
Received 11 May 2024, accepted 10 July 2024, date of publication 19 July 2024, date of current version 31 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3430826

SLA-Based Service Provisioning Optimization in
Vehicular Cloud Networks Using Fuzzy Logic
FARHOUD JAFARI KALEIBAR AND MARC ST-HILAIRE , (Senior Member, IEEE)
School of Information Technology, Carleton University, Ottawa, ON K1S 5B6, Canada

Corresponding author: Farhoud Jafari Kaleibar (farhoudjafarikaleiba@cunet.carleton.ca)

This work was supported by the Natural Sciences and Engineering Research Council of Canada under Grant RGPIN-2019-06263.

ABSTRACT Vehicular Cloud Networks (VCNs) enable vehicles to act as servers and share their abundant
computing and storage resources. However, resource allocation in VCNs faces challenges due to factors
like service pricing, resource variability, and mobility. This paper proposes a comprehensive approach for
service provisioning in VCNs to address key challenges of quality of service, availability, and fair pricing.
First, a mathematical model that considers service provider mobility, data volume, delay, cost, and location
suitability is formulated. A high-level controller oversees network-wide service management by using fuzzy
logic and calculating fit factors between requests and providers. Finally, a tailored heuristic algorithm is
proposed to solve the NP-hard optimization problem efficiently. Simulations demonstrate the approach’s
effectiveness in maximizing allocation suitability under realistic VCN conditions.

INDEX TERMS Vehicular network, cloud services, service level agreement (SLA), service provisioning.

I. INTRODUCTION
In recent years, Vehicular Ad-hoc NETworks (VANETs)
have garnered significant attention in the field of computer
networks. These networks are made up of vehicles connected
by wireless links and provide services such as traffic
management and transportation by utilizing information
and communication technologies [1]. With the increase in
Internet of Things (IoT) applications and the incorporation
of advanced sensors in vehicles, various applications have
emerged, including vehicle health and safety, highway
congestion management, and entertainment through the use
of existing sensors. The processing of the generated data
must be done quickly, which has led to the development
of Vehicular Cloud Networks that provide bandwidth,
storage, and processing services to users through the
application [2].

The concept of Vehicular Cloud Networks (VCN) has had
a positive impact on consolidating computing resources and
improving drivers’ situational awareness, thereby facilitating
the transportation industry. However, the ultimate goal of
VCN is to provide demand-based solutions to unpredictable
events. The VCN can be dynamically adjusted according to
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the application requirements and the system environment.
Vehicles typically have limited resources such as memory,
computing power, and bandwidth due to the need for a small,
low-cost hardware system. Conversely, many emerging appli-
cations require complex computing and extensive storage
space, such as multimedia entertainment, social networks,
and location-based services. One of the most effective
solutions to address the problem of resource constraints is
to share resources such as memory and computing among
all vehicles or nearby infrastructures as a cloud [3]. One
of the most significant challenges in providing services for
vehicles is the optimal allocation of resources. In VCN,
both the number of requests and the number of service
providers are unknown and dependent on environmental
conditions. Another challenge of providing VCN services is
the temporary nature of the cloud formed due to the mobility
of vehicles. Despite urban traffic and congestion in certain
areas, the number of service requests and providers may
increase, making the optimal selection of resources evenmore
critical. Given these challenges, this problem has been shown
to be NP-hard [4].

In this paper, we propose a novel mathematical model
for addressing the resource provisioning challenge in
vehicular clouds. The model takes into account various
criteria to ensure compliance with Service Level Agreements
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(SLAs), including service provider and receiver mobility,
data volume, data transmission delay, and service price.
Notably, the pricing criterion directly influences the problem
formulation, considering the issue of a fixed price. This
approach stands out from previous research by compre-
hensively considering multiple criteria and incorporating a
pricing component in the problem formulation. The criteria
used in this model offer a novel perspective on assessing
the compatibility between the service and the service
provider.

The paper also makes the following contributions:

• A high-level control strategy is employed to manage the
services in the network. This strategy involves analyzing
information obtained from the directory of each Road-
side Unit (RSU) and considering various parameters to
make comprehensive management decisions. However,
despite the presence of this controller, all resources in
the network are planned and managed in a centralized
manner.

• A fuzzy logic-based approach used to evaluate the
compatibility between service requesters and providers,
considering diverse SLA criteria, including service
provider and requester mobility, data volume, and
transmission delay. This approach aims to determine the
degree of suitability between the involved parties by
leveraging fuzzy logic techniques.

• Finally, a heuristic algorithm has been proposed that is
tailored to the conditions of the model, and customized
for vehicular cloud networks.

The rest of the paper is organized as follows: In Section II,
we provide a review of the related work on resource
provisioning in vehicular cloud networks. The problem
formulation and details of our proposed approach are
described in Section III. Section IV presents the evaluation
of our approach. Finally, in Section V, we conclude the
paper.

II. RELATED WORK
This section reviews some of the most important works
related to resource management in VCN. The paper [5]
proposes an SDN-based task offloading architecture in
fiber-wireless (FiWi) enhanced Vehicular Edge Computing
Networks (VECNs) to minimize the processing delay of
vehicles’ computation tasks. It formulates the delay mini-
mization problem and proposes three offloading schemes:
two game theory-based algorithms called GTNOA and
PGTOA, and an approximate load balancing algorithm called
ALBOA. The paper [6] proposes a fuzzy-based method
using a cuckoo search algorithm for energy-aware resource
allocation in vehicular cloud computing. It aims to reduce
energy consumption, SLA violation, execution time and
response time. The fuzzy logic handles uncertainty and the
cuckoo search algorithm optimizes resource allocation. The
researchers in [7] proposes a new system called Vehicle as

a Computational Resource (VaCR) that allows connected
vehicles to share their unused computational resources within
smart cities. Performance evaluation and quality of experi-
ence models are developed to classify vehicles based on their
capabilities and satisfaction level. A multi-agent system and
game theory model are used to optimize quality of experience
for connected vehicles during resource provisioning. Exten-
sive simulations show the VaCR system improves metrics
like cost, classification, and time. The models are effective
in optimizing quality of experience through the exploitation
of distributed vehicle computing power. The paper [8]
proposes a dynamic service migration algorithm for vehicular
clouds. It aims to efficiently map user requests to virtual
machines hosted on vehicles. The algorithm considers three
vehicle types and performs partial request assignment and
migration. Extensive simulations show it outperforms other
algorithms in metrics like completed requests and migration
rate.

Some of the other works have focused on optimization
issues. For example, paper [9] proposes a multi-objective
optimization model for resource allocation in vehicular cloud
computing networks. The goals are to minimize blocking
probability and provider cost. Constraints include vehicular
cloud characteristics like connection duration and request
deadlines. To solve this NP-hard problem, an improved
Non-dominated Sorting Genetic Algorithm (NSGA-II) called
AC-INSGA is developed, which modifies the initial pop-
ulation based on a matching factor and uses dynamic
crossover and mutation probabilities. The authors in [10]
study optimal edge cloud resource provisioning for connected
vehicle fleets to minimize cost while ensuring quality of
service. It models vehicle mobility uncertainty using arrival
and departure time distributions. An optimization model
is proposed to minimize provisioning cost per cell with a
constraint on blocking probability below a threshold. A two-
phase algorithm using bracketing and binary search solves
the problem. In [11], the authors propose resource pooling
in vehicular fog computing where vehicles contribute their
computing resources to a community sponsored by a roadside
unit. The goal is to maximize the benefits of vehicles by
optimally selecting which community to join. A genetic
algorithm is developed for the decision making. The utility
function accounts for dwell time, available resources, pricing,
competitor strategies, and request rate. While prior works in
VCN resource management have addressed optimization of
parameters like latency, cost and resource pooling, they lack
a comprehensive approach that considers multiple quality of
service criteria together under dynamic network conditions.
Most existing studies also do not incorporate pricing as a
key factor in the resource allocation problem formulation.
This can lead to issues with maintaining equitable costs for
providers and requesters over time. In addition, the proposed
approach aims to find a suitable matching between requesters
and providers by evaluating multiple parameters from both
sides, unlike other works that do not comprehensively
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TABLE 1. Comparison of related work.

consider factors impacting both parties. Table 1 provides a
summary of the related work.

III. PROBLEM FORMULATION
A. OVERVIEW
This section proposes an approach that utilizes service
level agreements for service provisioning in vehicular cloud
networks. The primary objectives of this approach are to
provide quality services to requesters while maintaining
performance, ensuring fixed costs and increasing service
availability, regardless of the mobility of service providers
and requesters. Table 2 shows the notation used in the article.

Service management typically consists of two parts: ser-
vice discovery and advertising, and service provisioning and
delivery. For service discovery and advertising, we employ
the approach presented in [12], with slight modifications to
support the Trusted Third Party (TTP) component. Similar
to [12], this paper uses a 3-layer cloud architecture to manage
the service. Starting from this point in the article, it is
important to clarify that the term VCN will encompass all
three layers of the cloud.

The controller (CH ) is situated in the central cloud, which
manages the top layer cloud resources, RSUs and their
available resource. Additionally, a TTP broker hosts the
service and provides a service level agreement [13].
As illustrated in Fig. 1, the proposed architecture utilizes

a TTP that manages service provisioning in a hybrid
manner. The TTP oversees both distributed service directories
located at each RSU, where provider/requester specifica-
tions are registered locally. It also centrally orchestrates
service parameters as the coordinator working with the

hierarchical controller structure. This hybrid management
approach enables local optimization through decentralized
directories while benefiting from centralized coordination of
network-wide service information and dynamic conditions.
The coordinated efforts between distributed directories,
centralized controller and the TTP as the orchestrator
facilitate optimal matching of requests to providers under
unpredictable VCN environments [12]. Vehicles periodically
send service requests/messages to the nearest RSU, which
are recorded by controller (CH ). If a vehicle moves from
one RSU area to another within a fixed controller zone, the
movement is detected and recorded by the controller when
registering the message in the new RSU.Moreover, each TTP
can locally manage its resources under an RSU and manage
resources on the controller by planning for requester/provider
mobility. With such a comprehensive view of resources and
services, it will be possible to create a suitable pricing
framework.

Service providers register their service specifications at the
nearest RSU (RSU service directory), including the type of
resource/service, data volume, cost per unit, service duration
and current location. On the other hand, service requester
vehicles send their requested service specifications, such as
type of service, desired data volume, service duration and
current location to their nearest RSU.

The primary focus of this research is the second part of
service management, namely the provisioning and delivery
of services while maintaining quality of service. The first
step is to identify the right quality of service and service
provider for a request by assessing the features of the request
and service provider. After planning the appropriate service
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TABLE 2. Variable descriptions.

for the requester, the service is provided under a service
quality agreement. Nonetheless, there are still two important
concerns for the requester that the TTP is responsible
for resolving. The first concern is the service availability
guarantee, which may be violated due to vehicle mobility,
and the second concern is the service price guarantee. The
concept of a service price guarantee ensures that the pricing of
a service is equitable for both the provider and the recipient.
This entails maintaining a fair service price throughout the
entire service delivery process, even if there are changes in
the resources being utilized.

B. ASSUMPTIONS
The following assumptions are made in the development of
the proposed model.

• The locations of RSU nodes are static and predeter-
mined.

• Each service request can be assigned to a vehicular node,
RSU, or the conventional cloud.

• The bandwidth between a requester and its provider
node is plentiful to fulfill the requested service.

FIGURE 1. Proposed architecture for VCN.

• The conventional cloud is situated at a considerable
distance from the users when compared to the fog nodes
(vehicular and RSU clouds).

• The V2V and the V2I connectivity are established using
the DSRC protocol and the connectivity between the
controllers and the RSUs is wired (optical fiber).

C. FUZZY LOGIC-BASED SUITABILITY CALCULATION
Due to the involvement of numerous environmental variables,
the correspondence between the nature of a service and
its provider is not easily reducible to a mathematical
formulation. Therefore, fuzzy logic has been utilized to
compute appropriate values for the metrics defined in the
optimization formula presented in this section.

Fuzzy logic is a decision-making process that operates
using input membership functions and a set of fuzzy rules.
Additionally, this approach has demonstrated great efficiency
in real-time systems [14]. To design a fuzzy inference system,
the first step is to identify input and output variables and
their corresponding fuzzymembership functions. Next, fuzzy
rules are created to represent the knowledge base of the
inference engine. The final step involves calculating the fit
factor using defuzzification [15]. We propose a new Fuzzy
Logic Controller (FLC) for the calculation of the fit factor
value which is assumed to be deployed in CH . The procedure
of calculating fit factor based on fuzzy logic has three steps
as described in the following.

1) METRIC COMPUTATION AND FUZZIFICATION
In this section, three distinct fit factors should be calculated
for the service delay suitability, mobility impact suitability,
and data volume suitability. The mobility impact (sij) is the
first parameter considered for evaluating the suitability of
a service provider for a given service. To determine the
impact of mobility on the service (MSi), we use the time
required to provide the service as a metric, which varies
depending on the type of application [16]. For instance,
safety-driving applications require only a few seconds to
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FIGURE 2. Fuzzification of a) Mobility Impact on Service b) Provider
Mobility.

exchange messages [17], while other applications, such as
advertising and games, take several minutes. Streaming
applications, on the other hand, may require much longer
periods [18]. For the provider side (MPj), the speed of
vehicles on the street is considered, where speeds exceeding
30 km/h indicate a fast provider, while speeds below 10 km/h
indicate a slow and fix provider. Fig. 2 illustrates the
fuzzification stage of this metric.

The second parameter considered is the data volume
suitability (vij), which evaluates how well a potential service
provider’s storage capacity (PSCj) matches the amount
of data required to provide the requested service (SDVi).
Drawing from the simulation assumptions detailed in [19],
it is posited that a data threshold of 1 megabyte signifies a
low volume for services like safety driving. Conversely, a data
threshold of 30megabytes or higher is regarded as significant,
for an applications like video streaming [20]. We also assume
that memory-constrained vehicles have a memory capacity
of around 5 megabytes, whereas other vehicles (and other
non-vehicle providers) have a memory capacity of over
50 megabytes. Fig. 3 illustrates the fuzzification of this
parameter using similar reasoning.

The third parameter considered is the delay tolerance (dij)
suitability between the service request (SDTi) and potential
providers (PDDj). For the final parameter of fuzzification,
we use the values specified in [21] to determine the service

FIGURE 3. Fuzzification of a) Required Data Volume for the Service b)
Provider Storage Capacity.

delay tolerance. If a service tolerates a delay of less
than 0.1 seconds, it is highly sensitive, while a delay of
0.1 to 0.7 seconds is considered medium. If the service
tolerate delay exceeds 0.7 seconds, the service is considered
insensitive to delay. Additionally, the service provider will
have a similar level of delay based on the above parameters
(see Fig. 4).

2) RULES MAPPING
Based on the fuzzy values of MPj and MSi, SDVi and
PSCj and finally SDTi and PDDj, the inference engine maps
the fuzzy values to the IF-THEN rules contained in the
knowledge Rule Base and defined in Tables 2 to 5 as the
output fuzzy value. The linguistic variables of the output are
defined as Perfect, Good, Acceptable, Bad, Very Bad and
described as the following:

• IF MSi is {None/Low, Medium, High}, and MPj is
{Fixed, Slow, Fast}, THEN sij is {Perfect, Good,
Acceptable, Bad, Very Bad}.

• IF SDVi is {Low, Medium, High}, and PSCj is
{Low, Medium, High}, THEN vij is {Perfect, Good,
Acceptable, Bad, Very Bad}.

• IF SDTi is {Not Sensitive, Medium, Sensitive}, and
PDTj is {Low, Medium, High}, THEN dij is {Perfect,
Good, Acceptable, Bad, Very Bad}.
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FIGURE 4. Fuzzification of a) Delay Tolerance of Service b) Provider
Latency.

For Table 6, the same rule has been used, but since it is a single
parameter, there is no need to calculate the related metric.

3) DEFUZZIFICATION
In this step, the defuzzifier takes the fuzzy output value
and converts it to a crisp value using predefined output
membership function as indicated in Fig. 5. The defuzzifi-
cation process utilizes the center-of-gravity method, which
is commonly used in [22]. For example, if the degrees of
membership for the fuzzy sets Bad, Acceptable, and Good are
0.5, 0.75, and 0.5, respectively, the resulting function takes on
a shape as shown in Fig. 5. The centroid of this shape is then
calculated to obtain the defuzzified output.

D. MATHEMATICAL MODEL
The objective is to maximize the total suitability of the
selected service providers for a set of service requests in
a vehicular cloud network. The suitability is determined
based on several factors, including cost, delay, speed, service
volume, and geographical distance. Therefore, we will face
an optimization problem with the objective of maximizing
the allocation of services to the requesters while considering

FIGURE 5. Defuzzification output.

certain conditions. The objective function is:

Maximize
n∑
i

m∑
j

(Xij · (α · vij+β · sij+γ · cij+δ · dij+ϵ · lij))

(1)

Subject to:
• Each service can only be assigned to one service
provider:

m∑
j

Xij ≤ 1 for all i ∈ {1, . . . ,N }.

• Each service provider can only be assigned to one
service within a certain duration

n∑
i

Xij ≤ 1 for all j ∈ {1, . . . ,M}.

• Binary variable constraint:

Xij ∈ [0, 1] for all i ∈ {1, . . . ,N }, j ∈ {1, . . . ,M}.

• The sum of the coefficients for the first set of parameters
will be equal to 1:

α + β + γ + δ + ϵ = 1

• The values of the suitability parameters range between
0 and 1:

vij, sij, cij, dij, lij ∈ [0, 1]

• To calculate cij we have:

cij =

{
1− Cpriceij if Cpriceij ≤ Cprice′ij
0 otherwise

(2)

Cpriceij =
Pij

maxk (Pik )
(3)

The objective function is a weighted sum of the suitability
values for each selected service provider. The weights are
determined by the coefficients α, β, γ , δ, and ϵ, which
represent the relative importance of each suitability factor.
The objective is to maximize the total suitability of selected
service providers for all services. The constraints ensure that
each service is assigned to only one service provider and that
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TABLE 3. Mobility impact for service provider mobility.

TABLE 4. Service data volume requirement.

TABLE 5. Service delay tolerance.

each service provider is assigned to only one service within
a certain duration. The binary variable constraint ensures that
service providers are either selected (Xij = 1) or not selected
(Xij = 0).
In conclusion, this optimization problem can be used to

efficiently select service providers for a set of services in a
vehicular cloud network based on various suitability factors.
The objective is to maximize the overall suitability of selected
service providers while ensuring that each service is assigned
to only one service provider and that each service provider is
assigned to only one service within a certain duration.

E. PROPOSED ALGORITHM TO SOLVE THE PROBLEM
Given the NP-hard nature of the problem, network simulators
can’t solve large problem instances within acceptable time
limits. Therefore, a heuristic approach was developed and
evaluated.

The heuristic algorithm sorts all request-provider tuples
based on their respective scores (Rij), calculated using Eq. 4.
The matrix R contains all the calculated scores Rij, as shown

TABLE 6. Service requester and provider locations.

in Eq. 5.

Rij = (α · vij + β · sij + γ · cij + δ · dij + ϵ · lij) (4)

R =


R11 R12 · · · R1j
R21 R22 · · · R2j
...

...
. . .

...

Ri1 Ri2 · · · Rij

 (5)

The heuristic seeks to find the pair of tuples whose sum
of scores is maximum among all other pairs, while ensuring
that the selected tuples do not share any common providers
or requesters. This is represented by Eq. 6.

St = {(Rij,Rkl) | i ̸= k, j ̸= l,

Rij + Rkl ≥
n,m∑

i′i′′,j′j′′
(Ri′j′ + Ri′′j′′ ), i

′
̸= i′′, j′ ̸= j′′} (6)

Once a pair of tuples is selected, it is removed from further
consideration and added to the final set of selected Tuples
(S). This iterative process continues until no tuples remain.
The final value of S will be the solution, as shown in Eq. 7.
The proposed algorithm is outlined in Algorithm 1.

S =
M⋃
t=1

St (7)

IV. SIMULATION
A. SIMULATION ENVIRONMENT
This section presents the results of the simulations that
were performed to evaluate the proposed approach. For
this purpose, we used the Network Simulator 2.35 software
(with the 802.11p amendment and the Nakagami propagation
model) [23]. Using the ns2 simulation tool, we implemented
a scenario where vehicles were represented as mobile
nodes, and RSUs (Roadside Units) were represented as
conventional nodes. As illustrated in Fig. 6, we employed
the C++ environment of ns2 to implement the problem
formulation and solver algorithm. Additionally, by utilizing
the Tcl environment, we successfully implemented various
scenarios by adjusting parameters such as the number of
vehicles, their speeds, and randomly generating requests.
This approach facilitated the simulation and analysis of the
system’s behavior under diverse conditions, enabling us to
gain valuable insights into the network’s performance and
efficiency. Each simulation scenario was repeated aminimum
of 20 times, with some scenarios undergoing additional runs
for further analysis, and the final results are the average of
these runs. In each execution of the scenarios, the nodes
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Algorithm 1 Heuristic Solver Algorithm
1: Input: R (Matrix of requests/providers scores)
2: Output: S (set of selected request/provider tuples)
3: S← ∅
4: continue← true
5: while continue do
6: continue← false
7: for i← 1tosize(N ) do
8: for j← 1tosize(M ) do
9: for k ← 1tosize(N ) do

10: for l ← 1tosize(M ) do
11: Select tuple Rij in R
12: Select tuple Rkl in R
13: if i ̸= k j ̸= l then
14: if Rij + Rkl is maximum among selected

tuples in SandRij and Rkl do not share any
common provider/requester then

15: S← S ∪ Rij,Rkl
16: Remove Rij and Rkl from R
17: continue← true
18: end if
19: end if
20: end for
21: end for
22: end for
23: end for
24: end while
25: return final solution S

TABLE 7. Simulation parameters.

(vehicles and RSUs), events (service requests and provider
specifications), and vehicle mobility are randomly generated
(RWP model). We also consider, for all scenarios, that the
network congestion is set at 100%, implying that all vehicles
in the network operate as either requesters or providers.
Other simulation parameters are shown in Table 7. For each
parameter, there is a default value that is utilized when the
parameter remains fixed and does not vary during a specific
evaluation. However, when the parameter is variable in a
scenario, its value is explicitly specified.

We use the following metrics to evaluate the proposed
approach:
• Provisioning Score: The provisioning score is defined
as the sum of scores obtained from mapping suitable

FIGURE 6. Flowchart depicting the implementation steps of the Proposed
Method.

providers to requesters. It is calculated using Eq. 1.
A higher provisioning score indicates that the algorithm
performs more effectively.

• Packet Delivery Rate (PDR): The packet delivery
rate refers to the proportion of correctly received
packets divided by the total number of packets sent
(in percent).

• SLA Adherence Rate: SLA adherence rate is a metric
similar to PDR, but with additional considerations
for different types of applications. In the case of
services with low tolerance for delay, if the packet
delivery time exceeds the defined tolerance threshold,
it is considered as an SLA violation. Such violations
contribute to a reduction in the SLA adherence rate.
Furthermore, for applications that involve high-volume
transmission, if more than 5% of the transmitted packets
fail to reach the destination correctly, the entire service
(whole related packets) is considered dropped (95% of
reliability).

• Resource Utility: Resource utility is a metric that
quantifies the extent to which the capacity of a
potential provider is utilized to fulfill service requests
within a given time period. It is expressed as a
percentage, indicating the proportion of the provider’s
capacity that is effectively utilized during that time
period.

• Service Delay: the time from sending a request to
receive the first part of the service (in milliseconds).
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TABLE 8. Comparison of results in term of provisioning score: proposed
method vs greedy algorithm vs CPLEX.

B. RESULTS AND DISCUSSIONS
In this section, the simulation results are examined and
discussed in details. In the conducted simulations, the
performance of the Proposed Method was compared to two
other methods: the Greedy Algorithm and the SLA-based
method [13]. The Greedy Algorithm operates by sorting
tuples based on their score and consistently selecting the
tuple with the highest score at each iteration. Subsequently,
the algorithm removes both the requester and provider from
the selected tuple, and the process is repeated. It should be
noted that since the SLA-based method does not involve a
maximization problem, the provisioning score is not relevant
and therefore omitted in this context.

1) PROVISIONING SCORE
Initially, the service provisioning problem was formulated
and solved optimally using the CPLEX solver to obtain an
optimal solution. This served as a benchmark for evaluating
the performance of our proposed heuristic. Subsequently,
we implemented our heuristic algorithm in a simulator
and conducted experiments in a network environment. The
simulator allowed us to simulate the behavior of the heuristic
algorithm under realistic conditions.

To assess the effectiveness of our heuristic approach,
we compared the results obtained from running the heuristic
algorithm in the simulator with the optimal solution obtained
from the CPLEX solver with the same features and situations.

Table 8 presents the performance of the Proposed Method
and Greedy Algorithm compared to the CPLEX solver.
Performance is defined as the ratio of the score achieve by
the respective methods over the score of the optimal solution
(CPLEX). By comparing these performance values, we can
evaluate how closely the Proposed Method approximate the

optimal solution provided by the CPLEX solver. It should be
noted that the results presented here are obtained from a series
of experiments consisting of 60 requests and 40 providers
(R/P=3/2) within a specific time period. The experiments
were conducted for a total of 20 runs to ensure accuracy and
reliability of the data.

When looking at the results from Table 8, the overall
performance of the Proposed Method is around 91.09%
(versus 90.81% for the Greedy Algorithm).The lower scores
observed can be attributed to scenarios where the metrics
have similar values, requiring the algorithms to make more
complex calculations in order to select the most appropriate
values. While the CPLEX solver achieves optimal results
in such scenarios, its time-consuming nature makes it
impractical for real-world networks like vehicular networks.

By adapting to the dynamic and complex nature of
vehicular networks, the Proposed Method and the Greedy
Algorithm aim to strike a balance between computational
efficiency and achieving satisfactory results. Moreover,
by comparing the performance of the Proposed Method with
the Greedy Algorithm, it is evident that the Proposed Method
never under-performs the Greedy Algorithm, and overall,
the Proposed Method exhibits slightly better performance.
This slight performance improvement can have a significant
impact on other parameters, which are presented in the
subsequent subsections.

2) VARYING NUMBER OF VEHICLES
In this section, we evaluate the Proposed Method by varying
the number of vehicles. As we consider varying the number
of vehicles within a fixed simulation area, the main objective
is to assess how the algorithm performs and adapts to
changes in network density and the corresponding impact on
service demand and provider conditions. Additionally, it can
also give us insights about the scalability of the proposed
algorithm, determining if it can be effectively utilized in
denser environments.

In Fig. 7a, as the number of vehicles increases, the network
traffic and the number of service requests also increase.
This leads to a higher demand for resource allocation and
puts additional strain on the network, resulting in a decrease
in the packet delivery rate. This phenomenon explains the
decreasing slope observed in the PDR values across all
three methods. Comparing the three methods, it is evident
that both the Greedy Algorithm and the Proposed Method
consistently outperform the SLA-based approach in terms of
packet delivery rate. This difference can be attributed to the
more restrictive parameters and formulas used in the SLA-
based method, as well as its strict rules mapping table. These
factors limit the flexibility in choosing providers and resource
allocation, consequently affecting the packet delivery rate
negatively.

In Fig. 7b, heightened network activity leads to increased
delays and packet loss, resulting in a decrease in SLA adher-
ence across all three methods. This explains the decreasing
trend observed in the SLA adherence values. Comparing
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FIGURE 7. Performance comparison when varying the numbers of vehicles in terms of: a) PDR, b) SLA Adherence, c) Resource Utility, d) Service Delay.

the three methods, it is evident that both the Greedy
Algorithm and the Proposed Method consistently outperform
the SLA-based approach in terms of SLA adherence. This
discrepancy can be attributed to the more flexible resource
allocation strategies employed by the Greedy Algorithm and
the Proposed Method, which allow for better adaptation to
changing network conditions and service demands.

Fig. 7c, presents the resource utility, represented as
percentages, for theGreedyAlgorithm, the ProposedMethod,
and the SLA-based approach across different numbers of
vehicles in a vehicular network scenario. Upon analyzing
the chart, it is clear that both the Proposed Method and the
Greedy Algorithm consistently outperform the SLA-based
approach in terms of resource utility. One of the key reasons
for this difference is that the SLA-based approach imposes
limitations on the utilization of providers within its formula.
The increasing slope observed in the resource utility scores

as the number of vehicles increases can be attributed to the
impact of a larger number of providers and service requests
on the optimization of resource utility. With an increasing
number of vehicles, the number of potential providers also
tends to increase, resulting in a larger pool of available
resources. The availability of ample resources presents a
favorable opportunity to optimize their utilization effectively,
aiming to maximize resource efficiency.

In Fig. 7d, as the number of vehicles increases, the service
delay decreases for all three approaches. This reduction in
service delay is attributed to the increased vehicle density,
which leads to a decrease in transmission times due to the
availability of more potential providers in closer proximity.
Among the three approaches, the Proposed Method exhibits
the lowest service delay across all vehicle densities, followed
by the Greedy Algorithm and then the SLA-Based method.
The superior performance of the Proposed Method and the
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Greedy Algorithm can be attributed to their consideration
of the locations of providers and requesters when selecting
them for service provisioning. By selecting providers and
requesters that are in close proximity, these methods can
minimize the transmission delays, resulting in lower overall
service delays compared to the SLA-Based method, which
may not prioritize geographic proximity as a selection
criterion. It is noteworthy that while the Proposed Method
consistently outperforms the other two approaches, the per-
formance gap between the Proposed Method and the Greedy
Algorithm widens as the number of vehicles increases. This
suggests that at higher vehicle densities, the advantage of
the Proposed Method’s more sophisticated selection criteria
diminishes compared to the Greedy Algorithm, potentially
because the increased availability of nearby providers makes
the simpler selection approach employed by the Greedy
Algorithm almost as effective.

In conclusion, the proposed method consistently out-
performed the Greedy Algorithm and SLA-based method
across the performance metrics considered, including packet
delivery rate, SLA adherence, resource utility, and service
delay. However, it is important to note that the performance
gap between the Proposed Method and Greedy Algorithm
narrowed in most charts. While the Greedy Algorithm
exhibited comparable performance to the ProposedMethod in
metrics such as packet delivery rate, SLA adherence, and ser-
vice delay, a significant difference existed in resource utility
between the two approaches. As shown in the resource utility
chart, the Proposed Method achieved substantially higher
values compared to the Greedy Algorithm across all vehicle
densities. This indicates that the Proposed Method is scalable
and enhances the utilization of network resources, which
can potentially result in improved provisioning capacity and
overall efficiency.

3) VARYING AVERAGE SPEED OF VEHICLES
In this section, we varied the average speed of vehicles to
analyze the performance of the compared methods. This
provides important insights, as the average speed of vehicles
typically differs based on factors such as road type, traffic
conditions, and time of day. For example, vehicles tend to
move faster on highways during non-peak hours compared
to city streets during rush hour. Accounting for a range of
maximum speeds helps evaluate how well each method can
adapt to these real-world scenarios with differing vehicle
mobility. By changing the vehicle speed distribution, we are
essentially altering the density and available connectivity
opportunities in the network at different time periods.
This allows us to gauge the sensitivity of the methods to
density/connectivity variations modeled through speed.

Fig. 8a, depicts the relationship between vehicles average
speed on the x-axis and the corresponding packet delivery rate
on the y-axis. The data clearly shows an inverse relationship
between the two variables, wherein PDR decreases gradually
as vehicles speed increases. At the lowest speed of 10 km/h,
PDR is at its highest level for all methods. However, there

is a steady decline in PDR as speeds rise sequentially.
This declining trend suggests that higher vehicle mobility
negatively impacts network performance in terms of reduced
packet delivery. The reduction in PDRwith increasing speeds
can be attributed to the fact that vehicles move away from
each other faster and get out of range more frequently.
This increased distance between vehicles at higher speeds
leads to a higher probability of packet loss and transmission
errors, resulting in a decrease in PDR. With the increase
in vehicle speeds, the Proposed Method performs somewhat
better than the greedy approach, which can be attributed to
the optimal allocation of resources. As observed in Fig. 8a,
the SLA-based method exhibits lower values when vehicle
mobility and speed increase.

Fig. 8b, evaluates the SLA adherence rate based on the
average speed of vehicles. Based on the chart, at a average
speed of 10.00, the Greedy Algorithm and the Proposed
Method have nearly similar results. As the average speed of
vehicles increases, both methods show a gradual decrease
in performance. However, the Proposed Method consistently
outperforms the Greedy Algorithm at each level of average
speed. It indicates that the ProposedMethod is more effective
in allocating resources and providing services compared to
the Greedy Algorithm. Similar to the findings in Figure 8a,
the SLA-based method exhibits a similar behavior and lower
values as the speed increases.

The results obtained from varying the average speed
provide valuable insights into the extent to which mobility
affects performance of the evaluated methods. Comparing the
slopes of the PDR and SLA adherence curves with increasing
speeds reveals that vehicle mobility affects SLA adherence
slightly more than PDR. This suggests that higher speeds
could introduce larger delays in service delivery, impacting
SLA to a greater extent. Additionally, a wider gap is observed
between the ProposedMethod and the others in terms of SLA
adherence compared to PDR. This gap widens with higher
speeds, indicating that the Proposed Method is better able to
optimize service allocation under varyingmobility conditions
by leveraging location information in clustering vehicles and
provider selection.

4) VARYING REQUESTERS-TO-PROVIDERS RATIO (R/P)
The Requesters-to-Providers ratio represents the ratio of
requesters to providers in the network. For instance, if the
number of requesters is half of the number of providers, the
value would be 0.5. Conversely, if the number of requesters
and providers are equal, the ratio would be 1. The goal of
varying the ratio of requesters to providers is to evaluate
the performance of the approaches under different event
situations, ranging from when there are sufficient providers
to support requests, to scenarios where resources are scarce
and require careful planning to optimize provisioning.

In Fig. 9a, as the ratio of R/P increases, the PDR for
all three approaches generally decreases. This is expected
because with fewer requesters compared to providers, there
is more resources to be selected, leading to higher PDR.
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FIGURE 8. Performance comparison when varying the average speed of
vehicles in terms of: a) PDR, b) SLA Adherence.

However, the Proposed Method consistently outperforms the
Greedy Algorithm and SLA-Based method across almost all
R/P ratios in terms of PDR. The performance gap between the
SLA-Based method and the other two approaches (Proposed
Method and Greedy Algorithm) widens as the R/P ratio
increases. This suggests that when resources are scarce
(higher R/P ratio), the selection of proper providers becomes
more crucial, and the SLA-Based method’s selection criteria
may not be as effective as the other two approaches. When
the R/P ratio is low (e.g., 0.5), the performance of all three
approaches is relatively close, indicating that when resources
are abundant, the selection criteria may not significantly
impact the overall PDR. In Fig. 9b, similar to the PDR trend,
the Resource Utility for all three approaches decreases as
the R/P ratio increases, reflecting the increased contention
for resources when there are more requesters compared to
providers. The Proposed Method consistently outperforms
the Greedy Algorithm and SLA-Based method across all

FIGURE 9. Performance comparison when varying the
Requesters-to-providers ratio in terms of: a) PDR, b) Resource Utility.

R/P ratios in terms of Resource Utility. This demonstrates
its effectiveness in optimizing resource utilization while also
maintaining high service provisioning performance, even
under resource-constrained scenarios.

5) VARYING PARAMETERS ACROSS DIFFERENT SCENARIOS
In this section, we aim to evaluate the approaches under
more dynamic scenarios to analyze their ability to handle
changing network conditions. As the formulation contains
coefficients, we also vary their values to analyze the impact
on the Proposed Method, especially in specialized scenarios.
It is important to note that since the sum of all coefficients
must equal 1, in scenarios where a particular coefficient value
varies, the values of the other coefficients will be adjusted
accordingly and equally to maintain this constraint.

Moreover, in each scenario where we vary one parameter,
the values of other parameters are randomly generated. For
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example, when evaluating the impact of different delay
tolerance levels (Delay Sensitive Service Requests rate),
the service volumes, vehicle mobility patterns and other
attributes will remain random. This allows isolating the effect
of the varied parameter, while retaining randomness in other
factors to better emulate real-world conditions.

a: MOBILITY IMPACT
In a realistic urban scenario, some vehicles will be parked
while others are moving in different directions on the
roads. In this subsection, we aim to evaluate the impact of
such dynamic mobility patterns on the performance of the
proposed approaches.

In Fig. 10a, as movement proportion rises, PDR declines
sequentially. This downward trend establishes an inverse rela-
tionship between increasing vehicles movement and decreas-
ing PDR. The progressive fall in network performance can be
attributed to greater disruption of wireless connections and
rising packet collisions or drops resulting from heightened
vehicular activity. These findings provide valuable insights
into how varying degrees of vehicular mobility influence
the reliability of packet transmissions in vehicular networks.
However, the Proposed Method consistently outperforms the
Greedy Algorithm and SLA-based method. With increasing
vehicle mobility, the algorithm employed in the SLA-based
method leans towards utilizing mobile clouds over fixed
clouds, leading to higher packet loss.

Fig. 10b, represents the SLA adherence rate comparison
between the Greedy Algorithm, SLA-based method and
the Proposed Method. The adherence rate is measured
for different levels of vehicle movement. As the vehicle
movement increases, all methods experience a slight decrease
in the SLA adherence rate. However, the Proposed Method
consistently outperforms the Greedy Algorithm at each
level, albeit with diminishing differences. The reason for
this is that the service allocation to service providers in
the proposed algorithm is slightly better than the Greedy
Algorithm. Therefore, mobility will also have a negative
impact on this allocation. The SLA-based method, in terms of
SLA adherence, also exhibits lower values when mobility is
increased. This behavior is due to the algorithm’s inclination
to utilize mobile clouds more frequently than fixed clouds as
mobility increases.

Finally, in Fig. 10c, we evaluate the impact of vary-
ing the coefficient related to the mobility of providers (β)
on the performance of the Proposed Method. As shown,
when the average vehicle speed is less than 30 km/h,
setting β = 0.2 results in better performance. At these
lower speeds, other factors like delay sensitivity and service
volume have a similar effect on the network. Therefore,
increasing the weight of mobility (which decreases the
weights of other parameters) leads to lower packet delivery
rate. However, as the average speed increases from 30 to
60 km/h, prioritizing mobility through β = 0.6 yields
better performance for these scenarios. At higher speeds,
the impact of mobility variations becomes more prominent.

But the difference compared to β = 0.2 is not significant,
indicating that the Proposed Method adapts well under
different mobility conditions controlled by β.

b: DELAY SENSITIVE SERVICE REQUESTS
In this subsection, we evaluate the effects of varying the
rate of delay-sensitive service requests on the performance
of the different approaches. Delay-sensitive requests impose
stringent delay constraints that must be met through optimal
resource allocation. Analyzing how approaches adapt to
scenarios with differing rates of such requests provides
insights into their resilience under dynamic demand condi-
tions involving priority requests.

Fig. 11a illustrates the SLA Adherence performance of
the Proposed Method and the SLA-Based method across
varying percentages of delay-sensitive service request rates,
ranging from 20% to 100%. The GreedyAlgorithm is omitted
from this analysis, as mentioned, due to its insignificant
difference from the Proposed Method’s performance, similar
to other scenarios. As the percentage of delay-sensitive
service requests increases, the SLA Adherence decreases for
both the Proposed Method and the SLA-Based method. This
is expected because a higher proportion of delay-sensitive
requests imposes stricter timing constraints, making it
more challenging to maintain high SLA Adherence levels.
It is evident from the chart that the Proposed Method
consistently outperforms the SLA-Based method across all
delay-sensitive service request rates. The performance gap
between the two approaches widens as the percentage of
delay-sensitive requests increases, with the Proposed Method
exhibiting a slower decline in SLA Adherence compared
to the SLA-Based method. The superior performance of
the Proposed Method can be attributed to its ability to
consider delay-tolerant applications directly in the problem
formulation.

In Fig. 11b, as the percentage of delay-sensitive service
requests increases, the Service Delay decreases for both the
SLA-Based method and the Proposed Method. This behavior
is expected, as a higher proportion of delay-sensitive requests
necessitates using more fog/edge resources than conventional
cloud resources to meet the stringent timing requirements
of these requests. It is evident from the chart that the
Proposed Method consistently outperforms the SLA-Based
method across all delay-sensitive service request rates in
terms of Service Delay. The performance gap between the
two approaches widens as the percentage of delay-sensitive
requests increases, with the Proposed Method exhibiting
a more significant reduction in Service Delay compared
to the SLA-Based method. The superior performance of
the Proposed Method in minimizing Service Delay can be
attributed to its strict formula for not using conventional
cloud resources for delay-sensitive requests, as mentioned in
Table 5.
In Fig. 11c, three different values of δ are considered:

0.2, 0.4, and 0.6, representing varying degrees of emphasis
placed on the delay parameter in the Proposed Method’s
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FIGURE 10. Performance comparison when varying the vehicles
movement proportion in terms of: a) PDR, b) SLA Adherence, c) PDR with
Different β.

formulation. As the percentage of delay-sensitive service
requests increases, the SLAAdherence decreases for all three
values of δ with the same reason for the Fig. 11a. When the

percentage of delay-sensitive requests is less than 50% (e.g.,
20% or 40%), the Proposed Method with δ = 0.2 performs
better in terms of SLA Adherence compared to the higher
values of δ (0.4 and 0.6). This observation suggests that
when the majority of requests are delay-tolerant, assigning
a lower weight to the delay parameter (δ = 0.2) leads to better
SLA Adherence performance. Neglecting other important
parameters by assigning a higher weight to the delay
parameter can have a negative impact on SLA Adherence in
such scenarios. However, as the percentage of delay-sensitive
requests increases beyond 50% (e.g., 60%, 80%, or 100%),
the trend reverses, and the Proposed Method with higher
values of δ (0.4 and 0.6) starts to outperform the configuration
with δ = 0.2 in terms of SLAAdherence.When themajority of
requests are delay-sensitive, prioritizing the delay parameter
by assigning a higher weight (δ = 0.4 or 0.6) becomes more
important to meet the stringent timing requirements of these
requests and maintain high SLA Adherence levels. In such
scenarios, the impact of neglecting the delay parameter by
assigning a lowerweight (δ = 0.2) becomesmore pronounced,
leading to a degradation in SLA Adherence performance.
It is worth noting that while the Proposed Method with
δ = 0.6 performs slightly better than δ = 0.4 for higher
percentages of delay-sensitive requests (e.g., 80% and 100%),
the difference in SLA Adherence performance between these
two configurations is not significant.

Finally, as it is evident in Fig. 11d, similar to other charts,
when the delay coefficient δ is set to 0.6, the Service Delay
exhibits lower values compared to other δ values as the
percentage of delay-sensitive service requests increases. This
behavior is expected, as a higher value of δ places more
emphasis on minimizing the delay parameter, leading to
lower Service Delays, especially when the proportion of
delay-sensitive requests is higher.

However, it is important to consider the trade-off between
Service Delay and other parameters like SLA Adherence.
While a higher value of δ (e.g., 0.6) may result in lower
Service Delays, it could potentially compromise the overall
SLA Adherence performance, as observed in the previous
chart (Fig. 11c).

c: HIGH VOLUME SERVICE REQUESTS
Vehicular cloud networks support a wide range of appli-
cations, from safety-critical messages to resource-intensive
services like live video streaming. These applications gener-
ate varying volumes of service requests, which can have a
significant impact on the performance of the network and the
resource allocation strategies employed. In this subsection,
we evaluate the different approaches by varying the service
volume, which represents the overall demand for resources
and services within the vehicular cloud network. Moreover,
based on the assumptions in the simulation, where every
vehicle produces data ranging from 1 to 50 MB (in each
period of 5 seconds), we can calculate the estimated data gen-
erated per vehicle per hour ranges from approximately 1GB/h
to 36 GB/h.
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FIGURE 11. Performance comparison when varying delay sensitive service requests ratio in terms of: a) SLA Adherence, b) Service Delay c) SLA
Adherence with different δ, d) Service Delay with different δ.

In Fig. 12a across all three approaches, a general trend
is observed where the SLA Adherence decreases as the
Average Service Volume increases. This behavior is expected
because as the service volume grows, the network becomes
more congested, and the likelihood of packet loss or service
disruption increases, making it more challenging to maintain
high levels of SLA Adherence. The Proposed method
consistently outperforms the Greedy Algorithm and the
SLA-Based approach across all service volumes in terms of
SLA Adherence. This superior performance can be attributed
to the Proposed Method’s ability to consider factors such as
the location and capacity of service providers when making
resource allocation decisions.

Fig. 12.b evaluates the impact of varying the coefficient
α related to service volume and provider capacity on the
SLA Adherence performance of the Proposed Method. Three
different values of α are considered: 0.2, 0.4, and 0.6,

representing varying degrees of emphasis placed on service
volume and provider capacity in the Proposed Method’s
resource allocation strategy. Initially, when the Average
Service Volume is low (1 MB), the Proposed Method with
α = 0.2 exhibits the highest SLA Adherence compared
to the higher values of α (0.4 and 0.6). This behavior is
expected because at lower service volumes, other parameters
such as delay become more crucial in maintaining high
SLA Adherence levels. Assigning a higher weight to service
volume and provider capacity by increasing α may lead
to suboptimal performance when the service demands are
relatively low. As the Average Service Volume increases
from 1 MB to 10 MB and 20 MB, the trend reverses, and the
Proposed Method with higher values of α (0.4 and 0.6) starts
to outperform the configuration with α = 0.2 in terms of SLA
Adherence. This is because as the service volume increases,
considering the volume and capacity parameters becomes
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FIGURE 12. Performance comparison when varying the average service volume in terms of: a) SLA Adherence, b) SLA Adherence with different α.

more important to ensure efficient resource allocation
and prevent network congestion, which can degrade SLA
Adherence. However, at the middle range of Average Service
Volume (around 20 MB), the SLA Adherence performance
across all three values of α converges, with minimal
differences observed. This convergence suggests that within
this range of service volumes, the impact of varying α

on SLA Adherence is relatively small, and other factors
may play a more significant role in determining the overall
performance. As the Average Service Volume continues
to increase beyond 20 MB (e.g., 30 MB and 40 MB),
a distinct trend emerges where the Proposed Method with
α = 0.6 exhibits the highest SLA Adherence, followed by
α = 0.4 and then α = 0.2. This behavior can be attributed to
the fact that at very high service volumes, prioritizing service
volume and provider capacity by assigning a higher weight
(α = 0.6) becomes crucial to mitigate the impact of network
congestion and resource constraints on SLA Adherence. The
reason behind the descending trend in SLA Adherence for all
values of α as the Average Service Volume increases can be
attributed to the increased network congestion and potential
packet loss associated with higher service volumes. As more
service requests are processed, the risk of network saturation
and service disruptions increases, leading to a decline in SLA
Adherence, regardless of the value of α.

6) CONSUMER UTILITY
The evaluation of consumer utility in this part aims to assess
the effectiveness of the different approaches in selecting
appropriate pricing options for consumers while maintaining
desirable levels of SLA factors. The primary objective is
to demonstrate how well these approaches can balance
the trade-off between providing cost-effective solutions for
consumers and ensuring adherence to SLA requirements.

Fig. 13 presents the distribution of consumer utility
values for each approach, providing insights into the central

FIGURE 13. Performance comparison in term of consumer utility.

tendency (median), spread, and potential outliers. The use
of a boxplot is particularly useful in this analysis because
it captures the variability and potential outliers in consumer
utility values. Since the scenarios generate random events
and parameters (such as prices), the consumer utility values
may vary more significantly. By depicting the minimum,
maximum, and quartile values, the boxplot provides a
comprehensive overview of the distribution of consumer
utility for each approach, allowing for a more informed
comparison. Based on the chart, the Proposed Method
exhibits the highest median consumer utility among the three
approaches, indicating that it generally performs better in
terms of providing cost-effective solutions while maintaining
desirable levels of SLA factors. The SLA-Based approach,
on the other hand, has the lowest median consumer utility
among the three approaches. Additionally, its boxplot has
the largest spread between the minimum and maximum
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values, suggesting a higher degree of variability and a wider
range of consumer utility outcomes. This variability could
be attributed to the specific method used by the SLA-Based
approach for selecting pricing options, which may result in
a broader range of consumer utility values depending on the
scenarios encountered.

V. CONCLUSION
This paper presented a comprehensive service provisioning
approach for vehicular cloud networks using fuzzy logic
optimization and centralized orchestration. A mathematical
model was formulated incorporating crucial factors like
mobility, delay, cost, data volume and location suitability.
Fuzzy logic techniques were leveraged to handle uncertainty
in assessing provider-request compatibility. A heuristic
algorithm was tailored to efficiently solve the NP-hard
optimization problem. Simulations under diverse VCN sce-
narios evaluated the approach’s effectiveness in maximizing
the suitability of service provisioning. Comparisons with
optimal solutions validated the quality of the proposed
heuristic. Additional experiments demonstrated clear perfor-
mance improvements over Greedy Algorithm and SLA-based
method in keymetrics like provisioning score, packet delivery
rate, SLA adherence and resource utility. The important point
to consider is that the PDR results for both proposed and
Greedy Algorithm exhibit a similar and very close trend.
However, this issue becomes more pronounced in the SLA
adherence rate metric, especially with the increase in vehicle
mobility and speed, where the Greedy Algorithm shows a
greater reduction. This is because the SLA adherence rate
metric is more stringent in its requirements.

While optimization methods such as simplex can sig-
nificantly enhance service provision, especially in complex
scenarios, it is crucial to consider the practical limitations
faced in real-world applications. The processing constraints
of vehicular boards, particularly when dealing with a high
volume of vehicles, can lead to extensive computation times,
potentially resulting in service delays. Balancing between
the need for optimization and the practical constraints of
real-world implementation is essential for achieving efficient
and timely service delivery.

One of the primary assumptions made in this paper is the
existence of RSUs. As part of our future work, we plan to
expand our model to accommodate situations where RSUs
are not present. This extension will concentrate on vehicular
cloud networks that rely solely on vehicles for service
provisioning. Additionally, incorporating new parameters,
such as energy consumption, will be a crucial step in
further enhancing our research. Morover, we will explore
the utilization of machine learning algorithms to optimize
parameters, as it presents a key area of focus for our research.
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