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ABSTRACT In Awake Neurosurgery (AN), the assessment of the patient’s capabilities is of paramount
importance to minimize the risk of post-operative cognitive, language, and motor deficits. To retain fine
hand motion capabilities, in the current clinical practice, a neuropsychologist assigns hand motion tasks
to the patient during AN, and these tasks are evaluated by visual observation. This study introduces an
innovative and non-invasive task evaluation method that employs an infrared stereo camera for precise hand
pose acquisition. The primary contribution of this work is to offer objective, quantitative and reproducible
task evaluations, addressing a critical aspect of patient care during AN procedures. The proposed method
focuses on dynamic hand gestures recognition and utilizes unidirectional and bidirectional Long Short-Term
Memory networks to assess common motor tasks during AN. To evaluate the tasks, we employ state-of-
the-art features, both distance-based and angle-based, formed by the finger bones of the human hands.
These feature vectors demonstrate a promising accuracy and inter-patient portability for the tasks under
consideration, with mean accuracy exceeding 80% when tested on new patients, separate from those used
in training. This approach provides an efficient solution for the identification and assessment of tasks, also
eliminating the need for task-specific labeling. This, in turn, enhances usability and reduces the potential for
human error. The proposed method has the potential to improve clinical decision-making in AN and offers
reliable classification tools for neuropsychologists.

INDEX TERMS Awake neurosurgery, decision making support, hand gesture recognition, leap motion

controller, long short term memory, recurrent neural network.

I. INTRODUCTION including the resection of brain vascular malformations,

Awake Neurosurgery (AN), also known as awake craniotomy,
is a well-established form of neurosurgery where the patient
remains awake during most of the procedure to monitor
specific functions such as motor skills, vision, and cogni-
tion [1]. This technique is utilized for various applications,
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tumor removal, and treatment of lesions in language areas of
the brain [2]. In current surgical practices, the assessment of a
patient’s functions during AN is still heavily relied on visual
observation conducted by the neuropsychologist [3], thus
making qualitative evaluations based on their experience. The
neuropsychologist evaluates whether the patient’s capabili-
ties are preserved and guides the surgeon to minimize damage
while achieving the target, such as removing cancerous tissue.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
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FIGURE 1. The skeletal representation, color identifies each finger: red
for the thumb, green for the index finger, cyan for the middle finger,
magenta for the ring finger, and black for the pinky finger.

As a result, these assessments rely on subjective judgment,
playing a crucial role during AN. Functional Mapping (FM),
a widely used technique in neurosurgery, aims to identify
and map the brain regions responsible for language, motor
skills, and cognitive functions [4]. These critical areas,
known as eloquent regions, ensure proper brain function.
During FM, the neurosurgeon employs targeted stimulation
of specific brain regions while the patient is awake [5],
[6]. This enables real-time monitoring of the patient’s
responses, allowing the surgeon to assess the functional
organization of the brain. The identification and mapping
of these eloquent areas are vital as they guide the surgical
procedure, ensuring that these regions are safeguarded from
damage or disruption [5], [6], [7], [8]. By minimizing
the risk of post-operative cognitive, language, and motor
deficits, FM contributes to improved surgical outcomes and
preservation of essential brain functions [9]. In the field of
AN, previous studies have explored various techniques for
FM. These techniques range from invasive methods, such as
cortical and subcortical electrical stimulation [7], [8], [10],
to non-invasive approaches like the use of tablets [11], [12],
specifically for language and cognitive mapping. Invasive
techniques involving electrical stimulation provide direct
insight into brain function, while non-invasive methods,
such as tablet-based assessments, offer a more convenient
and patient-friendly approach for functional mapping in
AN [12], [13].

However, in the clinical practice, hand motion tasks are
traditionally evaluated by a neuropsychologist by visual
observation [3]. Automatic task recognition and evaluation
could support the neuropsychologist to reduce possible
human error. To the best of the authors’ knowledge, specific
tools for AN have never been investigated in the literature.
Hence, this work aims to fill this research gap by exploring
how hand motion recognition methods for dynamic hand
gesture recognition can be employed to tackle this specific
problem. In detail, in this paper we propose a novel approach
that provides objective, quantitative and reproducible eval-
uations to support the neuropsychologist’s decision-making
in the specific case for motor mapping of hand motion
tasks. While related studies on AN protocols have primarily
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focused on functional mapping for language and cognitive
tasks [14], this research uniquely addresses the assessment
of motor tasks in the context of AN. By proposing a
non-invasive approach based on a infrared stereo camera, this
study offers an innovative contribution to the neurosurgical
field, providing insights into motor function assessment
during surgical procedures. The proposed study involves the
utilization of the Leap Motion Controller (LMC) infrared
stereo camera for hand pose acquisition in AN. The LMC
allows for high precision, with hand pose accuracy below
0.2 mm and an average of 1.2 mm in dynamic cases [15]. The
data captured by the LMC are processed using skeletal-based
modeling, wherein the spatial coordinates of the hand are
reconstructed to create a virtual representation of a skeleton
hand, as shown in Figure 1. However, given the nature
of motor task assessment, we approach the problem as a
dynamic hand gesture recognition problem based on feature-
based system.

In this work, we focus on two specific tasks that are
employed in the clinical practice to assess hand motion
capabilities, namely, Open-Close (OC) and Thumb towards
each of the other Fingers tips (TF). These two tasks
are well-known in the AN literature. In [16], the authors
evaluate hand motion tasks for functional magnetic resonance
imaging, that is a non-invasive alternative to direct cortical
stimulation, where the latter represents the gold standard.
The authors describe two motor tasks, finger—thumb tapping
and self-paced clenching and spreading of the hand, that
correspond to TF and OC in this work, respectively. In [17],
the authors classify hand motions from electrocorticography
signals during intraoperative awake craniotomy. The ana-
lyzed hand motions are grasp (i.e., OC), thumb-finger motion
(i.e., TF), and index-finger motion (a less common variant of
TF).

As a result, we employ sequential models to classify the
OC and TF tasks. Specifically, we utilize the Unidirectional
Long Short-Term Memory (Uni-LSTM) and the BiDirec-
tional Long Short-Term Memory (Bi-LSTM) models [18],
[19], [20] to classify the performance of this two common
motor task during AN. These Recurrent Neural Networks
(RNNs) are applied to identify the task and determine
whether it is executed correctly.

We make the following contributions:

« Proposing a contactless hand pose estimation technique
for supporting the decision-making of neuropsycholo-
gists during motor-mapping procedures.

« Comparing and evaluating the feasibility of implement-
ing Uni-LSTMs and Bi-LSTMs in a time constrained
scenario.

o Identifying the combination of proposed features that
provides the highest discrimination in the AN motor
tasks under investigation.

The remainder of the paper is structured as follows.
Section II provides an overview of the devices used in AN,
the LMC application fields, and the methods for hand gesture
recognition. The proposed method is detailed in Section III.
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Results and discussions are presented in Sections IV and V,
respectively. Finally, conclusions and future works are drawn
in Section VI.

Il. RELATED WORKS

In the current research on functional mapping in AN, the most
widely accepted and reliable method for intraoperative brain
mapping is known as Direct Cortical Electrical Stimulation
(DCES) [10], [11], [12]. Currently, DCES is implemented
in conjunction with various tests involving language assess-
ment, cognitive evaluations [4], [11], [12], [21], and motor
tasks [17]. In [4], the research findings reveal that all the
recruited doctors (i.e., 100% of them) employ DCES as their
primary method for motor mapping, and the second most
frequently used technique is Electrocorticography (ECoG).
In the context of motor mapping, instead, the control criterion
is based on observing whether there is any noticeable motor
movement during awake mapping [4].

In the study [17], the authors verified the possibility of
classifying three types of hand movements (grasp, thumb-
finger motion, and index-finger motion) using recorded
ECoG signals during intraoperative surgeries from 4 patients
(2 with brain tumors, undergoing AN, and 2 with intractable
epilepsy). However, the proposed method is performed
offline and requires positioning up to 95 electrodes on
the brain cortex. Given that the existing literature on
hand motion classification during AN predominantly relies
on invasive techniques [22], we propose an alternative
contactless approach using the LMC. By utilizing the LMC,
we aim to achieve hand motion classification without the
need for invasive procedures, for instance the ECoG use
reported in [17]. This contactless method has the potential
to provide accurate and reliable results while minimizing the
risks and discomfort associated with invasive techniques. Our
study contributes to the field by exploring the feasibility and
effectiveness of using the LMC for hand motion classifica-
tion, providing a contactless alternative for assessing hand
movements. The LMC has demonstrated its versatility in
various fields, ranging from video games [23] and augmented
reality [24] to sign language recognition [19], [25], [26], [27],
[28], [29]. Some studies have explored different applications
of the LMC, including the assessment of motor symptoms
of bradykinesia and tremor in Parkinson’s disease [30], [31],
[32], and its intraoperative use during deep brain stimulation
to assess motor symptoms [30], [33].

In order to provide a comprehensive overview, in the
following we include a discussion on the current state of
research in hand gesture recognition, in particular to sign
language recognition, which is a strictly related field in
the literature. The existing literature on the topic can be
classified into deep learning and feature-based systems.
Deep learning approaches are powerful tools for problems
related to big data [34], [35], [36]. However, in scenarios
where a large amount of data is not required or difficult
to collect, it may be advantageous to extract features
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from the data, namely, feature-based approaches. The hand
motion task can be further categorized into static and
dynamic hand motion recognition. Static gesture recognition
methods achieve high accuracy for static gesture words [37],
however, they cannot recognize the meaning associated
with the movement of the hand itself. Thus, they are
unsuitable for the purpose of this paper, where the hand
motion is the primary focus. Research on dynamic hand
recognition is composed of single-hand and double-hand
gesture recognition [38], [39]. In this paper, we focus on
the study of single-hand dynamic gesture recognition using
the LMC. One of the pioneering works utilizing LMC for
American Sign Language (ASL) recognition is presented
in [40]. This research proposes a Multi-Layer Perceptron
neural network with a backpropagation algorithm to classify
26 symbols of ASL, achieving a recognition rate of 96.15%
on a test dataset. In [19], a hand gesture recognition method
is proposed, employing RNNs and the LMC. The approach
utilizes angles formed by finger bones and demonstrates
high efficiency in recognizing a wide range of gestures,
including those from ASL. A methodology utilizing the
LMC and RNN has also been proposed for Arabic Sign
Language recognition [26]. This method achieves an average
classification accuracy of 89% for single-hand gestures and
96% for two-hand gestures. Recently, a sequential learning
approach based on the spatio-temporal prosodic and angle
features has been proposed as well [28]. The method utilizes
3D hand skeletal information from LMC and encodes it
with a Fast Fisher Vector before processing with a Bi-
LSTM. This approach achieves a recognition accuracy of
98.6% for a selected ASL dictionary and 91% for pairs
of similar ASL words. The classification system [41] for
activities of daily living based on grasp motion, employing
the LMC, achieves 99% accuracy. The study highlights two
features, namely the adjacent tips distance and joint angle,
which prove to be particularly effective for classification of
daily activities. The study in [42] focuses on recognizing
seven fist signs in ASL utilizing the LMC to detect the
position of the thumb, which is crucial for differentiating
these signs. In [43], two classifiers (Support Vector Machine
(SVM) and deep neural network) are compared to develop
a sign language recognition prototype using the LMC. This
research shows the superior performance of the deep neural
network in recognizing ASL hand gestures compared to the
SVM, with an improvement of 13% in terms of accuracy.
In [44], an approach employing Bi-LSTM with k-Nearest
Neighbour method for classifying ASL alphabets, trained
on 2600 samples, is reported. This method is designed for
real-time recognition and has been integrated into a game-like
application for ASL learning. The recent research [29]
proposes a methodology for recognizing continuous signed
letters from backhand view using a rewound video sequence
and previous signed-letter information. The classification
employs Long Short-Term Memory (LSTM) based on time-
independent patterns, considering the influence of previous
letters on the current one. The approach improves the
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FIGURE 2. Acquisition setup.

accuracy of signed-letter recognition by incorporating the
dynamics of hand motion and the context of previous
gestures.

Ill. MATERIALS AND METHOD

In this section, we present the proposed method for classify-
ing the OC and TF tasks. The proposed framework consists
of data acquisition, preprocessing, data augmentation, feature
extraction, filtering, and classification. The entire study is
conducted in the MATLAB environment.

A. SUBJECTS AND DATA ACQUISITIONS

For acquiring the spatial coordinates sequence of the hands,
the LMC is employed. LMC is a hand tracking system that
employs stereo infrared cameras. It offers a comfortable
interaction zone, up to a distance of 80 cm, and has a wide
field of view (120° x 150°). Additionally, it can operate in
various environmental conditions. However, the LMC has
limitations, which are reported in [45], such as:

e Variable frame rate, which can vary between 20 and
200 frames per second, and it can be affected by
computer settings and the USB version being used.

o Occlusions, that must be avoided as much as possible.

« Light conditions and background.

In the case of AN, the relevant limitations are the frame rate
and the occlusions. In the surgery room, the light conditions
are not critical if the device is fixed below the hand during the
acquisition. Additionally, the background is static and almost
uniform throughout the entire surgery room.

For the purpose of this study, a handcraft dataset was
created. The dataset consists of recordings from 11 partici-
pants, comprising five women and six men, with ages ranging
from 23 to 31 years old. During the data acquisition process,
volunteers are seated in a chair positioned in front of a table
where the PC is located. The LMC is mounted above the table,
and participants perform the tasks by moving their hands
approximately 30 cm above the device. The acquisition set
up is shown in Figure 2, also indicating the field of view
and the suggested minimum distance from the device. The
volunteers underwent a 15 minute acquisition procedure in
which they performed the required hand movements, namely
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OC and TF, for each hand. The acquisition order for each
hand is as follows:

« OC Right
o OC Wrong
« TF Right
« TF Wrong

Each execution is recorded for a duration of 20 seconds.
Therefore, the handcraft dataset consists of a total of
88 executions, with 44 executions for each hand.

B. PREPROCESSING

Before the data processing, the frame rate during each
acquisition is verified. This is done to ensure that a consistent
frame rate is maintained across all data. The handcraft dataset
has an average frame rate of 115.2 Hz, with a standard
deviation of 0.1 Hz.

In order to facilitate the analysis of the motor tasks in this
procedure, the frame rate of the data has been reduced from
approximately 115 Hz to 30 Hz. This reduction in frame
rate does not alter the information regarding the movement
significantly, as a 30 Hz sampling rate is sufficient to capture
the main hand dynamics.

C. DATA AUGMENTATION

To enhance the dataset, we implement a data augmentation
technique based on resampling the signals from 0.4 to
1.4 times the original frequency. This approach is employed
to generate a wider range of velocities of the same execution.
By resampling the signals at varying frequencies, we could
simulate different execution speeds, providing the model
with a more robust training set that encompasses a broader
spectrum of real-world scenarios.

D. FEATURE EXTRACTION
From the spatial coordinates captured by the LMC in each
frame, we derived two sets of features: distances and angles.
In the following, the subscript represents the finger: 1 for the
thumb, 2 for the index finger, 3 for the middle finger, 4 for
the ring finger, and 5 for the pinky finger.

The distance features include the following ones.

1) FINGERTIPS TO PALM CENTER DISTANCE (FPD)

The FPD [27], [29] feature (FPD;) represents thi)Euclidean
distance between t_h)e i-th fingertip coordinate (F7;) and the
palm coordinate (CP).

e .
FPD; = ||[FT; — CP|| for i=1,2,3,4,5 (1)

2) THUMBTIP TO OTHER FINGERTIPS DISTANCE (ToFD)

The ToFD feature (ToF'D;) represents the_E)uclidean distance
between the j-th fingertip coordinate (F7;) (excluding the
thumb) and the thumbtip coordinate (FT7).

—
ToFD; = ||[FT; — FT1|| for j=2,3,4,5 (2)
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FIGURE 3. Example representation of a joint angle extracted at the joint
between proximal phalanges and intermediate phalanges of middle
finger.

3) ADJACENT FINGERTIPS DISTANCE (AFD)

The AFD [27], [29], [41] feature (AFD;) represents _th)e
Euclidean distance between the i-th fingertip coordinate (F7;)
and its adjacent fingertip coordinate (F7j41).

AFD; = ||[FT: — FTipy|] for i=1,2,3,4 (3)

—> —>
Here, FT;, and CP are three-dimensional coordinates in the
LMC coordinate system.
The angle features include the following ones.

4) JOINT ANGLE (JA)

The JA [19], [26], [28], [41] feature represents the angle
between two adjacent bones at each finger joint, specifically
from the metacarpals to the distal phalanges bones. For
example, the JA value of the joint between the proximal
phalanges and intermediate phalanges of the middle finger
can be calculated as follows:

7D
a .
JA = arccos @
(Wu?l)

where @ and Z) are the vectors representing the adjacent
bones at a finger joint, as shown in Figure 3. The JA value is
computed for each finger joint. To identify the specific joint
and finger associated with the computed JA, two indices are
added: JA; j, where i represents the finger (from 1 to 5), and j
represents the joint (from 1 to 3, except for the thumb, which
has 2 joints). This indexing scheme allows for distinguishing
between different fingers and their corresponding joints when
analyzing the JA values.

5) ADJACENT FINGERTIPS ANGLE (AfA)

The AfA [19], [27], [28], [29], [41] feature represents the
angle between every two adjacent fingertip vectors, which
corresponds to the angle between the vectors from the palm
center to the fingertip coordinates. The computation of AfA
values is based on Equation (4) and can be expressed as:

— —
CT; - CTiy1

e
|CTi||CTit1]

AfA; = arccos( ) for i=1,2,3,4 (5)

— —
where, CT; and CT;4 refer to the vectors that represent the
distances between the center of the palm and the coordinates

100764

of the i-th fingertip and the adjacent fingertip, respectively.
These vectors are computed in the LMC coordinate system
and have three-dimensional components.

According to the literature, the distances features have
been shown to be valuable in capturing the spatial relation-
ships and distances between various hand landmarks, aiding
in hand gesture recognition and analysis, while the angles
features have proven to be effective in capturing the angular
relationships between different finger joints and fingertips,
making them suitable for hand gesture recognition tasks.

Hand size variation poses a significant challenge in hand
gesture recognition, as highlighted in previous studies [45].
To address this issue and account for the differences in
hand sizes among the patients, the features were normalized.
Specifically, the distance features were divided by the
cumulative Euclidean distance between the palm center and
the middle finger tip, denoted as L (also see Figure 4):

— — — —
L = |MC|+ |PP| + |IP| + |DP| (6)

At each sampling point, L was computed by summing the
distance between the Proximal Metacarpal Region (PMR)
and the index Metacarpophalangeal Joint (MJ), as well as the
lengths of all three bones of the middle finger, as indicated
in (6), and shown in Figure 4. Note that, for certain hand
poses, specifically when the hand is open, the distance
between the thumbtip and the fingertip of the ring finger
(ToFDy) or pinky finger (ToFDs) can reach values from 0 up
to 1.5. As for the other normalized distance features, instead,
they belong to the set [0, 1]. To normalize the angle features
(JA and AfA) within the range [0, 1], an empirical approach
was followed instead. The maximum values observed for
JA and AfA in the entire handcraft dataset were used as
normalization angles. Specifically, the normalization angle
for JA was set to 150 degrees, and the normalization angle
for AfA was set to 120 degrees.

Finally, the following feature sets are defined:

T = {(FPD,, ..., FPDs) @)
A = (ToFD,, ..., ToFDs) ®)
H = {AFDy, ..., AFDy} ©)
©=1{JA; ..., JAs3) (10)
A = {AfA;, ..., AfAg) (11)
1=(T,A,H) (12)
U = {0, A} (13)
Q = {I1, ¥} (14)

IT represents the merged feature vector consisting of
the distances feature vectors I', A, and H. It combines
the information from FPD, ToFD, and AFD features. W
represents the merged feature vector consisting of the angles
feature vectors ® and A; it combines the information from
JA and AfA features. Q2 represents the merged feature vector
consisting of both the distances feature vectors I1 and the
angles feature vectors W; it combines the information from
all the previously described features.
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FIGURE 4. Skeletal representation to clarify the anatomy of the PMR and
the MJs. The PMR is the connecting area between the metacarpal bones
and the carpal bones of the wrist. On the other hand, the MJs are the
joints that connect the metacarpal bones to the proximal phalanges of
the fingers.

0.55
0.5
0.45
FPD /L

0.4

0.35

0.3

Samples

FIGURE 5. Example of signal filtering by Savitzky-Golay filter. The raw
thumb FPD values from the execution of a complex motor task are in
blue, while the filtered thumb FPD values are shown in orange.

E. FILTERING

To enhance the signal-to-noise ratio while minimizing signal
distortion, the Savitzky-Golay filter was employed [46].
Figure 5 displays a 6.6 seconds segment of the FPD feature
extracted from the thumb during the execution of the complex
motor task when filtered with a Savitzky-Golay filter of
second order and frame length of 19 samples. After applying
the Savitzky-Golay filter, the signal undergoes significant
noise reduction, resulting in a more reliable representation of
the thumb’s movement during a complex motor task.

F. CLASSIFICATION

The classification of the execution is performed using a
RNN, namely, a LSTM in two variants: unidirectional
and bidirectional. This model is well-suited for sequence
learning tasks, and its use has become increasingly popular
in recent works [19], [26], [27], [28], [29], [39], [41]. For
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TABLE 1. Parameter settings.

Hyperparameters Uni-LSTM | Bi-LSTM
Batch Size 60 60
Number of Epochs 1000 2500
Number of Hidden States 30 30
Dropout Rate 50% 50%

online implementation, the output mode of each LSTM
layer is always set to “‘sequence” to achieve sequence-to-
sequence classification, meaning that the LSTM provides a
classification output for each input sample. The next step
is to determine the hyperparameters for training the Uni-
LSTM and Bi-LSTM model. Three common parameters are
considered: batch size, number of epochs, and number of
hidden layer units. The hyperparameters used during the
training phase are selected based on the testing accuracy
following a coarse grid search, and their best values are
provided in Table 1. Additionally, a 50% dropout rate is
applied to prevent overfitting.

In the MATLAB environment, we have chosen the
“classificationlayer”” element as the loss function. This
function computes the cross-entropy loss for classification
tasks with mutually exclusive classes, using the following
expression [47]:

| MoK
loss = Y Z Zwitm' Inyp (15)

n=1 i=1

where N represents the number of samples in the dataset, K
represents the number of classes, w; is the weight for class
i, ty; 1s an indicator variable that represents whether the n-th
sample belongs to the i-th class, and y,; is the output of the
model for the n-th sample and the i-th class. Specifically, y,;
represents the probability that the network assigns to the n-th
input belonging to the i-th class, and it is computed using
the softmax function. The softmax function transforms the
output of the model into a probability distribution over the
classes, ensuring that the probabilities sum up to 1. The loss
function, based on the cross-entropy, is a commonly used
objective function in classification tasks, aiming to minimize
the difference between the predicted probabilities and the true
class labels. The Adam optimizer [48] is selected for training
the models. The learning rate is fixed at 0.0001 throughout
the entire training phase. Training is performed using an
NVIDIA RTX 2060 GPU, taking approximately 15 minutes
to complete 1000 epochs for Uni-LSTMs and 40 minutes to
complete 2500 epochs for Bi-LSTMs. The same training on
an Intel Core 19-11900K CPU requires approximately 20%
more time.

IV. RESULTS

To validate our models, we employed a 10-fold cross-
validation technique. In each fold, the dataset was randomly
divided into 9 patients for training and 2 patients for
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TABLE 2. 10-Fold identification and assessment results on the test set
using Bi-LSTMs.

Features | Accuracy (Mean & StD) | Precision | Sensitivity | F1 score
r 75.1+73% 79.5% 78.3% 69.4%
A 64.6 + 6.0% 63.0% 54.5% 48.7%
H 72.1 +16.0% 70.1% 61.0% 48.0%
© 69.8 £ 12.7% 70.8% 68.4% 61.7%
A 67.2 + 14.6% 67.6% 54.1% 47.5%
II 81.3 £ 10.5% 81.6% 80.7% 73.8%
\J 842+ 12.1% 83.7% 84.1% 81.8%
Q 80.1 £9.9% 80.2% 74.2% 72.2%

validation and testing (33% and 66% for validation and
testing, respectively). We evaluated the viability of our
approach to identify task execution from the hands of unseen
patients using the LSTM models. The patients for the training
and validation sets were selected randomly for each fold,
ensuring that the same combination of patients was not
repeated. We remark that the data in the test set originate
from patients who have never been encountered by the model
during testing.

To assess the performance of the models, we computed
accuracy, precision, recall, and F1 score using the macroav-
erage values obtained from the confusion matrices. The use
of macroaverage values was necessary due to the small
imbalance in our dataset, where there were three instances
of wrong task executions, two for the right hand OC
acquisition and one for the left hand TF acquisition. The
results, in terms of mean accuracy and Standard Deviation
(StD), for the proposed Bi-LSTM are shown in Table 2. The
corresponding results for the Uni-LSTM are described in
Table 3. The best-performing features, based on the highest
mean accuracy, were also selected to validate our approach
using the LMDHG dataset [49]. This dataset comprises
dynamic skeletal hand gestures collected from 21 signers,
each performing at least one sign, resulting in an average of
13+1 words per signer.

V. DISCUSSION

The evaluation of our proposed models for classifying the two
studied tasks involved performing 10-fold cross-validation
to calculate various metrics. To provide a comprehensive
analysis of the results, the discussion is divided into three
sections.

The first part, Section V-A, focuses on analyzing and
interpreting the results obtained for the identification and
assessment of execution in both motor tasks. This section
includes a detailed examination of the metrics presented in
Table 2 and Table 3.

Section V-B compares the results in terms of performance
and response time, taking into account practical limitations
and implementation aspects arising in the AN context.
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TABLE 3. 10-Fold identification and assessment results on the test set
using Uni-LSTMs.

Features | Accuracy (Mean & StD) | Precision | Sensitivity | F1 score
r 68.2 £ 8.3% 76.2% 74.2% 69.2%
A 66.3 £ 8.3% 63.0% 43.0% 29.1%
H 75.3 £8.0% 76.4% 71.2% 68.4%
© 672 £72% 76.4% 71.2% 68.4%
A 63.0 £ 8.2% 61.7% 62.0% 47.6%
II 742 £9.2% 77.5% 75.1% 67.8%
\'4 72.7 £ 13.5% 72.2% 64.6% 59.6%
Q 75.0 £ 7.8% 76.7% 77.0% 74.0%

True Class
ov]
>
W)

TF

oC BAD TF

Predicted Class

FIGURE 6. Confusion matrix results of Bi-LSTM model for ¥ feature
vector.

Lastly, Section V-C presents a comparison with sign
language gesture recognition, based on the LMDHG dataset.
The results are critically analyzed taking into account
feasibility and computational complexity.

A. EXECUTION IDENTIFICATION AND ASSESSMENT

In this section, we report the results obtained using the entire
historical signal data, following the 10-fold cross-validation
detailed in Section IV. In the following section, instead,
we address the problem of real-time application, where only
the live data stream is available.

1) Bi-LSTM

Table 2 shows that three feature vectors achieve a mean
accuracy equal to or above 80%, namely IT, W, and €2,
with accuracies of 81.3%, 84.2%, and 80.1%, respectively.
However, the StD values for almost all feature vectors are
greater than 10%, except for I (7.3%), A (6.0%), and 2
(9.9%).

The cumulative confusion matrix in Figure 6 represents
the overall behavior of the Bi-LSTM in the 10-fold cross-
validation trials using the W feature vector, which exhibited
the highest performance according to the accuracy outlined
in Table 2. OC and TF represent correct tasks, while BAD
includes OC Wrong and TF Wrong tasks.
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oC

BAD

True Class

TF

OC BAD TF
Predicted Class

FIGURE 7. Confusion matrix results of Uni-LSTM model for () feature
vector.

The model demonstrates overall discriminative capability;
however, according to the confusion matrix, there is a
non-negligible percentage of misclassifications between the
TF task and BAD executions. While a correct OC is well
classified in 96.7% of the cases, several misclassification
errors occur with the TF and the BAD classes. This highlights
that the OC task is easier, while accurately identifying and
assessing the TF task is challenging. Such a result depends
on two factors. First, occlusions in the TF are more critical.
In case of a temporary occlusion, two fingers can be swapped
in the skeletal model, causing the correct tapping order to
appear violated even for a correct TF. This can happen both in
training and testing, making classification harder. This issue
does not apply to OC, where all the fingers are clenched
and spread together. Moreover, the TF execution proves to
be more dependent on the person performing the task. Some
patients spread the hand wide after each tap, while others tend
to keep the hand clenched. Additionally, some patients often
tap the index and the pinky twice when inverting the direction.
This variability does not occur with the OC, as it is a basic and
highly reproducible task.

2) Uni-LSTM
According to the results in Table 3, the AFD feature vector
(H), the distance-based (I1), the angle-based (¥), and their
merging (£2) achieved a mean accuracy exceeding 70%.
Additionally, the StD values for all feature vectors are
below 10%, except for W (13.5%). The cumulative confusion
matrix in Figure 7 displays the overall performance of the
Uni-LSTM across all 10-fold cross-validation trials using the
Q feature vector, which showed the best accuracy as indicated
in Table 3.

A higher misclassification rate was observed, up to 39.6%,
which is the percentage of TF executions identified as BAD.

As already discussed in the Bi-LSTM case, the OC task is
easier to classify compared to the TF task. This is evidenced
by the significant difference in correct classification rates:
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TABLE 4. Results comparison on LMDHG dataset.

Approach Accuracy
Lupinetti et al. [S0] | 91.83%
Bi-LSTM - ¥ 11.2%
Bi-LSTM - I1 8.1%
Bi-LSTM - 9.9%
Uni-LSTM - ¥ 12%
Uni-LSTM - 11 12.6%
Uni-LSTM - 16.6%

86.5% for OC versus 60.4% for TF. Such results depend on
the same two factor described in the case of Bi-LSTMs.

B. COMPARISON AND IMPLEMENTATION

Comparing the results of Uni-LSTMs and Bi-LSTMs in the
10-fold cross-validation, the superior accuracy of Bi-LSTMs
is evident. However, at the implementation level, Uni-
LSTMs and Bi-LSTMs are radically different. Uni-LSTMs
can handle data streams because they process data sequen-
tially in one direction, making them suitable for real-time
applications. On the contrary, Bi-LSTMs require the entire
data sequence to be available to process it in both forward
and backward directions. Differently from state-of-the-art
applications, such as sign language gesture recognition where
a delayed gesture recognition can be accepted, a timely
evaluation is crucial in AN. So, in order to apply Bi-LSTMs
in real-time, it is necessary to split the data in several
chunks to be individually evaluated. Hence, in addition to
the computation time, a delay equal to the duration of the
chunk must be considered. Moreover, due to the reduced
duration of the chunk with respect to the entire movement,
a lower accuracy is expected compared to Section V-Al.
The size of the chunk length is chosen to comply with
a reasonable reaction time during the surgery. Reducing
such time interval decreases the evaluation performances,
so it represents a trade-off between fast reaction time and
accuracy. A two second window has been chosen in the
following, representing an acceptable delay and broadly
comparable to a neuropsychologist’s evaluation and decision
time.

Without loss of generality, we employed the features in
Q to verify the feasibility of implementing our approach.
The feature vector 2, which includes both distance-based
and angle-based features, was chosen for its lower standard
deviation value among the proposed vectors and also because
it represents the largest feature vector, thus giving upper
bounds on time complexity.

Testing the response time from signal pre-processing to
prediction, we found that for every 20 seconds of input
signal, the mean time for classifying the entire sequence is
0.5 seconds for Uni-LSTM and 0.6 seconds for Bi-LSTM.
With a frame rate of 30 Hz (i.e., 600 samples) in the input
sequence, an average computation time of 1 millisecond per
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FIGURE 8. Classification results using the feature vector (2 on a data stream with a two second windowing. The orange line represents the true labels,

and the blue line represents the Bi-LSTM classification.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6

TF [—

BAD

ocC

Fold 7 Fold 8
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FIGURE 9. Classification results using the feature vector (2 on a data stream. The orange line represents the true labels, and the blue line represents

the Uni-LSTM classification.

sample is obtained. Compared to the reaction time of any
human neuropsychologist, which is on the order of hundreds
of milliseconds, a 1 millisecond delay per sample means that
the computation is practically in real-time for the purpose
of task identification and assessment. However, the window
length delay must be considered for the Bi-LSTMs, in this
case 2 seconds, as they need an entire data chunk in input,
while Uni-LSTMs do not. Overall, the response time is
dominated by the window length, thus making Uni-LSTMs
preferable at comparable performance.

Below, we present the testing results obtained from a
realistic scenario where only a data stream is available: Uni-
LSTMs process the data stream in real-time, while Bi-LSTMs
process a delayed acquisition window of two seconds in
length. For this analysis, we utilize the best Uni-LSTM and
Bi-LSTM networks employing the largest feature vector 2.
The classification results are shown in Figure 8 and Figure 9,
where the true labels (OC, TF, and BAD) are represented
in orange, and the Uni-LSTM and Bi-LSTM predictions are
shown in blue in Figure 8 and Figure 9, respectively. Each fold
indicated in Figure 8 and Figure 9 includes the data of the two
patients in the test set during the training phase. In the plot of
each fold, the data is rearranged by true class for readability.

The relative accuracies using the Bi-LSTM model are
44.5% for OC, 50.3% for TF, and 77.5% for BAD true
class. Regarding Uni-LSTM, the relative accuracies for each
prediction are 99.% for OC, 89.5% for TF, and 61.9% for
BAD. Figure 8 and Figure 9 show the superior performance
of the Uni-LSTM when a maximum two seconds delay is
enforced on the Bi-LSTM. Please note that, dividing the
input data in two second chunks, the accuracy of the best
Bi-LSTM is significantly lower than the Bi-LSTM 10-fold
average, while the accuracy of the best Uni-LSTM is fully
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retained and it is better than the Uni-LSTM 10-fold average as
expected.

Please note that sporadic misclassification (see for example
Fold 2 in Figure 9) could be mitigated with a digital filter,
trading off the response time with the accuracy. On the
contrary, please note that recurring misclassification occurs
especially for TF and BAD. Based on these results, the
difficulty in discriminating TF executions from BAD depends
heavily on the individual variability in executing the TF task
and the criteria used to define a BAD execution.

C. COMPARATIVE ANALYSIS: SIGN LANGUAGE GESTURES
No datasets in the literature deal with hand gesture recog-
nition in AN. To validate the methodology in a different
hand gesture recognition task, we test it on a public dataset,
namely, LMDHG [49]. The public dataset LMDHG presents
a significantly different challenge with respect to the OC
and TF identification and assessment, consisting in the
classification of 14 different sign language gestures. Table 4
presents the accuracy results on the LMDGH dataset obtained
using Uni-LSTM and Bi-LSTM with the most discriminative
feature vectors (IT, ¥, and €2), compared to a state-of-
the-art method [50]. Only the highly discriminant feature
vectors I1, W, and 2, are applied in this comparison for
brevity. Despite Il, W, and Q2 achieve an accuracy of
81.3%, 84.2%, and 80.1% in OC and TF identification
and assessment, when applied to LMDHG hand gesture
recognition, W, I1, and €2 obtains only 11.17%, 8.15%, and
9.9%, respectively. Comparable results hold for Uni-LSTMs.
In contrast, Lupinetti et al. achieved 91.83% accuracy in
the LMDHG dataset. This substantial difference in accuracy
can be attributed to the much larger amount of information
fed to the CNNs by Lupinetti et al., as well as to the
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size of the neural network. Lupinetti et al. [S0] employ
1920 x 1080 resolution images in input, a pre-trained version
of a ResNet-50 architecture, trained using a progressive
resizing technique and a Ranger neural network optimizer.
Please note that the ResNet-50 contains 50 layers and
approximately 25.6 million parameters. On the contrary, the
proposed method considers only a limited number of features
in inputs instead of 1920 x 1080 images, and the RNNs
under investigation count up to 11.9 thousand parameters
using a Bi-LSTM and the best feature W. This results in
a notable reduction in parameter count, with the proposed
LSTM models having a parameter ratio of approximately
1:2000 compared to ResNet-50 for Bi-LSTMs and 1:4000
for Uni-LSTMs. Hence, the proposed network proves to
be insufficiently large for the more complex task required
by the LMDHG dataset, despite the above 80% accuracy
for Bi-LSTMs in OC and TF identification and assessment.
On the other hand, the proposed method has lower space
and time complexity and proves to be effective for task
assessment in AN.

Comparing Table 2 and Table 4, OC and TF identification
and assessment proves to be simpler than recognizing among
14 different gesture classes in LMDHG. Also, the timings
of the gestures and the pauses in sign language gesture
recognition introduce a further increase in difficulty that is
not of interest in AN. The results in Table 4 suggest that the
accuracy achieved in OC and TF identification, as reported
in Table 2, could be further improved with the inclusion
of more features and the application of a more complex
neural network. However, space and time complexity should
be taken into account to decide if any possible increase
in accuracy motivates for the use of a more complex
method.

VI. CONCLUSION AND FUTURE WORKS
This work introduces a novel approach to support
decision-making for neuropsychologists during AN. The
study focuses on the classification of two commonly
performed hand motion tasks during AN.

The classification is performed using single layer
Uni-LSTMs and Bi-LSTMs.

The results indicate that the proposed methodology is
capable of discriminating the OC task with a significant
true positive rate up to 96.7% in a 10-fold cross-validation,
as shown in Figure 6.

However, the classification capability of our method is
reduced when it comes to distinguishing TF from BAD
executions. The misclassification highlights that, for some
patients, the BAD execution data are not sufficiently distinct
from TF for a proper classification using the proposed
feature vectors. This discrepancy depends on two main
factors: camera occlusions and individual differences in task
execution. To address camera occlusions, potential solutions
include improving the positioning of the camera or employing
an array of cameras. Overcoming the individual differences
in task execution may involve refining the LSTMs training
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by including data from the same patient, at least in the case
of correct executions.

In the related literature regarding sign language ges-
ture recognition, Bi-LSTMs is preferred over Uni-LSTMs.
Accordingly, Bi-LSTMs outperform Uni-LSTMs in AN,
using a 10-fold cross-validation, when the entire data
sequence is available. However, if we split the data in smaller
chunks to meet a maximum response time of two seconds,
the accuracy of the best Bi-LSTM drops significantly (44.5%
for OC, 50.3% for TF, and 77.5% for BAD), and the best
Uni-LSTM is more accurate (99.% for OC, 89.5% for TF, and
61.9% for BAD) than the best Bi-LSTM. When considering
the shorter response time of Uni-LSTMs (approximately one
millisecond) and the absence of delay due to windowing,
this argument renders Uni-LSTMs preferable in the context
of AN.

In conclusion, there are three directions for future work.
Firstly, developing a larger dataset could help to better capture
the nuances of incorrect executions. This would enhance the
classification accuracy of BAD executions and reduce the
misclassification of BAD executions as TF shown in Figure 6.
Secondly, we suggest applying the proposed method in an
intraoperative setting to evaluate whether the results during
AN in real scenarios are consistent with those obtained from
the handcrafted dataset. The expected technical issues in
the surgical room consist in positioning the LMC properly.
On the contrary, lighting conditions are expected to be
marginal because the LMC is equipped with infrared LEDs
to illuminate its working area. Such results can then be
compared with those obtained using more invasive methods,
such as ECoG, considering the possibility of developing
a synergistic solution based on both real-time ECoG and
LMC to improve classification performance. Thirdly, the
opportunity of auto-generating features (hence replacing the
ones in Section III-D) directly from images by means of
CNNs (e.g., as done in [51]) could be investigated. We remark
that the results obtained in the test set regard patients who
have never been encountered during testing. This poses
several challenges as regards individual differences, such
as individual hand size, execution speed, and quality of
the execution. The proposed solutions to mitigate these
challenges are, respectively, feature normalization, data
augmentation, and filtering.
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