivalent dielectric constant and water
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TABLE 2. Conductivity data of oil-water mixed samples at different degrees of mineralization.

Mineralization (mg/L) 0 1000 5000 8000 10000 50000 80000
100% 019 118 466 680 8.10 23.00 28.70
Conductivity of oil-water ¢ 0.14 0.87 285 436 5.63 1.71 24.09
mixed samples (ms/cm)
60% 0.07 0.63 262 401 493 17.05 23.70

Equivalent dielectric constant of oil-water mixture

0 - L L L L

0 20 40 60 80 100
Water holdup of oil-water mixture (%)

FIGURE 1. Relationship between equivalent dielectric constant and water
holdup of oil-water mixture at different temperatures.

holdup of the oil-water mixture at different temperatures can
be obtained. The numerical simulation is shown in Fig. 1.

It can be seen from Fig. 1 that the equivalent dielectric
constant of the oil-water mixture increases monotonically
with the rising water holdup. The lower the temperature, the
higher the equivalent dielectric constant.

B. EFFECT OF MINERALIZATION ON THE CONDUCTIVITY
OF OIL-WATER MIXTURE

In order to simulate the downhole two-phase flow envi-
ronment, diesel oil and water are used to prepare the
experimental samples with water holdup of 60%, 80% and
100%, respectively. The mixture is stirred fully by using a
blender, and a certain mass of NaCl is added to each sample
with different mineralization. The conductivity of the mixture
is measured by a conductivity meter. The experimental results
are shown in Table 2.

According to the experimental data in Table 2, the fitted
curves of conductivity and mineralization under different
water holdup samples are drawn as shown in Fig. 2. It shows
the quadratic fitted function and curve of conductivity
and mineralization, indicating that they have a parabolic
relationship in the range of 0-8 x 10*mg/L mineralization.
Fig. 2 (b) is an enlarged view of the green circle in Fig. 2 (a),
which shows that they have a good linear relationship in
the range of 0-1 x 10*mg/L mineralization. Therefore, the
conductivity and mineralization of the oil-water mixture
show a monotonic increasing relationship. The greater the
mineralization, the higher the conductivity.
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C. NUMERICAL SIMULATION OF MULTIPLE FACTORS
AFFECTING THE MEASUREMENT OF WATER HOLDUP
The above theory analyses the significant effect of tem-
perature and mineralization on the electrical parameters
of oil-water mixture. When measuring water holdup using
the transmission lines method, changes in the equivalent
dielectric constant and conductivity of the oil-water mixture
combine to affect the phase shift of the transmission lines
signal [16]. In order to further analyze their common
influence, the numerical simulation result is shown in Fig. 3.
When the dielectric constant of the oil-water mixture is
certain, the higher the conductivity, the greater the phase shift.
When the conductivity of the oil-water mixture is fixed, the
larger the dielectric constant, the greater the phase shift. As a
result, when measuring the water holdup of oil-water mixture,
it is definitely affected by temperature and mineralization,
then leading to measurement error.

IIl. EXPERIMENTAL STUDY ON THE EFFECT OF
TEMPERATURE AND MINERALIZATION ON THE
MEASUREMENT OF WATER HOLDUP

A. EXPERIMENTAL DEVICE

In order to test the effect of temperature and mineralization on
the phase shift of the transmission lines signal, a measuring
device as shown in Fig. 4 is designed to study the
influence of different temperatures and mineralization on
the measurement of water holdup. The device consists of a
mixing container, a measuring container, sensors, a blender,
temperature controller, a water pump, heating rods, etc. The
mixing container is filled with mixed liquid of a certain
proportion of diesel and water, as well as a certain quality
of NaCl. The temperature controller can achieve real-time
temperature display and control, and simulate the oil-
water two-phase flow environment at various temperatures,
mineralization and downhole water holdup.

The experimental process is as follows. First, prepare the
oil-water mixture sample according to the water holdup value,
pour it into the mixing container, open the blender to stir the
mixture fully, and then pump it into the measuring container
through a water pump. Last, set the preheating temperature of
the temperature controller, wait for the temperature to reach
the set value, and record the sensor count value after the
mixture is sufficiently stable.

B. EXPERIMENTAL DATA ANALYSIS
In order to test the count values of the two sensors at different
samples, the experiment is carried out at the experimental
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FIGURE 2. Relationship between conductivity and mineralization under different water holdup. (a) 0-8 x 10*mg/L and (b) 0-1 x 10*mg/L.
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FIGURE 3. Numerical simulation of the effect of equivalent dielectric
constant and mineralization on phase shift.

samples with temperature of 25°C, water holdup of 0%
to 100%, an interval of 10%, and 0 mg/L mineralization.
At the same time, in order to make the count values of the
two sensors comparable, the phase shift count value N, is
normalized to obtain the phase shift count percentage (CP)
Ncp as equation (3).

Ny — N,
W_NO

where N, is the count value under air, N,, is the count value
under full water.

Fig. 5 shows the Ncp curves of the two sensors at Omg/L
mineralization. The curve shows that: (1) Within the range of
full oil to full water, the Ncp of the sensor shows a monotonic
increasing relationship with the water holdup. (2) The first
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FIGURE 4. Experimental device.

and second N¢p of the same sensor are basically consistent
with good repeatability. (3) Due to the immiscibility of oil-
water medium, there is a phenomenon of uneven mixing,
which causes the N¢cp of sensor to fluctuate within a certain
range. So the strip curve reasonably describes the fluctuation
in the counting. (4) The sensitivity of the two sensors is
equivalent at the low, medium, and high water holdup, and
their consistency is pretty well.
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FIGURE 5. N¢p curves of two sensors at 0mg/L mineralization.

In order to obtain test samples of various tempera-
tures, mineralization and water holdup, the temperatures of
25°C, 45°C, and 65°C are selected during the experiment.
Nine mineralization degrees are selected, including Omg/L,
1000mg/L, 2000mg/L, 5000mg/L, 8000mg/L, 10000mg/L,
20000mg/L, 50000mg/L, and 80000mg/L. A total of 11 water
holdup values are selected, ranging from 0% to 100%,
with an interval of 10%. A total of 3 x 9x11=297
groups of experimental samples are produced under the
above conditions. Because of the limitation of experimental
conditions, this experiment is unable to simulate the high
temperature underground except. It basically covers the
variable range of mineralization and water holdup in actual
well condition (because water exceeding 100°C will boil
under normal surface pressure condition and diesel vapor has
the risk of explosion). Fig. 6 shows the Ncp curves of the
sensor at three temperatures.

As can be seen from Fig. 6, (1) Within the range of
0%-40% water holdup, as the mineralization increases, the
Ncp of the sensor hardly changes. This phenomenon is related
to the oil-water mixture presenting a state of ‘“‘water-in-
0il”. The conductive ions in the bubbles are separated by
oil, and the conductive current cannot be formed between
the transmission lines, which has little impact on the count
value of sensor. (2) Within the range of 40%-90% water
holdup, some Nc¢p of sensor increase monotonically as the
mineralization increases, while others show a trend of first
increasing and then decreasing with the rising mineralization.
This is related to the combined effect of conductive current
and oil-water slippage. When conductive current dominates,
the Ncp increases with the rising mineralization, and when
slip phenomenon dominates, the Ncp decreases with the
rising mineralization [17], [18]. (3) The N¢p of the sample
with 100% water holdup increases monotonically as the
mineralization increases. Under the same mineralization
condition, the Ncp decreases monotonically with rising
temperature, which is compatible with the theoretical analysis
in Section II.

In order to further illustrate the impact of temperature on
the measurement results, the count results at each temperature
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and water holdup are averaged. For the convenience of
comparison, the measurement results of mineralization at
four typical working conditions of 0 mg/L, 5000 mg/L,
20000 mg/L, and 80000 mg/L are selected as shown in Fig. 7.

As can be seen from Fig. 7, (1) The Ncp is basically
not affected by temperature within the range of 0% to 30%
water holdup. This is because the proportion of oil in the
mixture is large, and the equivalent dielectric constant of the
oil-water mixture is not sensitive to temperature. (2) When
the water holdup ranges from 40% to 100%, the Ncp shows
a gradual decline trend with the temperature rising. This is
mainly related to the sensitivity of the relative permittivity of
oil and water to temperature. Because the relative permittivity
of water decreases with the rising temperature, so the
equivalent dielectric constant of oil-water mixture is sensitive
to temperature.

From the above experimental results, it is clear that the
measurement of water holdup by the transmission lines
method must be affected by temperature and mineralization
of the oil-water mixture. However, we can build the right
prediction model to deal with the complex non-linear
influence relationship. In the actual downhole environment,
the temperature and mineralization of oil-water two-phase
flow can be measured on-line. By inputting the temperature,
mineralization, and count value of sensor into the prediction
model, the impact of multiple factors on measurement of
the water holdup can be reduced, and water holdup can be
predicted.

IV. THE WATER HOLDUP PREDICTION MODEL BASED ON
MACHINE LEARNING

A. ESTABLISHMENT OF PREDICTION MODEL

The input data of the model are temperature, mineraliza-
tion, and count value of sensor, and the output is the
predicted value of water holdup as shown in Fig. 8. The
construction process of the prediction model is divided
into the selection of data sets, data processing, model
construction, and the evaluation and analysis of prediction
result [19], [20]. The training sets select the above 297 sets
of experimental samples. The test sets select temperatures
of 35°C and 55°C, water holdup ranging from 5% to
95%, with an interval of 5%. The mineralization levels are
1500mg/L, 3500mg/L, 6500mg/L, 9000mg/L, 15000mg/L,
25000mg/L, 35000mg/L, 45000mg/L, 55000mg/L, with a
total of 180 groups of combined samples. For BP and
SVM, data sets need to be normalized to avoid certain
input variables that are too large to affect training. However,
XGBoost does not need to be normalized because it only
considers the distribution of each variable and the conditional
probabilities between them.

B. BP

BP is a multi-layer feedforward neural network that learns
based on error backpropagation [21], [22], [23]. On the
premise of satisfying the model training accuracy, this paper
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FIGURE 6. N¢p of the sensor at three temperatures. (a) 25°, (b) 45°.

adopts a BP structure with two hidden layers. Using the
node trial-and-error method, the number of nodes in the
two hidden layers is 8 and 4 respectively. The learning
rate is set to 0.01, the target error is set to le-4, and the
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iterations is set to 5000. Use three training functions of
the MATLAB toolbox: “Resilient backpropagation algorithm
(trainrp)”, “Bayes rule training algorithm (trainbr)”, and
“Gradient descent with momentum and adaptive learning rate
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FIGURE 6. (Continued.) Ncp of the sensor at three temperatures. (c) 65°.

backpropagation (traingdx)” for training respectively. After
experiment, it is found that the ““trainrp” algorithm can make
the model converge with the least iterations and the best
training effect. Therefore, “trainrp” is chosen as the training
algorithm for the BP network.

C. Svm
The principle of SVM is to find a classification decision
hyperplane that maximizes the distance between samples
of different categories and the hyperplane [24], [25]. The
Lagrange multiplier is introduced according to the principle
of empirical risk minimization, and the decision function is
shown as in equation (4):
n

fy =2 ik 5) + b @)
where y; is the actual value of the i-th sample, /; is Lagrangian
operator, K(x;,x;) is a kernel function, x; is the i-th sample, and
b is the bias.

The core parameters of SVM are “the penalty coefficient
(C)” and ‘‘the kernel function coefficient (gamma)”. The
common method at present is the cross-validation grid search
method [26], [27]. First, use the training sets as the data sets
for selection of parameters, set the algorithm type to ““support
vector regression machine (SVR)”’, then set kernel = ““‘rbf™.
The selection range of “C” and “gamma’ is 10719 to 1010,
After the model is trained, the optimal parameter C
90.51 and gamma = 0.71 is obtained.
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D. XGBOOST
The principle of the XGBoost algorithm is to learn new weak
learners based on decision trees, and then combine them into
a strong learner [28], [29].

In the XGBoost model, the objective function is shown as
in equation (5):

n
obj" = D" 10y, ') + Q) 5)

i=1

1 T
Qfi) = yT + 51 > of (6)

j=1

In equation (5), jzgt_l)is the predicted value of the i-th sample
after the (7-1)-th iteration, and /(y;, 95’_ 1)) is the training error,
Q(fi) is the regularization penalty term. In equation (6), T is
the number of leaf nodes, y and A are adjustable penalty
term parameters, w; is the output value of the j-th leaf
node.

E. BO-XGBoost

Bayesian optimization algorithm (BOA) is a black-box
optimization algorithm [30], [31]. The BOA framework
consists of an agent model of the objective function based
on the historical evaluation results of the objective function,
and an acquisition function constructed using the posterior
information of the agent model [32], [33]. The gaussian
process is used as the agent model here, it consists of a mean
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function and a covariance function:
f(x) ~ GP[m(x), k(x, x")] @)
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FIGURE 8. Flowchart of water holdup prediction model based on
machine learning.

where m(x) = E[f(x)] is the mean function, k(x, x') =
E[(f (x)-m(x))(f (x")-m(x"))] is the covariance function.

The (PI) function is chosen for this model as shown in
equation (8), and the main idea is to allow the posterior
distribution sampling points to maximize the probability of
boosting the value.

px) —f(xt) — &

[ D) = plf (o) = fx) + €] = Q(T)
®)

where £ (x 1) is the optimal function value in the current tested
hyperparameter combination, i (x) and o (x) are the mean and
variance of the agent model, respectively, O is the cumulative
density function of a normal distribution, and £ is a balancing
parameter.

The bayesian optimized XGBoost algorithm mainly
includes 6 steps.

Step 1: Use the mean squared error of the training sets
after 5-fold cross-validation on the XGBoost model as the
objective function. Set the main parameters of the model
as the array to be optimized and initialize the parameters
optimization range, and randomly generate initial point
parameters sets and find the function value of each parameters
set.

Step 2: Build a gaussian agent model based on the
parameters sets of the current initial points and the function
value of the parameters sets.

Step 3: Maximize the acquisition PI function to select the
next most potential hyperparameter combination x; 1.

Step 4: Evaluate the value of the objective function f (x;41)
based on the selected hyperparameter combination x;4 .

Step 5: Add the newly obtained input hyperparameter

combination - observation value pair {x;y1,f(x;4+1)} to
the historical observation data D1.;, and update the Gaussian
agent model to prepare for the next iteration.
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FIGURE 9. Bayesian search hyperparameters of XGBoost.

Step 6: Judge whether to meet the preset error condition of
the model, if not, continue to iterate. If the condition is met,
output the best hyperparameter combinations to complete the
construction of the model.

The bayesian optimized hyperparameters of XGBoost
model are shown in Fig. 9. The selection of model
hyperparameters is determined based on the mean squared
error. When the mean squared error reaches the minimum,
the optimal parameters can be found. The coordinates of each
subplot in the figure are the range of each parameter selection.
The black dots indicate the positions of the sampling points
during the bayesian optimized process. The red pentagrams
are the optimal points of the parameters.

Compare the bayesian optimized hyperparameters in Fig. 9
with the unoptimized default hyperparameters, the results are
shown in Table 3.

F. EVALUATION AND ANALYSIS OF PREDICTION RESULTS
By comparing and analyzing the prediction effects of these
four models on the test sets, we can find an effective algorithm
to correct the impact of multiple factors on the measurement
of water holdup. Fig. 10 shows the fitted effect between the
predicted results of the four models and the actual water
holdup. The closer the scatter in the figure is to the ideal fitted
straight line, the closer it is to the actual water holdup. It can
be seen that the prediction effect of BO-XGBoost is the best,
followed by XGBoost, and the other two models have poor
fitted performance at high water holdup.

In order to make further efforts to test the prediction effect
of the BO-XGBoost model, 90 water holdup samples at
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FIGURE 10. Fitted effects of prediction results and actual water holdup.

temperatures of 35°C and 55°C are selected, respectively.
The prediction results are shown in Fig. 11. It can be seen
that the prediction results have a good performance at both
temperature conditions. Fig. 12 reflects the prediction error of
the BO-XGBoost model. The error of most samples is within
+2%, the error of a few samples is slightly larger, but still
within £5%, which has a good prediction effect.

In order to more effectively evaluate the prediction
performance of the four models, the fitted coefficient (RY),
the root mean square error (RMSE), the maximum absolute
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TABLE 3. Parameter comparison results.

Hyperparameters [lustration BO-XGBoost XGBoost
n_estimators number of decision tree 203.0 100.0
max_depth maximum depth of decision tree 4.0 6.0
subsample the proportion of randomly selected samples 0.8 1.0
min_child_weight the minimum number of leaf node samples 5.0 1.0
learning_rate learning rate 0.21 0.3
reg_lambda regular term penalty cofficient 4.10 1.0
100 | = - AEqax = max |y; — il (11)
90 | * - * ] 1< 5
< wl b | MAE = — 3 |vi =i (12)
g e s i=!
g 77 . S 7 where y; is the actual value, y; is the predicted value of the
§ 60 - = - . sample, and y is the average value of y;.
g - =
E r cuEs * | TABLE 4. Comparison of water holdup prediction performance of four
S a0k J models.
=
% 30f *”& mf*? 1 Algorithm R RMSE AE MAE
§ ol = e | BP 0.9825 0.037 11.53% 3.16%
w s SVM 0.9677 0.052 12.27% 4.26%
10 Fuwt & | o hous waerholdup ] XGBoost 09859 0.035 5.87% 3.11%
0B : : Lok : ‘ : BO-XGBoost ~ 0.9958 0.019 3.51% 1.50%
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FIGURE 11. Prediction results of BO-XGBoost model.
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FIGURE 12. Prediction error of BO-XGBoost model.

error (AEnax), and the mean absolute error (MAE) are used
as evaluation indicators. The calculation formula of the
evaluation index is as follows.

Z i — 91)?
R=1-"F )
; i —»?
> i — )
RMSE = | =L (10)
n

100386

According to Table 4, it can be seen that: (1) Com-
paring R’> values, BO-XGBoost has the best fitted
effect. (2) Comparing RMSE values and AEn,x values,
BO-XGBoost<XGBoost<BP<SVM, BO-XGBoost has the
best stability and accuracy in prediction results. (3) From
the perspective of MAE, the MAE of BO-XGBoost remains
the smallest. In summary, BO-XGBoost has the best
generalization ability and prediction effect, which effectively
corrects the influence of temperature and mineralization on
the measurement of water holdup.

V. SUMMARY

To correct for the complex nonlinear effects of temperature
and mineralization on the measurement of water holdup
in oil-water two-phase flow using the transmission lines
method. This paper uses a combination of theoretical anal-
ysis, numerical simulation analysis and indoor experiments
to study the influence of multiple factors on the phase
shift of transmission lines signal. BY using 297 pieces of
experimental data, prediction models based on BP, SVM,
XGBoost, and BO-XGBoost are developed, and 180 sets of
test samples are used to verify the prediction effect of water
holdup. The results show:

(1) XGBoost outperforms traditional BP neural network
and SVM in water holdup prediction, with the advantages of
wider prediction range and higher accuracy.

(2) The average absolute error of the XGBoost model
after Bayesian optimization is only 1.50%, which provides
a solution for reliable prediction of the water holdup of
oil-water two-phase flow and has practical engineering
significance.
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