
Received 15 May 2024, accepted 15 July 2024, date of publication 19 July 2024, date of current version 29 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3431209

ZEC ECC: A Zero-Byte Eliminating
Compression-Based ECC Scheme
for DRAM Reliability
JI HUN KWON1, HYEONG KON BAE 1, YOUNG SEO LEE2, (Member, IEEE),
YOUNG-HO GONG 3, (Member, IEEE),
AND SUNG WOO CHUNG 1, (Senior Member, IEEE)
1Department of Computer Science, Korea University, Seoul 02841, Republic of Korea
2School of Electronic Engineering, Soongsil University, Seoul 06978, Republic of Korea
3School of Software, Soongsil University, Seoul 06978, Republic of Korea

Corresponding authors: Young-Ho Gong (yhgong@ssu.ac.kr) and Sung Woo Chung (swchung@korea.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)
(No. 2020R1A2C2003500, No. RS-2023-00212711, NRF-2022M3I7A2079155); in part by the Institute of Information &
communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.2022-0-00441-001,
Memory-Centric Architecture Using the Reconfigurable PIM Devices); in part by the MSIT (Ministry of Science and ICT), Korea,
under the ITRC (Information Technology Research Center) support program (IITP-2024-RS-2022-00156225) supervised by the
IITP (Institute for Information & Communications Technology Planning & Evaluation); in part by Samsung Electronics Co., Ltd
(project IO201212-08130-01); and in part by Korea University.

ABSTRACT As DRAM cells continue to shrink, the conventional single error correction and double
error detection (SECDED) code is not sufficient to provide DRAM error resilience. To satisfy DRAM
reliability demands, various studies have proposed multi-bit error correctable ECC schemes with substantial
performance and/or storage overhead compared to the SECDED code. In this paper, we propose ZEC ECC,
a zero-byte eliminating compression based ECC scheme, which provides much stronger error correction
capability with negligible performance overhead and no storage overhead. ZEC ECC exploits our proposed
Zero-byte Eliminating Compression (ZEC) to make room for additional parity bits. Depending on the
compression ratio of a memory block (≥60%, ≥50%, and <50%), ZEC ECC adaptively selects one out of
three different ECC schemes (BCH(32,16,3), BCH(27,16,2), and BCH (573,512,6), respectively). Moreover,
ZEC ECC tolerates a single chip failure by exploiting bitwise interleaving data placement, as long as the
compression ratio is higher than or equal to 50% for a 64B memory block. Our experimental results show
that ZEC ECC reduces the system failure probability (caused by DRAM errors) by 74.4%, on average, with
only 1.6% performance overhead and no storage overhead compared to the conventional SECDED.

INDEX TERMS DRAM reliability, data compression, error correction code.

I. INTRODUCTION
With DRAM process technology scaling down, more DRAM
cells are integrated in the same chip area, leading to higher
DRAM density. On the other hand, the technology scaling
makes DRAM cells more vulnerable to DRAM errors [18],
[22] so that DRAM reliability has become a primary con-
cern in data centers and supercomputers [9], [29]. To protect

The associate editor coordinating the review of this manuscript and

approving it for publication was Lorenzo Ciani .

data from DRAM errors, error correction code (ECC) dual
in-line memory modules (DIMMs) have been proposed to
include a single error correction and double error detection
(SECDED) code; the SECDED code is a widely-used ECC
that corrects 1-bit error and detects 2-bit error per 64-bit data
word by exploiting 8-bit parity. However, as DRAM error
rate increases [9], [11], [14], [21], the conventional SECDED
code is not sufficient to provide DRAM error resilience.

To satisfy memory reliability demands, several studies
have proposed stronger ECC schemes than the conventional

100366

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0007-9436-8074
https://orcid.org/0000-0001-8270-7875
https://orcid.org/0000-0001-5347-9586
https://orcid.org/0000-0001-7820-6656


J. H. Kwon et al.: ZEC ECC: A Zero-Byte Eliminating Compression-Based ECC Scheme

FIGURE 1. Proportion of zero/nonzero bytes in DRAM.

SECDED code [9], [10], [13], [20], [25], [35]. A commercial
Chipkill corrects any single chip failure and detects two chip
failures by exploiting a symbol-based ECCwith two channels
of ECC DIMMs [10]. Though Chipkill can correct chip-
level failures, it introduces performance overhead by up to
25% as it sacrifices bank/channel-level parallelism and incurs
highest-priority interrupt for error correction [3], [9], [11].
To mitigate performance overhead, several studies proposed
their ECC schemes providing Chipkill-level reliability. Fru-
gal ECC delivers Chipkill-level reliability by employing data
compression and a symbol-based ECC [20]. However, Frugal
ECC causes storage overhead by up to 26%, since it exploits
extra memory space to store parity bits in case of compression
failure. LOT-ECC provides near Chipkill-level reliability by
employing a multi-tier concept of separating error detection
and error correction [35]. Similar to Frugal ECC, LOT-ECC
incurs 26.5% storage overhead due to the parity bits for
global error correction. CARE provides near Chipkill-level
reliability by employing a 6-bit correctable ECC and page
retirement schemes with operating system (OS) support [9],
causing average 10% performance overhead due to the page
retirement.

In this paper, we propose ZEC ECC, a compression-based
adaptive ECC scheme, which provides stronger error cor-
rection capability than the conventional SECDED code with
negligible performance overhead and no storage overhead.
To store additional parity bits for stronger error correction,
ZEC ECC compresses prevalent zero bytes (i.e., bytes whose
values are zero) in a 64-byte (512-bit) memory block; note
ZEC ECC eliminates entire zero bytes, achieving higher com-
pression ratio compared to other compression methods [15],
[19], [31]. Depending on the compression ratio (CR)1 of each
memory block, ZEC ECC employs different BCH (Bose-
Chaudhuri-Hocquenghem) code to each memory block for
maximizing error robustness, without any storage overhead.
Even when a memory block could not be compressed by
ZEC ECC, ZEC ECC does not degrade DRAM reliability by
adopting SECDED to the memory block. In addition, ZEC
ECC further enhances DRAM reliability through bitwise
interleaving data placement across DRAM chips, providing

1CR =
Uncompressed data−Compressed data

Uncompressed data × 100(%).

FIGURE 2. Overview of ZEC ECC.

single chip fault tolerance. In summary, leveraging data com-
pression, ZEC ECC improves overall DRAM reliability with
negligible performance overhead and no storage overhead.

II. BACKGROUND AND MOTIVATION
Bose-Chaudhuri-Hocquenghem (BCH) code is one of the
most widely-used ECCs in DRAM, since it corrects and
detects error(s) employing computation for parity check.
Note BCH(n,k,t) encodes k-bit data into n-bit codeword by
adding (n-k)-bit parity to provide t-bit error correction and
(t+1)-bit error detection capability. To provide multi-bit error
correction capability for 64-bit data word, it requires not only
extra storage to store additional parity bits, but also addi-
tional performance overhead to decode BCH codes. To reduce
such storage and/or performance overhead while providing
stronger error correction capability, we deploy a novel data
compression. Typically, it is well known that there are abun-
dant zero bytes in DRAM [12], [15], [21]. We investigate
the proportion of zero bytes in DRAM for 17 workloads
fromwidely-used benchmark suites (SPEC CPU2017 [8] and
PARSEC [5]); a zero byte indicates all the data bits in a byte
are zeros (i.e., 00000000).

Figure 1 shows the proportion of zero bytes in DRAM.
The experimental result shows that zero bytes account for
54.1% of all the bytes, on average. Especially, even in the case
of floating point applications (denoted with _f), the pro-
portion of zero bytes is not that small. Nevertheless, the
previous compression methods are not effective to compress
such prevalent zero bytes [15], [19], [31]. When eliminating
zero bytes in DRAM, it is possible to free up space for
additional parity bits and hence improve DRAM reliability
without sacrificing available memory space. Based on this
observation, we propose a data compression method, Zero-
byte Eliminating Compression (ZEC), which frees up space
by eliminating entire zero bytes in a 64-byte memory block.
Contrary to several ECC schemes relying on whether each
64-bit data is narrow (i.e., 32-bit consecutive zeros must be
included in a 64-bit data) or not [2], [23], our proposed ZEC
could compress all the zero bytes as long as the proportion of
zero bytes are higher than 50% in a memory block, regardless
of the stored patterns of zero bytes. Furthermore, leveraging

VOLUME 12, 2024 100367



J. H. Kwon et al.: ZEC ECC: A Zero-Byte Eliminating Compression-Based ECC Scheme

FIGURE 3. The selection method of compression direction of ZEC in 64B memory block. A nonzero byte contains at least one
nonzero (i.e., 1) bits.

our proposed ZEC, we propose a ZEC-based adaptive ECC
scheme, ZEC ECC, which provides near Chipkill-level relia-
bility without storage overhead compared to the conventional
SECDED code.

III. ZEC (ZERO ELIMINATING COMPRESSION) ECC
Figure 2 shows the overall design of our proposed ZEC
ECC encoding implemented in the memory controller. ZEC
ECC encoding consists of three stages as follows. 1) In the
compression stage, the ZEC compressor calculates the CR of
a 64-byte memory block based on the proposed data com-
pression method (i.e., ZEC). 2) In the adaptive ECC selection
stage, the adaptive BCH encoder adopts an appropriate BCH
code depending on the CR; when the CR is high, it is pos-
sible to adopt a stronger BCH code by storing more parity
bits in the freed space. 3) In the bitwise interleaving stage,
the encoded data bits are stored in an interleaved manner
across 18× 4DRAMchips for reliability improvement.More
details for three stages are described in the following subsec-
tions. In addition, we will explain the decoding procedure for
ZEC ECC in Section III-D.

A. ZERO-BYTE ELIMINATING COMPRESSION
The ZEC compressor employs our proposed data compres-
sion method (i.e., ZEC) for a 64-byte memory block (which
is same as L2 cache block size in this paper). To achieve high
CR, ZEC considers both the horizontal and vertical directions
for compression. Our approach is motivated by the ZERO
compression [15]. The ZERO compression eliminates 8-byte
zero words in the 64-byte memory block by considering both
the horizontal and vertical directions; a zero word indicates
a 8-byte data word where all the data bits are zeros, while
a nonzero word indicates a 8-byte data word that has at least
one data bit of ‘1’. As ZERO requires 64-bit consecutive zeros
(i.e., zero word) for compression, it could not be effective
when zero bytes are scattered in a memory block without
a consecutive pattern. Due to the reason, there may still be

TABLE 1. Bits representataions of the C, D, E flags.

many zero bytes in the ZERO-compressed memory block.
Different from the ZERO compression, our proposed ZEC
compresses the 64-byte memory block at a fine granularity
(i.e., byte granularity), which in turn fully eliminates zero
bytes in nonzero words.

To compress a memory block as small as possible
(i.e., higher compression ratio), ZEC selects a compression
direction where the memory block has smaller number of
nonzero words. Thus, by counting the number of nonzero
words in the horizontal/vertical direction, then selects the
direction with smaller number of nonzero words as compres-
sion direction. Figure 3 illustrates the selection method of
compression direction depending on the number of nonzero
words in each direction; Figure 3 (a) and (b) show the hor-
izontal and vertical direction case, respectively. As shown
in Figure 3 (a), the memory block has four nonzero words
in the horizontal direction. On the other hand, in the ver-
tical direction, the memory block has six nonzero words.
Since the number of nonzero words in the horizontal direc-
tion (i.e., four nonzero words) is smaller than that in the
vertical direction (i.e., six nonzero words), ZEC selects the
horizontal direction in this case, which makes more memory
space for parity bits. For the vertical direction case shown in
Figure 3 (b), since the number of nonzerowords in the vertical
direction is larger than that in the horizontal direction, the
memory block would be compressed in the vertical direction.

100368 VOLUME 12, 2024



J. H. Kwon et al.: ZEC ECC: A Zero-Byte Eliminating Compression-Based ECC Scheme

FIGURE 4. ZEC ECC encoding process of a compressible memory block depending on the compression ratio.

If both directions have the same number of nonzero words,
any direction could be selected for compression, which is
implementation-dependent.

Depending on the proportion of zero bytes in a memory
block, ZEC stores 3-bit C (Compression) flag to a memory
block, to identify whether the memory block is compressed
(111) or not (000); using 3-bit redundancy for C flag makes C
flag tolerable to single-bit error. Also, if the memory block is
compressed (i.e., C flag= 111), ZEC stores the D (direction)
flagto identify the compression direction; the D flag of all
0s (or all 1s) indicates that the memory block is compressed
horizontally (or vertically).

B. ADAPTIVE ECC SELECTION
To provide adaptive ECC depending on the CR of a 64-byte
memory block, there needs to be a flag to classify the CR.
Hence, in our ZECECC, the adaptive BCH encoder generates
E (ECC) flag as well as C and D flags for a compressible
memory block, depending on the CR. Table 1 summarizes the
information and bit representations of C, D, and E Flags. The
E flag represents which BCH code is used for ECC depending
on the CR; when CR≥60%, BCH(32,16,3) is applied to the
compressed memory block and word/byte indices. Otherwise

(i.e., 50%≤CR<60%), BCH(27,16,2) is applied. To avoid
additional storage overhead for flags, we store the C, D, and
E flags in the freed space of the compressed memory block
when CR≥50%. Though we denote C and D flags separately
in Table 1, they are stored in the first single byte (8-bit) of
a compressible memory block. Meanwhile, when a memory
block is identified as non-compressible (CR<50%), instead
of adopting the conventional SECDED code (BCH(72,64,1)),
we adopt BCH(573,512,6) to obtain free (3-bit) space in the
576-bit (corresponding to eight memory bursts). By exploit-
ing the 3-bit freed space in an uncompressed memory block,
C flag is stored as 000 (as described in Table 1) to represent
the memory block is uncompressed.

Figure 4 (a) and (b) show the encoding process of a com-
pressible memory block with our proposed ZEC ECC, when
the memory block could be compressible at 50% and 60%
rate, respectively. Note Figure 4 (a) and (b) represent the
worst-case scenarios (i.e., checkerboard word pattern where
all words are non-zero words but including zero bytes) for
each case. We explain how our proposed ZEC ECC encodes
the 60% compressible memory block. First, as shown in
the leftmost of Figure 4 (a), ZEC selects the compression
direction, depending on the number of nonzero words for

VOLUME 12, 2024 100369



J. H. Kwon et al.: ZEC ECC: A Zero-Byte Eliminating Compression-Based ECC Scheme

FIGURE 5. Bit mapping depending on data placement methods in the first memory burst of the 64-byte memory block encoded by BCH(32,16,3).
(CW=codeword).

each direction. When ZEC selects the compression direction,
it generates word indexfor the memory block. In the word
index, the bit of 0 (or 1) indicates a zero word (or a nonzero
word). Since the memory block shown in Figure 4 does not
have zero words, ZEC sets all 1s for the 8-bit word index
(WI). Also, ZEC sets all 1s for the Cand D flags, to indicate
the memory block is vertically compressed; if the memory
block is compressed in a horizontal direction, theD flag is set
to all 0s. Note, by employing 5-bit redundancy where all five
bits are either all 0s or 1s, the D flagis able to tolerate up to
2-bit error; a compressedmemory block can be decompressed
by counting the number of 0s in the direction bits. Second,
ZEC records all the positions of zero/nonzero bytes in the
byte index. Thus, it is possible to eliminate entire zero bytes
in a memory block without data loss, thereby resulting in
high CR. In byte index, the bit of 0 (or 1) indicates a zero
byte (or a nonzero byte). In the worst case scenario of 60%
compressible memory block (when all words include any
single nonzero byte, e.g., checkerboard pattern) ZEC requires
72 bits for word/byte indices (i.e., 8-bit for word index+ 8-bit
∗ 8 words for byte indices).
After a memory block is compressed by ZEC, there would

be enough free space to store ECC parity bits. Thus, ZEC
ECC encodes the memory block with the corresponding BCH
code. The BCH code is applied to the word/byte indices
as well as the compressed memory block. As shown in
Figure 4 (a), in case of CR≥60%, up to 35 bytes (i.e., 9 bytes
for word/byte indices + 26 bytes for data) are encoded by
BCH(32,16,3), which in turn generates 35 bytes of parity.
As a result, 70 bytes (i.e., 9 bytes for word/byte indices +

26 bytes for data+ 35 bytes for parity) are stored with 2 bytes
of flags, which are totally fit into a 72-byte memory block.

If the data size to be encoded is larger than 35 bytes
(i.e., CR<60%), it cannot be encoded with BCH(32,16,3).
When the data is compressed with 50%≤CR<60%,
ZEC ECC applies BCH(27,16,2). Figure 4 (b) shows
the worst-case scenario of encoding memory block with
CR=50%, where BCH(27,16,2) is applied. As shown in
Figure 4 (b), in case of CR=50%, 41 bytes (i.e., 9 bytes

for word/byte indices + 32 bytes for data) are encoded by
BCH(27,16,2), generating 29 bytes of parity. To summarize,
in case of CR=50%, 72 bytes are required to store flags,
indices, data, and parity for the 50% compressible memory
block, which are also fit into 72-byte memory block.

C. BITWISE INTERLEAVING FOR SINGLE CHIP TOLERANCE
After encoding a memory block using ZEC ECC, the bit-
wise interleaver reorganizes the codeword and flag bits by
exploiting the bitwise interleaving data placement, to tolerate
chip failure [2], [23]. Figure 5 describes the bit mapping
of ZEC ECC with the conventional and bitwise interleaving
data placement, when storing the first memory burst (72-bit)
of the 64-byte memory block encoded by BCH(32,16,3).
As shown in Figure 5(a), in case of the conventional data
placement, a single memory burst (72-bit) is divided into
18 fractions in the unit of 4 sequential bits and then each
fraction (i.e., sequential 4 bits) is stored in a single DRAM
chip. In this case, since a single chip failure results in up to
4-bit errors in a codeword, ZEC ECCwould not be robust to a
single chip failure; ZEC ECC employs up to 3-bit correctable
BCH code when CR≥60%. On the other hand, as shown in
Figure 5(b), in case of the bitwise interleaving data place-
ment, the sequential data bits are stored in an interleaved
manner across 18 × 4 DRAM chips. In this case, since a
single chip failure contains up to 2-bit errors in a codeword,
the BCH(32,16,3) and BCH(27,16,2) codes in ZEC ECC
are capable of correcting a single chip failure. In addition,
a single chip failure contains up to 1-bit error in the flag
bits, which is tolerable by the redundant bits of the flags (as
explained in Section III-B). Thus, with the BCH(32,16,3) and
BCH(27,16,2) codes (when CR≥50%), ZEC ECC is robust
to a single chip failure through bitwise interleaving data
placement, which in turn improves overall DRAM reliability.

D. DECODING PROCESS OF ZEC ECC FOR READ
OPERATIONS
We describe how ZEC ECC compresses/encodes a mem-
ory block depending on the CR in Sections III-A–III-C.

100370 VOLUME 12, 2024



J. H. Kwon et al.: ZEC ECC: A Zero-Byte Eliminating Compression-Based ECC Scheme

FIGURE 6. Compression ratio depending on compression methods (The higher, the better).

To support read operations of the memory block encoded
by ZEC ECC, our proposed design requires bitwise de-
interleaver, adaptive BCH decoder, and ZEC decompressor
in the memory controller, as shown in Figure 2. First, when
reading a 72-byte memory block from DRAM chips, the
bitwise de-interleaver reorganizes the interleaved encoded
data bits (i.e., codeword(s) and flag bits). Then, as shown in
Figure 2, the adaptive BCH decoder identifies 1) whether the
memory block is compressed or not (by reading C flag), 2)
which direction is used for compression (by reading D flag),
and 3) which BCH code needs to be used for decoding the
memory block (by reading E flag), by counting the number
of zeros in the C, D, and E flags; note ZEC ECC redundantly
stores the C, D, and E flagsto tolerate the error(s) within the
flags. Since the flags are included in the first memory burst,
counting number of zeros in each flag can be done before
the remaining memory bursts arrive. Therefore, the latency
to count zeros in the flags will be hidden to the memory read
latency. Similarly, the word/byte indices are included in the
secondmemory burst (even in the worst-case scenario). Thus,
the latency of ZEC decompressor can be overlapped to the
latency until all the memory bursts arrive. Once all the mem-
ory bursts have been read from DRAM chips, the memory
block is decoded by the adaptive BCH decoder, depending on
the E flag. The ZEC decompressor then begins to decompress
the decoded memory block based on the word/byte indices.
Note our decompression is not complicated so that it incurs
negligible latency overhead.

IV. EVALUATION
A. EVALUATION SETUP
We evaluate ZEC ECC in terms of compression ratio/
coverage, reliability, performance, and area/power overhead.
We conduct our evaluations on 17 workloads, from SPEC
CPU 2017 [8] and PARSEC [5] benchmark suites. For the
compression ratio/coverage,2 to conservatively compare our
proposed ZEC with the other compression schemes, we exe-
cuted 11 billion instructions and then captured the memory

2In this paper, the compression coverage is defined as the proportion of
compressible (i.e., CR=50%) memory blocks to all memory blocks.

snapshot; if we execute only a few or hundreds of million
instructions, most of the malloc’d data may not be physically
written to DRAM due to the caching effect. In this case, most
memory blocks in DRAM still have zeros, while they are
malloc’d, which is too advantageous for ZEC. To minimize
the caching effect, we consider a sufficiently large number
of instructions, so that the malloc’d memory blocks have
non-zero data as much as possible [2], [23]. Based on this
environment, we calculated the compression ratio/coverage
for only malloc’d regions, not including unused memory
spaces as zeros.

TABLE 2. Configuration for performance simulation.

For the reliability evaluation, we exploit FaultSim [27],
a memory-reliability simulator, which employs Monte Carlo
simulations based on real-world DRAM failure statistics.
To evaluate the system failure probability in 7 years, we per-
form 1 million Monte Carlo trials for each ECC scheme.
For the performance evaluation, we modify gem5 [6] to
reflect the ECC decoding and decompression latency.We cal-
culate the ECC decoding latency of each ECC scheme
exploiting Strukov’s model [34]; the decoding latency for
each ECC scheme is described in Table 2. The baseline of our
evaluation is the conventional SECDED (i.e., BCH(72,64,1)).
In case of the SPEC CPU 2017 and PARSEC workloads,
each workload is fast-forwarded 10 billion instructions and
then executed one billion instructions. Table 2 provides the
detailed system configuration for the performance simula-
tion. For the area/power overhead of ZEC ECC, we imple-
ment the additional hardware components of ZEC ECC

VOLUME 12, 2024 100371



J. H. Kwon et al.: ZEC ECC: A Zero-Byte Eliminating Compression-Based ECC Scheme

in Verilog HDL and then synthesize them using Synopsys
Design Compiler based on SAED 14nm FinFET process
technology [26]. In addition to the ECC decoding latency as
described in Table 2, we reflect one additional cycle of the
decompression latency based on our synthesis/analysis result;
the decompression latency of ZEC is 0.32 ns. Note it includes
the latency to access 1KB SRAM read buffer with 64-bit
XOR gates for checking compression direction by counting
zero/non-zero words, based on FinCACTI [33] with 14nm
FinFET technology.

TABLE 3. Comparison of compression methods.

B. COMPRESSION RATIO/COVERAGE
Figure 6 shows the compression ratio of BDI [31], BPC [19]
(these two methods were originally proposed not for reliabil-
ity but for compression itself), ZERO [15], and ZEC; BDI,
BPC, and ZERO are briefly explained in Table 3. Note BDI
and BPC are still widely considered in recent studies [17],
[24], [32], as they have a good tradeoff between hardware cost
and compressibility. We consider ZERO as a competitive to
ZEC, since ZERO is also a zero compression technique for
ECC. As shown in Figure 6, the average compression ratio of
ZEC is 48.3% which is the highest average compression ratio
among four different compression methods. For example,
in the case of mcf, while BDI, BPC, and ZERO shows 3.4%,
6.2%, and 29.0% average compression ratio, respectively,
ZEC achieves 48.8% average compression ratio. Though BDI
and BPC show higher CR than ZEC in a few applications
(e.g., leela), they are only effective for a memory block with
a very-limited range value pattern. Thus, ZEC shows much
higher CR than BDI and BPC on average. As discussed
in Section III-A, ZEC also outperforms ZERO on average,
since it can compress zero bytes even in nonzero words.
More importantly, in case of blackscholes which is the most
hard-to-compress application, though the other compression
methods are not effective (CR<10%), ZEC achieves 26.7%
CR, thanks to the byte-wise zero compression.

Figure 7 shows the compression coverage2 depending on
the compression methods. As shown in Figure 7, ZEC shows
the highest average compression coverage (63.7%) among
four different compression methods, since it eliminates all
the zero bytes for compressible memory blocks, considering

both horizontal and vertical words. In addition, ZEC provides
much higher compression coverage than the other compres-
sion methods, for some hard-to-compress applications like
blackscholesand mcf. Hence, it is possible for ZEC to make
more space for additional parity bits, compared to other com-
pression methods.

C. RELIABILITY
Figure 8 shows the system failure probability depending on
the ECC schemes. ZEC ECC reduces the average system
failure probability by 74.4%, 63.9%, 49.0%, and 23.7% com-
pared to the baseline, BCH(573,512,6), Stealth ECC [23], and
Twin ECC [2], respectively.
The system failure probability of ZEC ECC relies on the

compression coverages of ZEC. As the compression coverage
increases, ZEC ECC significantly reduces the system failure
probability by exploiting the stronger BCH codes. For exam-
ple, as shown in Figure 8, the system failure probability with
ZEC ECC becomes extremely low in case of canneal, deep-
sjeng, gcc, mcf, nab, and xalancbmk, since the compression
coverage of ZEC is extremely high in those applications.

D. PERFORMANCE
Similar to the previous studies [15], [23], we assume that the
compression and ECC encoding process are performed in a
pipelined manner when the evicted block from the last level
cache (LLC) is waiting on the write queue of the memory
controller. Thus, in ZEC ECC, the compression and ECC
encoding latency do not degrade system performance.

On the other hand, the decompression and ECC decoding
latency may degrade the system performance, since these
latencies lie on the critical memory access path. However,
as discussed in Section III-D, the decoding latency of flag
and word/byte indices (except BCH decoding latency) could
be hidden to the read latency, while we reflect one additional
cycle for the decompression latency. Figure 9 shows the
normalized execution time depending on the ECC schemes.
ZEC ECC shows the average performance overhead by 1.6%
compared to the baseline. In ZEC ECC, as the applied BCH
code differs depending on the CR, the total latency (= decom-
pression + ECC decoding latency) also varies among 7, 10,
and 24 cycles. Though the longest latency of ZEC ECC
is 24 cycles, the performance overhead of ZEC ECC is
not that significant due to the adaptive ECC selection. For
example, in case of blackscholes, the most hard-to-compress
application with only 26.7% compression ratio, the perfor-
mance overhead is only 2.4% compared to the baseline.
In addition, in case of wrf (the worst-case execution time),
though the application tends to access non-compressed mem-
ory blocks frequently, the performance overhead is not so
significant (4.3%).

Note, in case of CR≥50%, the total latency of ZEC ECC
is 7 (BCH(27,16,2)) or 10 (BCH(32,16,3)) cycles. Since the
average compression coverage of ZEC is 63.7% as described
in Figure 7, it is not so frequent to suffer the longer decoding
latency (24 cycles in case of CR<50%). Stealth ECC and

100372 VOLUME 12, 2024



J. H. Kwon et al.: ZEC ECC: A Zero-Byte Eliminating Compression-Based ECC Scheme

FIGURE 7. Compression coverage depending on compression methods (The higher, the better).

FIGURE 8. System failure probability in 7 years (The lower, the better).

Twin ECC show the average performance overhead by 0.9%
and 0.6%, compared to the baseline, respectively, which are
slightly lower than ZEC ECC. However, with negligible per-
formance overhead, ZEC ECC reduces the average system
failure probability by 49.0% and 23.7% compared to Stealth
ECC and Twin ECC, respectively.

E. AREA/POWER OVERHEAD
Our synthesis result shows that ZEC ECC occupies 0.24 mm2

and consumes 10.16 mW. Considering that the memory
controller of the state-of-the-art server CPU [36] is about
6.9 mm2, ZEC ECC incurs negligible area overhead
(i.e., 3.2% of the memory controller area). In addition, com-
pared to the die sizes of the state-of-the-art server CPUs [36],
ZEC ECC incurs an area overhead by only 0.06%. The
power overhead (10.16mW) of ZEC ECC is also negligible
compared to the thermal design power (i.e., 205W) of the
state-of-the-art server CPU. Due to the negligible power/area
overhead, even if we consider an additional redundant ZEC
ECC logic for logic error robustness, it does not incur much
power/area overhead.

F. SENSITIVITY TO COMPRESSION COVERAGE
We investigate the relation between compression coverage
and reliability improvement of ZEC ECC. Figure 10 shows

the system failure probability of four different ECC schemes
with the different compression coverage. To conservatively
evaluate the reliability improvement, we assume that ZEC
ECC adopts BCH(27,16,2) in case of CR≥50%.

As the compression coverage increases, ZEC ECC reduces
system failure probability. As shown in Figure 10, when
the compression coverage is higher than 89.3%, ZEC ECC
provides lower system failure probability than Chipkill. Even
in a case that the compression coverage is 0%, ZEC ECC
shows lower system failure probability compared to the base-
line, since it adopts BCH(573,512,6) for non-compressible
memory blocks (i.e., CR<50%).

V. RELATED WORK
Many previous studies have presented ECC schemes to
protect main memory. Among them, we describe the pre-
vious studies that provided moderate level or Chipkill-level
error protection, as shown in Table 4; note our simula-
tion environments described in Section IV are similar to
those for the Chipkill-level ECC schemes. The three left-
most studies [15], [16], [30] in Table 4 have presented
compression-based ECC schemes. However, they have only
1-bit or 2-bit error(s) correction capability and do not provide
Chipkill-level protection.

For DRAM systems requiring high reliability, the rest of
the studies [2], [9], [14], [18], [19], [23], [35] in Table 4 have

VOLUME 12, 2024 100373



J. H. Kwon et al.: ZEC ECC: A Zero-Byte Eliminating Compression-Based ECC Scheme

FIGURE 9. Normalized execution time (The lower, the better).

FIGURE 10. System failure probability depending on the compression
coverage).

presented Chipkill-level ECC schemes. Gong et al. [14] and
Kim et al. [18], [19] proposed ECC schemes which apply
the symbol-based linear block code. Udipi et al. proposed
LOT-ECC [35] which exploits a multi-tier concept of sep-
arating EDC (error detection code) and ECC. Chen et al.
presented CARE [9], which exploits a 6-bit error correction
ECC schemewith operating system (OS) support. Though the
abovementioned studies tolerate a single chip failure, most of
them cause significant performance and/or storage overhead
compared to the conventional SECDED code. Different from
the above studies, ZEC ECC tolerates a single chip failure
through compression with 1) no storage overhead compared
to the conventional SECDED code, 2) negligible performance
overhead, 3) no OS support, and 4) no LLC modification.

In the meantime, to reduce performance and storage
overhead, Lee et al. [23] proposed Stealth ECC, a data-
width aware adaptive ECC scheme, which provides near
Chipkill-level reliability by adaptively selecting BCH codes
depending on the data-width (either narrow-width or full-
width). Though Stealth ECC applies a stronger BCH code
to a narrow-width value without additional storage overhead,
there are still wasted space to store zero bytes in narrow-
width values, which is resolved in ZEC ECC. In addition,
Bae et al. proposed Twin ECC [2] a duplication-based ECC
scheme providing strong reliability for specific data patterns.
Though Twin ECC delivers stronger error correction with
duplication than Stealth ECC, its coverage is not so high in
real applications, as it requires specific data patterns within
each single memory block. On the other hand, ZEC ECC
covers much more memory blocks than Twin ECC, since

it leverages a fine grain compression for all the zero bytes
even in irregular data patterns, which in turn provides better
reliability.

VI. DISCUSSON
A. COMPRESSION/DECOMPRESSION FAILURE HANDLING
Since ZEC ECC is based on the compression and decompres-
sion of a memory block, we need to consider the failure of
compression/decompression. In the case of compression fail-
ure, which means that a memory block cannot be compressed
with CR≥50% by ZEC, our scheme just stores the original
data by applying BCH(573,512,6). Thus, it is not a problem
for normal operations.

However, in the case of decompression failure, it may
result in system failure. The decompression can fail due to
1) the uncorrectable error on the memory block or 2) decom-
pression logic error. First, in the case of uncorrectable
error-induced failure, since ZEC ECC has much higher error
correctability than the baseline DRAM ECC, the decompres-
sion failure from uncorrectable error would be negligible.
Note ZEC ECC leads to 74.4% reduction in system failure
probability as shown in Figure 8, compared to the baseline
SECDED. Second, in the case of decompression logic error,
since the logic error rate is much lower than DRAM error
rate [7], it would not be a major concern. Nevertheless,
the decompression logic error can be mitigated significantly
when using redundant decompression logic. The power/area
overhead of redundant decompression logic would be negli-
gible, since our decompression logic has extremely smaller
power/area overhead, compared to the memory controller
logic, as described in Section IV-E.

B. IMPACT ON APPLICATIONS WITH LOW DATA LOCALITY
When an application has low cache hit rate (i.e., low data
locality), ZEC ECC may cause performance overhead due
to frequent memory accesses to DRAM, leading to mem-
ory block decompression overhead; note the compression
latency does not degrade the performance as we described
in Section IV-D. However, according to our analysis, ZEC
ECC has only a small performance impact on applications
with low data locality. For example, among the benchmark

100374 VOLUME 12, 2024



J. H. Kwon et al.: ZEC ECC: A Zero-Byte Eliminating Compression-Based ECC Scheme

TABLE 4. Summary of related work and ZEC ECC.

applications, canneal_i andmcf_iare the representative appli-
cations with high LLC MPKI (Misses Per Kilo Instructions)
[4], [28]. According to our simulation on canneal_i and
mcf_i, ZEC ECC incurs only 1.9% and 2.8% performance
overhead, respectively, compared to the baseline, while mit-
igating 98.8% and 94.9% system failure probability. Though
we do not include cache prefetching in our simulation, the
performance overhead on applications with low data local-
ity can be mitigated when ZEC ECC is applied with cache
prefetching techniques [1].

VII. CONCLUSION
We propose ZEC ECC, a ZEC-based adaptive ECC scheme
that compresses a 64-byte memory block and adaptively
selects BCH codes depending on the compression ratio of
each memory block. ZEC ECC delivers up to Chipkill-level
reliability by tolerating a single chip failure in case of
CR≥50%. Consequently, ZEC ECC reduces the average sys-
tem failure probability (caused by DRAM errors) by 74.4%
with negligible performance overhead (1.6%, on average) and
without any storage overhead, compared to the conventional
SECDED code. Moreover, ZEC ECC is more reliable than
Stealth ECC (by 49.0%) and Twin ECC (by 23.7%), which
are the two most reliable schemes with negligible perfor-
mance overhead and without storage overhead. We expect
that ZEC ECC will be applicable to other memory tech-
nologies including non-volatile memories such as ReRAM,
FeRAM, MRAM, providing significant reliability improve-
ment with negligible overhead.

REFERENCES
[1] G. Ayers, H. Litz, C. Kozyrakis, and P. Ranganathan, ‘‘Classifyingmemory

access patterns for prefetching,’’ in Proc. 25th Int. Conf. Architectural
Support Program. Lang. Operating Syst., Mar. 2020, pp. 1–26.

[2] H. K. Bae, M. J. Chung, Y.-H. Gong, and S. W. Chung, ‘‘Twin ECC: A
data duplication based ECC for strong DRAM error resilience,’’ in Proc.
Design, Autom. Test Eur. Conf. Exhibition, Apr. 2023, pp. 1–20.

[3] M. V. Beigi, S. Gurumurthi, and V. Sridharan, ‘‘Reliability, availability, and
serviceability challenges for heterogeneous system design,’’ in Proc. IEEE
Int. Rel. Phys. Symp. (IRPS), Mar. 2022, pp. 2C41–2C48.

[4] M. Bhadauria, V. M. Weaver, and S. A. McKee, ‘‘Understanding PARSEC
performance on contemporary CMPs,’’ in Proc. IEEE Int. Symp. Workload
Characterization (IISWC), Oct. 2009, pp. 98–107.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li, ‘‘The PARSEC benchmark
suite: Characterization and architectural implications,’’ in Proc. Int. Conf.
Parallel Archit. Compilation Techn. (PACT), Oct. 2008, pp. 72–81.

[6] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, ‘‘The gem5 simulator,’’
ACM SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–8, 2011.

[7] L. Borucki, G. Schindlbeck, and C. Slayman, ‘‘Comparison of accelerated
DRAM soft error rates measured at component and system level,’’ in Proc.
IEEE Int. Rel. Phys. Symp., Apr. 2008, pp. 1–18.

[8] J. Bucek, K.-D. Lange, and J. v. Kistowski, ‘‘SPEC CPU2017: Next-
generation compute benchmark,’’ in Proc. Companion ACM/SPEC Int.
Conf. Perform. Eng., Apr. 2018, pp. 1–28.

[9] J. Chen, X. Jiang, Y. Zhang, L. Liu, H. Xu, and Q. Liu, ‘‘CARE:
Coordinated augmentation for elastic resilience on DRAM errors in data
centers,’’ inProc. IEEE Int. Symp. High-Perform. Comput. Archit. (HPCA),
Feb. 2021, pp. 533–544.

[10] T. J. Dell, ‘‘A white paper on the benefits of chipkill-correct ECC for PC
server main memory,’’ IBM Microelectron. Division, vol. 11, pp. 1–23,
Jul. 1997.

[11] X. Du and C. Li, ‘‘DPCLS: Improving partial cache line sparing with
dynamics for memory error prevention,’’ in Proc. IEEE 38th Int. Conf.
Comput. Design (ICCD), Oct. 2020, pp. 197–204.

[12] M. Ekman and P. Stenstrom, ‘‘A robust main-memory compression
scheme,’’ in Proc. 32nd Int. Symp. Comput. Archit., 2005, pp. 1–29.

[13] Y. Fang, G. Han, G. Cai, F. C. M. Lau, P. Chen, and Y. L. Guan, ‘‘Design
guidelines of low-density parity-check codes for magnetic recording sys-
tems,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 2, pp. 1574–1606,
2nd Quart., 2018.

[14] S.-L. Gong, M. Rhu, J. Kim, J. Chung, and M. Erez, ‘‘CLEAN-ECC:
High reliability ECC for adaptive granularity memory system,’’ in Proc.
48th Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Dec. 2015,
pp. 611–622.

[15] J. Hong, H. Kim, and S. Kim, ‘‘EAR: ECC-aided refresh reduction through
2-D zero compression,’’ in Proc. 27th Int. Conf. Parallel Architectures
Compilation Techn., Nov. 2018, pp. 1–11.

[16] J. Hong, J. Kim, S. Han, and E.-Y. Chung, ‘‘A locality-aware compression
scheme for highly reliable embedded systems,’’ IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 38, no. 3, pp. 453–465, Mar. 2019.

[17] H. Jin, D. Jeong, T. Park, J. H. Ko, and J. Kim, ‘‘Multi-prediction com-
pression: An efficient and scalable memory compression framework for
GP-GPU,’’ in Proc. IEEE Comput. Archit. Lett., Sep. 2022, pp. 1–29.

[18] J. Kim,M. Sullivan, andM. Erez, ‘‘BambooECC: Strong, safe, and flexible
codes for reliable computer memory,’’ in Proc. IEEE 21st Int. Symp. High
Perform. Comput. Archit. (HPCA), Feb. 2015, pp. 101–112.

[19] J. Kim, M. Sullivan, E. Choukse, and M. Erez, ‘‘Bit-plane compression:
Transforming data for better compression in many-core architectures,’’
in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit., Jun. 2016,
pp. 329–340.

[20] J. Kim, M. Sullivan, S.-L. Gong, and M. Erez, ‘‘Frugal ECC: Efficient
and versatile memory error protection through find-grained compression,’’
in Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal., 2015,
pp. 1–17.

VOLUME 12, 2024 100375



J. H. Kwon et al.: ZEC ECC: A Zero-Byte Eliminating Compression-Based ECC Scheme

[21] S. Kim, W. Kwak, C. Kim, D. Baek, and J. Huh, ‘‘Charge-aware DRAM
refresh reduction with value transformation,’’ in Proc. IEEE Int. Symp.
High Perform. Comput. Archit. (HPCA), Feb. 2020, pp. 663–676.

[22] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, ‘‘Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors,’’ in Proc. ACM/IEEE
41st Int. Symp. Comput. Archit. (ISCA), Jun. 2014, pp. 361–372.

[23] Y. S. Lee, G. Koo, Y.-H. Gong, and S. W. Chung, ‘‘Stealth ECC: A data-
width aware adaptive ECC scheme for DRAM error resilience,’’ in Proc.
Design, Autom. Test Eur. Conf. Exhibition, Mar. 2022, pp. 382–387.

[24] Y. Li and M. Gao, ‘‘Baryon: Efficient hybrid memory management with
compression and sub-blocking,’’ in Proc. IEEE Int. Symp. High-Perform.
Comput. Archit. (HPCA), Feb. 2023, pp. 137–151.

[25] D. Lin, F. Yi, G. Yongliang, andM.Guizani, ‘‘Design of protograph LDPC-
coded MIMO-VLC systems with generalized spatial modulation,’’ China
Commun., vol. 21, no. 3, pp. 118–136, Mar. 2024.

[26] R. Goldman, K. Bartleson, T. Wood, K. Kranen, C. Cao, V. Melikyan,
and G. Markosyan, ‘‘Synopsys’ open educational design kit: Capabilities,
deployment and future,’’ in Proc. IEEE Int. Conf. Microelectronic Syst.
Educ., Jul. 2009, pp. 1–30.

[27] P. J. Nair, D. A. Roberts, and M. K. Qureshi, ‘‘Fault sim: A fast, con-
figurable memory-reliability simulator for conventional and 3D-stacked
systems,’’ ACM Trans. Archit. Code Optim., vol. 12, no. 4, pp. 1–24,
Jan. 2016.

[28] A. Navarro-Torres, J. Alastruey-Benedé, P. Ibáñez-Marín, and
V. Viñals-Yufera, ‘‘Memory hierarchy characterization of SPEC CPU2006
and SPEC CPU2017 on the Intel xeon skylake-SP,’’ PLoS One, vol. 14,
no. 8, Aug. 2019, Art. no. e0220135.

[29] A. Patil, V. Nagarajan, R. Balasubramonian, and N. Oswald, ‘‘Dvé:
Improving DRAM reliability and performance on-demand via coherent
replication,’’ in Proc. ACM/IEEE 48th Annu. Int. Symp. Comput. Archit.,
Jun. 2021, pp. 526–539.

[30] D. J. Palframan, N. S. Kim, and M. H. Lipasti, ‘‘COP: To compress and
protectmainmemory,’’ inProc. ACM/IEEE 42ndAnnu. Int. Symp. Comput.
Archit. (ISCA), Jun. 2015, pp. 682–693.

[31] G. Pekhimenko, V. Seshadri, O. Mutlu, M. A. Kozuch, P. B. Gibbons,
and T. C. Mowry, ‘‘Base-delta-immediate compression: Practical data
compression for on-chip caches,’’ in Proc. 21st Int. Conf. Parallel Archit.
Compilation Techn. (PACT), Sep. 2012, pp. 377–388.

[32] E. Sha, A. Liu, K. Ibrahim, M. Mahmoud, C. Giannoula, A. Abdelhadi,
and A. Moshovos, ‘‘Marple: Scalable spike sorting for untethered brain-
machine interfacing,’’ in Proc. 29th ACM Int. Conf. Architectural Support
Program. Lang. Operating Syst., Apr. 2024, pp. 1–36.

[33] A. Shafaei, Y. Wang, X. Lin, and M. Pedram, ‘‘FinCACTI: Architectural
analysis and modeling of caches with deeply-scaled FinFET devices,’’ in
Proc. IEEE Comput. Soc. Annu. Symp. VLSI, Jul. 2014, pp. 290–295.

[34] D. Strukov, ‘‘The area and latency tradeoffs of binary bit-parallel BCH
decoders for prospective nanoelectronic memories,’’ in Proc. 40th Asilo-
mar Conf. Signals, Syst. Comput., 2006, pp. 1–22.

[35] A. N. Udipi, N. Muralimanohar, R. Balsubramonian, A. Davis, and
N. P. Jouppi, ‘‘LOT-ECC: Localized and tiered reliability mechanisms for
commodity memory systems,’’ in Proc. 39th Annu. Int. Symp. Comput.
Archit., Jun. 2012, pp. 285–296.

[36] Intel. (2021). Intel Xeon Gold 6338 Processor. [Online]. Available:
https://www.intel.com/content/www/us/en/products/sku/212285/intel-
xeon-gold-6338-processor-48m-cache-2-00-ghz/specifications.html

JI HUN KWON received the B.S. degree in electri-
cal engineering from Hanyang University ERICA,
in 2020. His research interests include error cor-
rection code and thermal management.

HYEONG KON BAE received the B.S. degree
in electronic and information engineering from
Sejong University, in 2021, and the M.S. degree
from the Department of Computer Science, Korea
University, in 2023. His research interests include
error correction codes and memory systems.

YOUNG SEO LEE (Member, IEEE) received
the B.S. and Ph.D. degrees from the Depart-
ment of Computer Science, Korea University, in
2018 and 2022, respectively. He is currently an
Assistant Professor with the School of Electronic
Engineering, Soongsil University. Prior to join-
ing with Soongsil University, he was an Engineer
at Samsung Electronics, from 2022 to 2023. His
research interests include 3D stacked architecture
processing-in-memory, high-bandwidth memory,
and reliable memory systems.

YOUNG-HO GONG (Member, IEEE) received
the B.S. and Ph.D. degrees from the Depart-
ment of Computer Science, Korea University,
in 2012 and 2018, respectively. He is currently
an Assistant Professor with the School of Soft-
ware, Soongsil University. Prior to joining with
Soongsil University, he was a Staff Engineer at
Samsung Electronics, from 2018 to 2020, and
an Assistant Professor at Kwangwoon University,
from 2020 to 2023. His research interests include

low-power memory design, 3D stacked architecture, processing-in-memory,
and AI accelerator design.

SUNG WOO CHUNG (Senior Member, IEEE)
received the B.S., M.S., and Ph.D. degrees in
electrical engineering and computer science from
Seoul National University, in 1996, 1998, and
2003, respectively. He is currently a Professor
with the Department of Computer Science, Korea
University. Prior to joining with Korea University,
he was a Senior Engineer at Samsung Electronics,
from 2003 to 2005. His research interests include
system-level thermal/power management, system-

level exploration of 3D stacking, and processing in memory. He was an
Associate Editor of IEEE TRANSACTIONS ON COMPUTERS, from 2010 to 2015.
He was the Technical Program Co-Chair of the IEEE International Con-
ference on Computer Design, in 2015. He also serves (and served) on
the technical program committees in many conferences, including DAC,
from 2015 to 2018, ISLPED from 2016 to 2022, IPDPS from 2017 to 2018,
and ICCAD in 2024.

100376 VOLUME 12, 2024


