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ABSTRACT Ultra-high reliability and ultra-low latency communication (URLLC) are critical challenges for
upcoming 6G applications. Cloud computing and mobile edge computing (MEC) offer potential solutions
but incur high deployment and maintenance costs due to reliance on central or edge servers. Moreover, the
surge in users and data exacerbates latency concerns. Therefore, with more flexible servers deployment,
fog computing is more capable of URLLC requirements. In this work, we propose a fog computing model
utilizing mobile devices’ computing capabilities to mitigate latency delays. We characterise the problem
as an optimisation problem in quadratic variables. And we reduce the problem to a mixed integer convex
optimisation problem in two dimensions using decomposition subproblems. Based on this, we introduce a
partial offloading algorithm based on the finite blocklength (FBL) mechanism, which improves the energy
efficiency. Simulations demonstrate the efficiency of our algorithm in URLLC, with a 49% reduction in
energy consumption compared to no retransmission and a 36% reduction in energy consumption compared
to infinite blocklength (IBL) coding.

INDEX TERMS Fog computing, dynamic voltage and frequency scaling (DVFS), partial offloading, finite
blocklength (FBL), ultra-high reliability and ultra-low latency communication (URLLC), 6G.

I. INTRODUCTION
Asmobile smart devices becomemore andmore embedded in
the public’s life, the wireless network is expected to support
immediate application (e.g.,speech and image recognition,
online game, virtual reality) [1], [2], which requires an
ultra-high reliability and ultra-low latency communication
(URLLC) service. Cloud computing delivers computing ser-
vices over the Internet, providing businesses and individuals
with a cost-effective, flexible, and efficient way to manage
and use computing resources. Its key advantages include
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centralized management, large-scale resource pooling, and
on-demand allocation, allowing users to access powerful
computing capabilities via the Internet without worrying
about hardware details.

However, traditional cloud computing may not be able to
fulfill the stringent latency requirement, due to the latency
and bandwidth limitations. To address the limitations of cloud
computing, mobile edge computing (MEC) has emerged.
MEC pushes computing and data processing closer to the
data source, i.e., closer to where the data is generated and
used [3]. This concept aims to reduce latency, improve
bandwidth utilisation and support applications that require
real-time decision making and processing. Typical scenarios
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for MEC include Internet of Things (IoT) devices, smart
cities, industrial automation, etc [4], [5], [6]. Fog Computing
is a further extension ofMEC that focusesmore on processing
closer to the user. The very name of Fog Computing indicates
its position between the ‘‘cloud’’ and the ‘‘ground’’. Unlike
cloud computing, fog computing is more decentralised and
can be deployed at the edge of the network close to the
user’s device, resulting in lower latency and higher real-time
performance. Fog computing has huge advantages in terms
of cost, latency and reliability. Specifically, on the cost side,
bandwidth and data transfer costs are reduced through local
processing and storage rather than server. In terms of latency,
the advantage for fog computing is to further reduce the
transmission latency due to the proximity and flexibility: any
device has available computation capability can be the server,
while the servers are usually dedicated in MEC. In terms of
reliability, based on the cooperation between mobile devices,
fog computing does not depend on specific servers, i.e., even
if one device does not work, there may still be other reliable
devices around the user. These features make fog computing
particularly suitable for IoT, industrial automation, smart
cities and other application scenarios that require low latency
and high reliability.

URLLC is a specialized paradigm in cellular commu-
nication systems, designed to meet strict requirements
for low-latency and high-reliability applications. It’s cru-
cial for mission-critical sectors like industrial automation,
autonomous vehicles, and telemedicine, as well as immersive
technologies such as AR/VR. Its importance extends to
industries needing fast and dependable communication,
establishing it as indispensable in modern technology and
innovation [7].

In cloud computing, the considerable distance between
the central server and the user often poses challenges in
meeting the demands for URLLC. In such scenarios, MEC
and fog computing emerge as more viable options, given
their proximity to the computing resources essential for
URLLC applications. Notably, fog computing stands even
closer to end devices compared to MEC, rendering it poised
for broader adoption in URLLC scenarios in the future [8].
The study in [9] investigates the integration of URLLC into
cloud robotics (CR) applications, emphasizing the unlicensed
band for potential implementation. Meanwhile, [10] employs
URLLC links and utilizes digital twin (DT) to model edge
server computing capacity, optimizing resource allocation
in the system. Reference [11] introduces an investigation
into the energy-aware task allocation issue within vehicular
fog networks, taking URLLC into account. Reference [12]
overcome the limitations of low latency requirements for
intelligent transportation systems by proposing a novel
architecture based on fog-cloud computing and software-
defined networking (SDN). Additionally, [11] addresses
the energy-aware task allocation problem in vehicular fog
networks for URLLC in intelligent transportation systems.
Moreover, to ensure deterministic and reliable performance
for critical VEC services, [13] investigates the integration of

Vehicle Edge Computing (VEC) into Intelligent Transporta-
tion Systems (ITS) to handle the substantial data generated
by advanced vehicles. However, these studies concentrate on
adapting the principles of Cloud Computing, MEC, and Fog
Computing to construct pertinent models addressing real-
world challenges, they do not enhance delay and reliability
aspects from the channel and coding perspectives.

Indeed, although the fog computing networks provide
a viable architecture for providing real-time computing
services, in order to implement URLLC, we need to introduce
Finite blocklength (FBL) Regime. FBL coding is a coding
method proposed to solve the problem of high reliability
and low latency for short packet data communication. Under
the assumption of finite blocklength, the transmission is
no longer arbitrarily reliable, and the error probably of
the transmission remains large even when the coding rate
is below the Shannon capacity while the blocklength is
very short. Thus an exact approximation of the achievable
coding rate for an additive Gaussian white noise (AWGN)
channel under the FBL assumption is derived in [14],
which allows the reliability problem to be solved. Moreover,
[15], [16] mentions that in order to prevent data loss
caused by FBL transmission error, the system can improve
transmission reliability by means of retransmission. This
modelling approach improves communication reliability
while introducing additional energy consumption and delay
costs. For multi-user MEC networks deploying FBL coding
for wireless data transmission, [17] minimises the end-to-
end error probability subject to FBL and energy consumption
constraints. Reference [18] focuses on optimizing the decod-
ing error probability and power allocation factor for joint
decoding in NOMA systems, aiming to maximize effective
throughput at the central user. However, there is insufficient
work on how to design a fog computing network that
applies the FBLmechanism to optimise energy consumption.
Reference [19] proposes finite blocklength coding (FBC)-
based strategies for joint beamforming and unmanned aerial
vehicle (UAV) trajectory optimization, addressing statistical
delay and error-rate bounded quality-of-service (QoS) chal-
lenges in URLLC with MEC. Considering finite blocklength
channel codes, [20] explores a novel UAV-assisted URLLC
service system for futurewireless communication, addressing
the UAV-deployment in achieving URLLC. Their main
contribution is to consider the finite blocklength mechanism
in Internet of Things (IoT) networks and optimise IoT
device scheduling, power control, and resource allocation to
minimise the average uplink transmit power, which provides
important lessons for more flexible network deployments
in the future. Moreover, [21] presents a UAV-enabled MEC
system, where latency-sensitive tasks are offloaded from
ground devices to a UAV-carried MEC server using URLLC.
However, on one hand, these works achieve optimization at
the policy and allocation level. In fact, we can achieve more
flexible resource allocation by introducing more advanced
hardware technologies. On the other hand, they overlook the
trade-offs between system energy consumption, latency, and
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reliability due to the limited blocklength, which is also crucial
for system design [22].

Although FBL coding and retransmission mechanisms are
good methods to implement URLLC, there are still risks.
In general, as the system takes more retransmission attempts,
the risk of latency violations increases, and the increase in
communication time leads to a compression of the system
computation time, which requires the system CPU to operate
in a more flexible and high-frequency manner in order to
complete the data processing as fast as possible. We therefore
introduce dynamic voltage and frequency scaling (DVFS)
techniques. DVFS technology adjusts the CPU operating
frequency and voltage in real time according to the current
workload [23]. The application of this technology gives
mobile devices the ability to adaptively adjust computa-
tional resources to improve computing efficiency, reduce
computing energy consumption and shorten computing time
length. Furthermore, traditional cloud computing completely
relies on cloud servers to perform computational tasks, this
computational strategy is difficult to meet the requirements
of URLLC, the combination of DVFS and fog network makes
the task divisible, the computational task can be divided into
two parts: the local computation and the server computation
part. This enables the communication and computation strat-
egy more flexible to reduce the overall energy consumption
of the system. Reference [24] addresses the challenge of
minimizing energy consumption in a fog network with dense
terminal devices and servers. It formulates the problem of
task offloading with DVFS and transmission power control.
Reference [25] explores the impact of offloading portions
of tasks to edge devices, considering the extra energy
consumption for transmission and reception, and highlights
the importance of optimizing this tradeoff for efficient MEC.
Reference [26] investigates delay and energy efficiency in
fog radio access networks with hybrid caching, exploring
multiple caching and transmission strategies for enhanced
flexibility in file placement and fetching.

However, none of these works have focused on the
closed-loop communication process under the FBL regime.
Although offloading computational tasks partially to fog
computing networks is a good idea, the execution of downlink
transmissions in closed-loop communication scenarios relies
on successful uplink transmissions due to the assumption
of FBL. In fact, most of the solutions focus on improving
the reliability of the open-loop links and fail to address the
resource allocation problem caused by the duplex asymmetry.
To tackle this issue, a pioneering ARQ-based protocol was
introduced in [27], functioning within a FBL regime. In this
protocol, resources initially allocated for downlink slots can
be flexibly reassigned to retransmit in the uplink in case of
failures.

In this paper, we focus on partial offloading schemes
in closed-loop communication scenarios under the FBL
regime. We take the total expected energy consumption of
the overall closed-loop system as the optimisation objective
and optimise the CPU computing frequency, the transmission

TABLE 1. Abbreviation and definitions.

length for finite blocklength, the ratio of system offloading
to local computation and the maximum allowable number
of retransmission. We disassemble the problem into several
sub-problems by analysing the feasible domains of the
optimization variables, followed by a proof-of-convexity
analysis that transforms the problem into a mixed integer
convex optimization problem solved by the Karush-Kuhn-
Tucke (KKT) condition. To the best of our knowledge,
we are the first to study the partial offloading problem
for closed-loop communication under the FBL regime.
Specifically, our contribution can be summarised as follows:

• We develop a closed-loop communication model for fog
computing under the FBL regime and investigate the
partial offloading energy minimisation problem under
this model, formulating the problem as a mixed integer
convex problem.

• We analyse the feasible domains of each optimisation
variable in the problem, giving specific upper and lower
bounds. Moreover, we prove the convexity of the total
expected energy consumption and the total transmission
error probability with respect to the transmission block-
length and the offloading ratio, giving an expression
for the optimal CPU computing frequency. Based on
these, we reduce the problem to a convex problem in two
variables and propose an algorithm based on the Block
Coordinate Descent (BCD) method.

• We investigate the characteristics of the optimal solution
by KKT condition, deducing the conditions for obtain-
ing an optimal solution. In addition we provide a partial
offloading algorithm under FBL regime. The results
indicate that our algorithm produces a more accurate
solution than traditional iterative algorithm. Quanti-
tative experiments indicate that our design improves
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significantly in terms of energy consumption. Compared
to no retransmission, the retransmission mechanism
improves energy consumption by 49%, and compared
to infinite blocklength (IBL) coding, the FBL regime
improves by 38%.

For readability, we give a list of Abbreviations TABLE 1 and a
list of Notations TABLE 2 (Here i ∈ [u, d], which represents
the uplink or downlink.).

The rest of this paper is composed as fallows: In Section II,
we demonstrate the overall model, then demonstrate the
original problem formulation in Section III. Next, We analyse
the feasible domains of the variables in detail in Section IV
and prove the convexity of the expected total energy
consumption and the total error probability over the variables,
according to which we propose an optimisation framework,
and at the end of this section we give an iterative algorithm
based on the bisection approach. In Section V, we give
the simulation results for the model and make an analytical
validation. Furthermore, we summarise the full work in
Section VI.

II. SYSTEM MODEL
We consider a small-scale fog-cooperative network, which
is more widely utilized in future home cloud scenarios [28].
The network is composed of multiple devices with limited
computational power cooperating with each other. Each
wireless device in the network can be either a fog server
(FS) or a computing-needed fog user (FU). Specifically,
when a device has available computational resources and
no pending tasks, it functions as a fog server by offering
its own resources. However,once the device has tasks to
compute and its local resources are insufficient, it switches
to being a fog user, requesting resources from the FS. In this
scenario, the server is no longer a central server but another
devicewith comparable computing capability to the FU. If the
device has a task to compute, then it becomes a FU and
request resource from FS. Once the offloading is scheduled,
the FU judiciously determines what portion of the task will
be computed at FS, and what portion of the task will be
offloaded to FU, what size a blocklength to send packets in,
and the local computing frequency. Computing resource is
abstracted as a profile with two parameters, i.e., (D, Tmax),
where D and Tmax denote the amount of input data to be
computed and the latency requirement associated with the
application, respectively. We model the number of cycles C
required for the application as the number of input data for the
calculation multiplied by the factor, i.e., C = αD, where α is
related to the computational complexity of the application.
Furthermore, we define λ (0 ≤ λ ≤ 1) as the ratio of the
number of locally executed size to the total input data packet.
In addition, the data is transmitted in blocklength of length m
(symbols).

Particularly, we exert a time slot model to demonstrate
the entire structure, i.e., the system divides the time of the
entire process into individual frames of length T , where each
symbol is of length Ts. In this model, the frame length should

FIGURE 1. System model (End-to-End communication for fog computing
networks within time slot model, where each device has comparable
computing capacity).

gratify T ≤ Tmax. Hence, the process can be described as
follows: In the first step, a portion of the data processing (λD
bits) is offloaded locally, and the rest of the data ((1-λ)D bits)
is sent to the FS over the uplink with a finite blocklength of
length m. In the second step, the FS processes the received
data. In the third step, the FS dispatches the data back to
the FU also with a blocklength of length mback. In addition,
the communication of data and the FS computation time are
parallel to the local computation time, which represents that
the maximum time spent by the system is the larger one of
the two. The whole model is demonstrated in Fig. 1.
We assume that the channel experiences quasi-static

frequency-flat Rayleigh fading. Therefore, it is assumed that
the channel state remains constant from one frame to the
next, and that the changes between frames follow a certain
relationship. We characterize the channel gain as z. Then, the
channel gain can be denoted as zu and zd respectively. The
signal-to-noise ratio (SNR) of the links can be presented as

γu =
φuzuPu

σ 2
u

, (1)

γd =
φdzdPr

σ 2
d

, (2)

where φu and φd represent the path loss of uplink and
downlink, σu and σd denote the noise power of the uplink and
downlink.

A. RELIABILITY MODEL
Note that due to the FBL regime, error may arise during
communication, and once an error occurs, the FS will
send a Negative Acknowledgement (NACK) to the FU at
a fixed time length tNK. The FU will resend the data after
receiving the NACK, and this process continues until the
FS successfully decodes the data or reaches the maximum
retransmission tolerance number Nmax.

1) PROBABILITY OF DECODING ERROR IN FBL REGIME
We adopt C(γ ) = log2(1+ γ ) for the Shannon Capacity and
V (γ ) = 1−(1+γ )−2 for channel dispersion under a complex

VOLUME 12, 2024 100331



C. Shi et al.: Fog Computing Meets URLLC: Energy Minimization of Task Partial Offloading

AWGN channel. According to the FBL regime in [14], the
error probability of each (re)transmission can be modeled as

ε = P(r, γ,m) ≈ Q(
√

m
V (γ )

(C(γ ) − r) ln 2), (3)

where r is coding rate given by r =
(1−λ)D

m and Q(.)
is complementary error function, which satisfies Q(x) =∫

∞

x
1

√
2π
e−

t2
2 dt .

2) OVERALL RELIABILITY—TOTAL DECODING ERROR
Once the FS decodes incorrectly, it sends NACK to the FU
requesting retransmission. Therefore, the overall reliability
of the system is inextricably linked to the retransmission
mechanism. Due to the small size of NACK, here we assume
that FU decoding of NACK is error-free, meaning that the
downlink is a control link. According to (3), we have
(a.) N = 1: No retransmission is considered, which

indicates that the decoding error probability at this point is
the total decoding error probability, i.e., εtot = ε.

(b.) N ≥ 1: We employ n = 1 to represent the initial
transmission, and the error probability associated with the
initial transmission is denoted by ε. Extending this analogy,
considering the independence of each transmission, the nth

decoding failure for the fog server (FS) occurs when all
preceding n retransmissions fail. In other words, the proba-
bility of the nth retransmission is εn. The cumulative error
probability, without accounting for data backhaul, is then
given by εN . Furthermore, to adhere to the communication’s
latency constraints, we allocate the remaining time, post
the completion of transmission and fog server computation,
exclusively for the return transmission process. In this
process, a decoding error εback = ε occurs. Consequently,
the comprehensive error probability for the closed-loop
communications is given by:

εtot(m, λ;N ) = εN + εback. (4)

Here, the error probability consists of two components, i.e.,
the retransmission error probability of the uplink and the
backhaul error probability of the downlink.

B. ENERGY COST MODEL
In practice, the fog node can take various forms such as a
cell phone, laptop, smartwatch, etc., each with limited battery
energy. Consequently, our design objective is to minimize
the energy consumption of these devices, enhancing the
endurance of mobile devices while achieving URLLC.
In our model, the overall energy consumption of the system
encompasses several components: the energy consump-
tion of transmitting data Et, the energy consumption of
receiving data Er, the energy consumption related to NACK-
reception/transmission Ek, and the energy consumption
associated with local computation Ec. Moreover, given that
FS is another device with finite computational resources,
we also have to consider the expected energy consumption of
FS. What demands emphasis is that the energy consumption

of these processes is influenced by the number of retransmis-
sions and the probability of error in decoding. Subsequently,
we will compute the expected energy consumption for each
component separately, contributing to the construction of our
comprehensive model.

1) LOCAL COMPUTATION ENERGY CONSUMPTION
To enhance the computational efficiency of devices, we uti-
lize DVFS technology. This innovative approach dynamically
adjusts the CPU computing frequency fc based on the
computational demand of the system. The primary objective
is to optimize and conserve electric power consumption
across the devices, ensuring a more efficient use of resources.
This adaptive adjustment allows the devices to operate at
varying levels of performance, aligning with the real-time
computational requirements and contributing to overall
energy conservation. We adopt a CPU nonlinear power
consumption model [29] as follows:

Pc = κf 3c . (5)

Here, fc represents the local CPU’s computing frequency,
and κ is a coefficient dependent on chip architecture. fc
spans the range from 0 to fc,max as it denotes the number of
computational cycles per second. After receiving the λD bits
data, the CPU utilizes the DVFS technology to flexibly adjust
the computing frequency to execute, so the CPU executing
time is

tc =
αλD
fc

. (6)

The local computation phase is parallel to the communication
phase. The FU only needs to execute the data within
the specified time delay requirement Tmax, i.e., in one
frame, the expected value of the local computational energy
consumption always is

Ec = αλκDf 2c . (7)

2) FS COMPUTATION ENERGY COST
Given that FS is another device with limited available
computing resources, it also integrates DVFS technology.
Consequently, its computational energy consumption model
should align with that of the FU, i.e.

Em = α(1 − λ)κDf 2m, (8)

where fm represents the computing frequency of FS and is
limited as 0 ≤ fm ≤ fm,max. It is worth noting that the
FS can only start the computation when the transmission
decoding is successful. Obviously, n = 1 indicates that the
initial transmission is successful with probability 1−ε, so the
probability of the nth computation is εn−1(1 − ε). Therefore,
the expected computational energy consumption of the FS is

Ēm = Em,0 + εEm,0 + . . . + εN−1Em,0

=

N∑
n=1

εn−1Em,0, (9)
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where the Em,0 is computational energy consumption of the
FS, same in a frame for each transmission.

3) ENERGY CONSUMPTION FOR SENDING/RECEIVING DATA
PACKET
The FU uploads (1−λ)D bits data to FS, and the energy
consumption of the first transmitted data is defined as Et,0 =

tuPu + Et,1, where tu represents the transmitting time of
FU and Et,1 is the energy cost for receiving data at FS.
In the case of a failure in the (n−1)th retransmission decoding
attempt, the nth transmission occurs. Hence, we can obtain the
expected energy cost for transmitting data as follows:

Ēt = Et,0 + εEt,0 + . . . + εN−1Et,0

=

N∑
n=1

εn−1Et,0. (10)

According to [27], the optimal transmission scheme for
closed-loop communication in the FBL regime is to devote all
the remaining time length in a frame to backhauling for better
reliability. Specifically, the system allocates the remaining
time length of this frame to perform a backhaul after
completing data offloading and FS computation. Therefore
the energy consumption of the backhaul is:

Er = Prtr + E ′

r,0, (11)

where tr = Tsmback denotes reception time length of FU and
E ′

r,0 is the energy consumption for transmitting data at FS.

4) ENERGY COST FOR SENDING/RECEIVING NACK AT FU
In the FBL regime, the transmission is no longer reliable, and
the FSmay encounter an error while decoding the data packet
from FS. When an error occurs, the FS sends a NACK to the
FU to request a data retransmission. For a single transmission,
the energy consumption for receiving a NACK at the FU can
be exhibited as Ek,0 = tNKPr + Ek,1, Ek,1 is the energy cost
for receiving at FU. Note that for the initial transmission,
no NACK is sent, i.e., Ek = 0. The first NACK occurs only if
the FS decodes incorrectly for the first time, i.e., E (1)

k = εEk,0.
So, the expected energy consumption for sending NACK can
be given by

Ēk = εEk,0 + ε2Ek,0 + . . . + εNEk,0

=

N∑
n=1

εnEk,0. (12)

Therefore, the total expected energy cost of the system can be
given as

Ētot = ηk Ēk + ηrEr + ηt Ēt + ηcEc + ηmĒm. (13)

Here, the energy consumption for transmitting NACK Ēk,
the energy consumption for transmitting data in the uplink Ēt,
and the computational energy consumption of the FS Ēm are
correlated with the decoding error probability, whereas the
local computational energy consumption of the FU Ec and
the backhaul energy consumption Er are independent of the

decoding error probability ε. ηj, j ∈ [k, r, t, c,m], is the cost
factor of each component.

C. TOTAL DELAY
Because FBL coding results in systematic retransmissions,
we define n = 1 as the initial transmission. Therefore,
we can determine the time length of the nth (re)transmission
as nmTs + (n − 1)tNK + mbackTs (which includes the time
length when the FS is sent back to the FU after processing
tr = mbackTs). Additionally, taking into account the FS
computation time, we can calculate the total execution time
length of each offload as

DT = max
{
(n+ 1)ts + t (n)d + (n− 1)tNK + tr , tc

}
, (14)

where td is the computational time length in the FS
and satisfies td =

α(1−λ)D
fm

, with fm representing the
computing frequency of FS. Therefore, at a maximum of N
retransmission attempts, the limiting execution time of the
system should satisfy

max
{
(N + 1)ts + t (N )

d + (N − 1)tNK + tr, tc
}

≤ Tmax.

(15)

In addition, when the uplink transmission and computation
is complete, all the remaining time length are used for the
downlink backhaul operation, which can be calculated with
tr = Tmax − (N + 1)ts + t (N )

d + (N − 1)tNK = mbackTs.
In particular, the transmission blocklength of the downlink is

mback =


Tmax − (N + 1)mTs +

αD(1−λ)
fm

+ (N − 1)tNK

Ts

 .

(16)

⌈.⌉ is the ceiling function.

III. PROBLEM FORMULATION
We expect to optimize the total expected energy consumption
of the system by finding the optimal single transmission
blocklength m, local computing frequency fc, maximum
tolerable number of retransmissions N , and offloading ratio
λ. Note that the system reliability requirement is εtot ≤

εmax, following (15), which stands for the ultra-low latency
constraints. We have the following problem:

min
m,N ,fc,λ

Ētot (17)

s.t. εtot ≤ εmax, (17a)

DT ≤ Tmax, n = N , (17b)

0 ≤ λ ≤ 1, (17c)

0 ≤ fc ≤ fc, max, (17d)

N ∈ Z. (17e)

IV. OPTIMIZATION DESIGN
A. FEASIBLE DOMAIN ANALYSIS
Given the intricacy of the problem, our next step involves
conducting a feasible domain analysis for each variable
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to elucidate the interrelationships, thereby facilitating the
optimization of the primary problem.

1) THE FEASIBLE DOMAIN ANALYSIS OF BLOCKLENGTH M
According to (3), the blocklength of a single transmission
affects the probability of decoding error in each transmission
and thus impacting the reliability of the system. Notably,
a shorter blocklength leads to a higher probability of
FS decoding error, rendering (17a) unfulfilled. Conversely,
an excessively long blocklength, failing to satisfy (N+1)ts ≤

Tmax, also renders the system devoid of feasible solutions for
problem (17). Referring to (17b), we derive

mupper =


⌈

Dλα
fc,min

− (N − 1)tNK −
(1−λ)Dα

fm

(N + 1)Ts
⌉, if DT = tc,

⌈

Tmax − (N − 1)tNK −
(1−λ)Dα

fm

(N + 1)Ts
⌉, otherwise,

(18)

which implies the upper limit of blocklength and ⌈.⌉ is the
ceiling function. Moreover, considering (17a), we ascertain
that ε(n) ≤ εmax. In conjunction with (3), where ε diminishes
in m [22], i.e., the lower bound of blocklength should occur
when m is too short to violate the reliability constraint.Thus,
we can ascertain the lower bound on the blocklength m by:

mlow =

H +

√
H2 −

4C(γ )2D2

V (γ )2

2C(γ )
2

V (γ )

, (19)

where H = (Q
−1(εmax)
ln2 )2 +

2DC(γ )
V (γ ) . Specifically, the

longest blocklength must adhere to the delay constraint,
while the shortest must maintain the reliability constraint.
Consequently, for the problem to be solvable, the blocklength
should adhere to m ∈ (mlow,mupper).

2) THE FEASIBLE DOMAIN ANALYSIS OF THE OFFLOADING
RATIO λ

The data offloading ratio λ, representing the ratio of locally
offloaded data to the total data volume, must adhere to λ ∈

[λlow, λup]. Specifically, the influence of λ on the system
is primarily evident in the dynamic between offloading
more data for local processing versus transmitting more for
processing in the FS. This dynamic is inherently tied to CPU
processing. Combining (6) and (14), to ensure a feasible
solution for fc, we deduce that (λ ∈ [0, 1])

λup = max
{
fc,maxTmax

Dα
, 1

}
. (20)

In addition, the offloading ratio correlates with the duration
of time allocation: a higher offloading ratio implies more time
allocated for local computation, whereas the system allocates
more time to the communication phase conversely. Thus,
we define tl = (N + 1)ts + t (N )

d + (N − 1)tNK + tr, which

should satisfy tl ≤ Tmax. We derive

λlow = min
{
0, 1 −

fm (Tmax − (N − 1)tNK)

Dα

+
((N + 1)ts − tr)

Dα

}
. (21)

3) THE FEASIBLE DOMAIN ANALYSIS OF DELAY
REQUIREMENT TMAX
The latency requirement at the FU should satisfy Tmax ∈

[Tp,Tq]. In other words, if the FU delay falls outside this
range, a system update becomes necessary for a viable
solution. Given that λlow ≤ λup, we can determine a feasible
domain concerning the maximum delay as follows:

Tp =
Dα + (N + 1)tsfm + fm(N − 1)tNK + fmtr

fm + fc,max
. (22)

The upper bound of (Tmax can be determined by con-
sidering two extreme scenarios: when all computations are
performed locally and when all data is sent to the FS for
computing, i.e.

Tq = min
{
Dα

fc,min
,
D(1 − λ)α

fm
+ (N + 1)ts

+(N − 1)tNK + tr} . (23)

4) THE FEASIBLE DOMAIN ANALYSIS OF COMPUTATIONAL
SPEED FC
The minimum value of the local computing frequency is real-
ized when tasks are offloaded locally, and the computation
process is completed, i.e., tc ≤ Tmax. So we have

λDα

Tmax
≤ fc ≤ fc,max, (24)

which indicates that fc,optimal will occur at endpoint because
of (7), i.e, the monotonically increasing properties of Ec with
respect to fc.

5) THE FEASIBLE DOMAIN ANALYSIS OF MAXIMUM
TOLERABLE NUMBER OF RETRANSMISSION N
Retransmission occurs in the communication phase, we have
tl ≤ Tmax, thus an upper bound on N can be given:

Nmax ≤ ⌊
Tmax − td + tNK − mTs − tr

(mTs + tNK)
⌋, (25)

i.e., the number of (re)transmissions N should satisfy 1 ≤

N ≤ Nmax, ∀N ∈ Z. ⌊.⌋ is the floor function.

B. OPTIMAL SOLUTION
1) SUBPROBLEM DECOMPOSITION AND VARIABLE
CONVEXITY ANALYSIS
Primarily, (25) indicates that Problem (17) can be decom-
posed into an upper bound of Nmax subproblems. Note
that Nmax is linearly related to m, λ and fc. Therefore, the
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Problem (17) can be expressed as

min
m,fc,λ

Ētot (26)

s.t. (17a), (17b), (17c), (17d), (26a)

Nmax ≤ ⌊
Tmax − td + tNK − mTs − tr

(mTs + tNK)
⌋. (26e)

Secondly, according to [30], there is

inf
a,b

f (a, b) = inf
b
f̃ (b), (27)

where the f̃ is infa f (a, b). To determine the global minimum
energy consumption, we aim to find the lower bound of Ētot
with respect to each variable. Note that (7) tells us that Ētot
is monotonically increasing with respect to fc. Additionally,
(24) represents the feasible domain of fc based on the
constraints. Thus, the locally optimal computing frequency
can be expressed in closed form as follows:

f ∗
c =

λDα

Tmax
, (28)

which also is the lower bound for fc.
In this way, we can reduce the problem to one about λ and

m as

min
m,λ

Ētot (29)

s.t. (17a), (17c), (26e), (29a)

tl ≤ Tmax. (29b)

The optimal solution of this problem can be obtained by using
the Block Coordinate Descent (BCD) iterative method. Next,
we will demonstrate and justify the BCD method. To start
with, problems (29) can be simplified when the λ is fixed:

min
m

Ētot (30)

s.t. (17a), (17c), (26e), (30a)

tl ≤ Tmax, (30b)

λ = λ(k). (30c)

Here, λ(k) represents the λ∗ at the k th iteration in Algorithm 1.
Our next goal is to prove the convexity of Ētot and εtot in m,
which can be obtained by the following Lemmas.
Lemma 1: The decoding error ε is convex in blocklength

m.
Proof 1:We have Q(ω) =

∫
∞

ω
1

√
2π
e−

t2
2 dt ,

where ω(m) =

√
m

V (γ )

(
C(γ ) −

(1−λ)D
m

)
ln 2. According

to [22], we have

∂2ε

∂m2 =
∂2ε

∂ω2

(
∂ω

∂m

)2

+
∂ε

∂m
∂2ω

∂m2 ≥ 0, (31)

which indicates that ε is convex in blocklengthm. So we have

∂2εtot

∂m2 = N
∂2ε

∂m2 εN−1
+ N (N − 1)

(
∂ε

∂m

)2

εN−2, (32)

since ∂2ε
∂m2 ≥ 0, we obtain ∂2εtot

∂m2 ≥ 0, i.e., the total decoding
error is convex in m.

Since the total expected energy consumption is related to
the decoding error probability, the convexity of the decoding
error probability in the blocklength facilitates our analysis of
the total expected energy consumption inm. Hence, we obtain
the following lemma.
Lemma 2: Total expected energy consumption Ētot is

convex in blocklength m.
Proof 2: The total energy consumption comprises four

components, and we can establish the validity of Lemma 2
by demonstrating the convexity of each component in m.
We observe that the second-order derivative of the locally
expected computational energy consumption with respect to
m is consistently equal to 0, i.e., Ec is liner in m. Meanwhile,
the expected energy consumption Ēm of the FS satisfies

∂2Ēm
∂m2 =

N∑
n=1

∂2εn−1

∂m2 . (33)

Due to Lemma 1, we have ∂2Ēm
∂m2 ≥ 0, i.e., Ēm is convex in m.

So our next step is to proof the convexity of Ēt and Ēk in m.
With (12), we have

∂2Ēk
∂m2 =

∂2ε

∂m2Ek,0 +

N∑
n=1

(n− 1)(n− 2)εn−3
(

∂ε

∂m

)2

+ (n− 1)εn−2
+

∂2ε

∂m2 ≥ 0, (34)

which indicates that Ēk is convex in m. Moreover, we have

∂2Ēt
∂m2 = PuTs

N∑
n=1

[ (n− 1)(n− 2)mεn−3 ∂2ε

∂m2

+ 2(n− 1)
∂ε

∂m
] ≥ 0, (35)

so Ēt is convex in m. As a result, total expected energy
consumption Ētot is convex in m.

Thanks to Lemma 2, the optimal blocklength m∗ can be
give as

m∗
=


mupper, m̂ ≥ mupper,

m̂, mlow ≤ m̂ ≤ mupper,

mlow, m̂ ≤ mlow,

(36)

where m̂ is minimal points of the curve, i.e., ∂Ētot(m)
∂m |m=m̂ =

0. So far, the objective function and the set of domains of
definition of problem (30) are convex in m, i.e., when λ is
fixed, (30) can be found to have an optimal solution using the
BCD method.

Next, we demonstrate that the problem when m is fixed.

min
λ

Ētot (37)

s.t. (17a), (17c), (26e). (37a)

tl ≤ Tmax, (37b)

m = m(k). (37c)
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Similarly, m(k) represents the m∗ at k (th) iteration in
Algorithm 1. The convexity of Ētot and εtot in λ can be
obtained by the following Lemmas.
Lemma 3: The decoding error ε is convex in offloading

ratio λ.
Proof 3: From (3), we have

∂ω

∂λ
= ln 2

D
√
mV (γ )

≥ 0. (38)

Hence we have

∂2ε

∂λ2 =
∂2ε

∂ω2

(
∂ω

∂λ

)2

+
∂ε

∂ω

∂2ω

∂λ2 ≥ 0, (39)

which tells us that

∂2εtot

∂λ2 = N
∂2ε

∂λ2 εN−1
+ N (N − 1)

(
∂ε

∂λ

)2

εN−2
≥ 0. (40)

So the total decoding error is convex in m and λ separately.
For (37), the constraints form a convex set. Next, we prove
the convexity of the objective function in λ by the following
Lemma.
Lemma 4: Total energy consumption Ētot is convex in

offloading ratio λ.
Proof 4: Since we have

∂2Ēt
∂λ2 =

∂2Ēk
∂λ2 =

∂2Ēc
∂λ2 ⇐⇒

∂2ε

∂λ2 ≥ 0, (41)

so the convexity of Ētot in λ depends on (8), i.e.

∂2Ēm
∂λ2 =

∂2ε

∂λ2Em,0 + 2
∂ε

∂λ

(
−ακDf 2m

)
. (42)

Moreover from (3), we have

∂ω

∂λ
= ln 2

D
√
mV (γ )

≥ 0,

∂2ω

∂λ2 = 0. (43)

Hence we have

∂2ε

∂λ2 =
∂2ε

∂ω2

(
∂ω

∂λ

)2

+
∂ε

∂ω

∂2ω

∂λ2 ≥ 0, (44)

where ∂ε
∂ω

≤ 0, ∂2ε
∂ω2 ≥ 0 according to [22]. Thus we have

proved that ε is convex in λ and constrain (17a) is convex in
λ. Based on these, there is ∂2Ēm

∂λ2 ≥ 0, which indicates Ēm is
convex in λ.
So far, we have demonstrated that Ētot and the constrains

set are convex in λ. Hence, the problem (37) can be similarly
approximated to the optimal solution by the BCD method.

Lemma 1- 4 reveals us that problems (30) and (37) are two
separated convex problems, then problem (29) can be solved
by using the BCD method to obtain the optimal blocklength
m∗ and offloading ratio λ∗ simultaneously. In particular, the
value of m(k) and λ(k) at our k th iteration is the optimal
solution (m∗, λ∗) in the (k − 1)th iteration, which can be
obtained by Algorithm 1.

2) OPTIMAL SOLUTION ANALYSIS BASED ON KKT METHOD
Although Algorithm 1 can efficiently approximate the
optimal solution to problem (29), we still wish to investigate
the relevant characteristics of the exact solutions. In this
section, we investigate the features as well as the conditions
of the optimal solutions with KKT method. First, we give the
Lagrangian function as

0 = Ē(λ∗,m∗) + µ1(εtot − εmax) + µ2(tl − Tmax)

+ µ3(Nmax − ⌊
Tmax − td + tNK − mTs − tr

(mTs + tNK)
⌋)

+ µ4λ − µ5(λ − 1), (45)

so the KKT can be given as

∇0(m, λ) = 0,

µ1(εtot − εmax) = 0,

µ2(tl − Tmax) = 0,

µ3

(
Nmax − ⌊

Tmax − td + tNK − mTs − tr
(mTs + tNK)

⌋

)
= 0,

µ4λ = 0,

µ5(λ − 1) = 0,

µj ≥ 05,

j ∈ (1, 5),

(17a), (17b),

(46)

where ∇0(m, λ) is

∂0

∂m
=

N∑
n=2

(n− 1)
∂ε

∂m
εn−2 (

Em,0 + Et,0
)

+

N∑
n=1

εn−1
(
nEk,0

∂ε

∂m
+ εPuTs

)
+ B

=
∂ε

∂m

N∑
n=1

εn−1 (
εPuTs + n

(
Em,0 + Et,0 + Ek,0

))
+ B,

(47)

and

∂0

∂λ
=

∂ε

∂λ

N∑
n=1

εn−1
(
(n− 1)Em,0 − ακDf 2m

)
+ ακDf 2c

+
∂ε

∂λ

N∑
n=1

nεn−1(Et,0 + nEk,0) −
ακDPr
fm

+ A

=
∂ε

∂λ

N∑
n=1

εn−1 (
n

(
Em,0 + Et,0 + Ek,0

)
− Em,0 − Ec,1

)
+

ακDPr
fm

+ Ec,1 + A, (48)

where B= µ1
∂εtot
∂m +µ3Ts

(
⌊
Tmax+td+tr
(mTs+tNK)2

⌋

)
and A = µ1

∂εtot
∂λ −

µ2
ακD
fm

+µ3⌊
ακD
fm

(mTs+tNK)
⌋+µ4−µ5. Ec,1 represents the energy
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cost in local at λ = 1 according to (7). Interestingly, B reveals
that µ2 and the corresponding constraints have no effect on
the optimal solution of m, i.e. when m is an optimal solution,
(26e) has already been satisfied. (47) reveals that the partial
derivatives of 0 in m depend only on µ1 and µ3, whose
relationship can be demonstrated as:

µ1 = −
1

∂εtot
∂m

{
∂ε

∂m

N∑
n=1

εn−1 (
εPuTs + nEt,m,k

)
+µ3Ts

⌊
Tmax+td+tr

(mTs + tNK)2

⌋}
,

where µ1 and µ3 have a linear relationship. Therefore, the
equation about µ1 in (46) can be reformulated as:

−
(εtot − εmax)

∂εtot
∂m

H1 = 0, (49)

where H1 =

{
∂ε
∂m

∑N
n=1 εn−1

(
εPuTs + nEt,m,k

)
+ µ3Ts⌊

Tmax+td+tr
(mTs+tNK)2

⌋}
. Moreover, at µ1 = 0, we can derive µ3

as:

µ3(m|µ1 = 0) = −
∂ε

∂m

N∑
n=1

εn−1

(
εPuTs + nEt,m,k

)
Ts

⌊
Tmax+td+tr
(mTs+tNK)2

⌋ . (50)

Here, Et,m,k =
(
Em,0 + Et,0 + Ek,0

)
. µ1 = 0 indicates that

εtot−εmax ̸= 0, signifying that εtot must satisfy the following
two conditions: the reliability constraints are met, and the
optimal solution is not on the boundary. If the reliability
constraint (17a) is violated, there is no optimal solution.

In essence, finding an optimal solution at µ1 = 0 implies
that the solution must adhere to the reliability constraint.
Similarly, we can obtain µ1 at µ3 = 0 as:

µ1(m|µ3 = 0) = −
1

∂εtot
∂m

∂ε

∂m

N∑
n=1

εn−1 (εPuTs

+n
(
Em,0 + Et,0 + Ek,0

))
. (51)

µ3 = 0 indicates that Nmax − ⌊
Tmax−td+tNK−mTs−tr

(mTs+tNK)
⌋

̸= 0, signifying that the maximum allowable number of
retransmissions either exceeds the system limit or must
meet performance criteria. In the case of µ3 = 0, finding
the optimal solution implies that it must adhere to the
retransmission requirement within the system’s capacity.

Since the condition expressed in equation (49) relies on the
relationship betweenµ1 andµ3 when subjected to the inverse
substitution applied to the µ1’s KKT condition, the solution
derived from equation (49) represents an optimal solution for
m, nominated as m+.
Specially, when µ1 = µ3 = 0, since we have

∂ε

∂m
= −

ln 2
(
C(γ )

√
m+ (1 − λ)D

)
2
√
2πV (γ )m

e−
ω2
2 , (52)

∂ε

∂λ
= −

D ln 2
√
2πmV (γ )

e−
ω2
2 , (53)

Algorithm 1 Partial Offloading Optimal Energy With FBL
Regime
1: Obtain the data amount D and latency requirement Tmax;
2: if Tmax ≤ Tq then
3: Drop the application or Update the system;
4: else
5: Initialize N∗, Ētot,min;
6: for N = 1:Nmax do
7: Initialize λ∗ and m∗ as λ(0), m(0);
8: for k = 0, 1, 2, 3,. . . do
9: repeat

10: With given λ(k), find m∗
= m(k+1) to solve

Problem (30);
11: With given mk , find λ∗

= λ(k+1) to solve
Problem (37);

12: Update k = k + 1;
13: until |m(k+1)

− m(k)
| ≤ δ and |λ(k+1)-λ(k)

| ≤ ν;
14: end for
15: return m∗

= m(k), λ∗
= λ(k);

16: Keep a record of Ē∗
tot;

17: if Ē∗
tot ≤ Ētot,min then

18: Update Optimal Ētot,min;
19: Update N∗

= N (k);
20: end if
21: end for
22: Calculate f ∗

c by (28);
23: end if

where ω =

√
m

V (γ )

(
C(γ ) −

(1−λ)D
m

)
ln 2. We provide a form

of m∗ as

m∗
= ⌈

(1 − λ)2D2

C(γ )2
⌉. (54)

Here, µ3 = µ1 = 0 represents that when we can
find an optimal solution, it must satisfy both the system
retransmission limit and the delay constraint. Hence m∗ is
obtained by:

m∗
=

 ⌈
(1 − λ)2D2

C(γ )2
⌉, µ1 = µ3 = 0,

m+, otherwise.
(55)

Moreover, considering that (−µ2
ακD
fm

+ µ3⌊
ακD
fm

(mTs+tNK)
⌋ +

µ4 − µ5) remains constant and does not impact the optimal
solution, λ∗ is determined as the solution to the following
equation

∂ε

∂λ

N∑
n=1

εn−1 (
n

(
Em,0 + Et,0 + Ek,0

)
− Em,0 − Ec,1

)
+ µ1

∂εtot

∂λ
= −H2. (56)

HereH2 =
ακDPr
fm

+Ec,1−µ2
ακD
fm

+µ3⌊
ακD
fm

(mTs+tNK)
⌋+µ4−

µ5. The functions affecting the position of λ∗ are represented
on the left side of the equation, while the right side holds the
constant terms, i.e., the terms that do not influence the optimal
solution’s position.
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FIGURE 2. Energy cost in blocklength within different λ (The m∗, labelled
in the figure, matches our analytical verification in (54)).

V. PARAMETER SETTING AND NUMERICAL SIMULATION
A. PARAMETER SETUP
First we consider setting the hardware constant κ of the
CPU to 10−11, aligning the energy consumption with the
measurements in [31]. In addition, we set α = 104 cycles/bit,
to match the workload magnitude as reported in [32]. Apart
from this, we constrain the frame length T to 45 ms with a
symbol length Ts = 0.03 ms. The NACK-Transmission time
length is tNK = 3 ms. The path-loss model adheres to the
NLOS path-loss model in [33], demonstrated as φ = 17.0 +

40.0log10(x), where x is the distance from FU to the FS.
Furthermore, we set the bandwidth to B = 5 MHz, while the
transmit power to Pu = Pr = 0.3 W and noise power to σ 2

u =

σ 2
d = −174 dBm. The maximum computing frequency of the

CPU, fc,max, is set to 3× 106 cycles/s, the FS server CPU has
an idle arithmetic cap fm,max of 3.5× 106 cycles/s. We set the
cost factor as η = 1, η ∈ [ηt , ηk , ηr , ηm, ηc]. Additionally,
the maximum allowed transmission error probability εmax is
10−5 as a constraint for ultra-high reliability scenarios.

B. SIMULATION RESULTS
First we illustrate the variation of expected energy cost with
respect to blocklength for different offloading ratio λ in
Fig. 2. It’s evident that the expected energy cost Ētot is
convex in m, consistent with Lemma 2. Interestingly, the
results also demonstrate that partial offloading yields lower
expected energy consumption compared to full uploading
to the FS or complete local computation. However, as the
blocklength increases, the curve for full offloading to FS
converges with the curve for partial offloading, i.e., when
the length of a single transmission is long enough, partial
offloading to local can be dispensed with in order to conserve
the energy consumption of local mobile devices. In addition,
the local computation energy consumption is independent
of the transmission, so it has remained stable. Moreover, the
optimal solution value derived from the curve in the context
of partial offloading aligns with the analytical expression
presented in (54). This convergence reinforces the fact
that (54) serves as the analytical solution specifically tailored
for the partial offloading scenario.

In contrast, we promptly demonstrate the variation of
expected energy consumption in the offloading ratio λ for

FIGURE 3. Energy cost vs λ within different data packet size and frame
length T .

FIGURE 4. Optimal m, λ and fc versus D at different frame length T .

different application packet sizes D and frame length T . The
curves demonstrate the convexity of the energy consumption
in the offloading ratio in line with our Lemma 4. The
convexity demonstrated by Fig. 2 and Fig. 3 also provides a
proof for the validity of our final optimisation algorithm 1.
In addition, we find that the tighter the latency constraint
and the larger the amount of data to be processed, the more
the system tends to choose to offload to the FS, which is
mainly due to the fact that the computational power of FS is
slightly better than that of the local CPU and the transmission
cost is lower than that of local computation when the latency
constraint is strict. The feasible domain of λ is also closely
related to the FU’s state (D, Tmax), which is consistent with
our analysis of λ in (21).

In Fig. 4, we present a series of optimal solutions tailored
to the system’s diverse computational demands. Initially, for
scenarios where the workload is below the local device’s
computational capacity (characterized by smaller values ofD
and α), the system opts for local computation. This choice
is driven by the local CPU’s ability to execute the entire
task within the specified delay frame. During such frame, the
blocklength remains at 0 symbol, indicating that the optimal
solution is to compute all data locally. As the workload
escalates, the system adapts by employing larger blocklength
to facilitate the efficient offloading and uploading of tasks.
Second, the local CPU tends to choose a slower computing
frequency when the workload and latency requirements are
relaxed, but as the task volume increases, the longer frame
length allows the local CPU to use a faster computing
frequency, completing the local computation faster and
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FIGURE 5. Optimal energy cost in Signal-to-noise ratio (SNR) within
different λ and benchmarks (The figure demonstrates the benchmarks of
IBL regime and No-retransmission).

FIGURE 6. Optimal energy cost vs λ within different transmit power Pu
and NACK-Transmission length tNK.

FIGURE 7. Parts of optimal energy cost versus workload ratio α in
different optimal λ.

leaving the time for communication and FS computation.
As the workload intensifies, the optimal configuration
involves the local CPU operating at its maximum computing
frequency, while concurrently offloading a portion of the
processing load to the FS for auxiliary support. Moreover,
the stringency of latency constraints directly influences the
schedule of offloading, with tighter constraints prompting
earlier offloading occurrences.

In Fig. 5, we delve into the correlation between the
system’s optimal energy consumption and the channel SNR
across varying offloading ratio. Our analysis reveals that
enhancing the SNR can effectively optimize the system’s
energy consumption whenever offloading operations are in
play. However, this optimization is bounded, primarily due

FIGURE 8. Optimal energy cost and optimal transmission number N vs
frame length T within different allowed-error εmax.

FIGURE 9. Variation of total consumption in ηr with different cost factor
settings.

to the direct impact of the SNR on upload-back and NACK-
transmission processes, while exerting minimal influence
on the comparison between the FS and the local CPU,
which serves as the predominant factor affecting energy
consumption. In addition, the smaller the offloading ratio
i.e. the more uploads to the FS, the more significant the
role of the optimal energy consumption is influenced by
the SNR γ . In addition, the retransmission mechanism can
effectively reduce the expected energy consumption of the
system, mainly because when the frame length is fixed,
retransmission can lead to a more flexible blocklength alloca-
tion, resulting in less energy consumption per transmission.
It should be noted that the no retransmission setting is
also considered in our design, i.e., N = 1. Furthermore,
in the context of the IBL assumption, the coding rate of the
system aligns with the Shannon capacity. As per equation (3),
the optimal blocklength is determined by m =

(1−λ)D
C(γ ) ,

with the error probability of transmission being Q(0) =

0.5. However, despite this optimal setup, the system still
necessitates further retransmissions. Consequently, energy
consumption escalates during transmission under the infinite
blocklength assumption.

For a more quantitative analysis, we juxtapose our design
against benchmarks. The results reveal a notable enhance-
ment in the performance of the retransmission mechanism,
showcasing a 49% improvement compared to scenarios
without retransmission. Similarly, the performance of FBL
coding exhibits a 36% enhancement in contrast to IBL
coding.
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TABLE 2. Notations.

Moreover, we demonstrate curves of optimal energy
consumption versus offloading ratio for different transmit
power and NACK-Transmission time length in Fig. 6.
Both the transmit power and the time length of the
NACK-Transmission affect the value of the optimal energy
consumption, with higher transmit power and longer
NACK-Transmission time length corresponding to elevated

optimal energy consumption values. Notably, the impact
of these two factors differs more significantly when the
offloading ratio λ is smaller. As λ increases, the distinctions
in the changes of Pu and tNK become less pronounced.
This phenomenon can be elucidated by considering the
direct impact of both Pu and tNK on the communication
transmission process. A smaller λ implies increased data
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upload to the FS for processing, amplifying differences in
transmission parameters. Conversely, as the system offloads
more data for local processing, the diminishing data volume
mitigates disparities in transmission characteristics. At λ = 1
(i.e., all data are computed locally) the curves will converge
completely.

Furthermore, in Fig. 7, we analyse part of the optimal
energy consumption versus the workload ratio within dif-
ferent optimal offloading ratio λ∗ corresponding to each
workload ratio α. Consistent with our expectations, com-
putational energy consumption Ēc, Ēm is the main factor
affecting total energy consumption. In addition, when the
optimal offloading ratio λ∗ at this point is 0.5, i.e., the system
offloads packets equally to the local and FS for processing
and both have similar computational capability, Ēm and Ēc
are close, which is consistent with our assumptions (7), (8) in
Section II. Furthermore, the offloading ratio plays a crucial
role in resource allocation, and despite the slightly superior
computational power of the FS, the optimal solution does not
advocate maximal data offloading to the FS. This observation
underscores the significance of our work in determining
optimal offloading strategies rather than pursuing maximal
offloading to the FS.

Additionally, we demonstrate the impact curves of differ-
ent cost factor settings on the optimal energy consumption
of the system in Fig. 9. Since the total energy consumption
is the weighted sum of the energy consumption of each
component, varying the cost factor of each component does
not affect the trend of the energy consumption, which is
consistent with equation 13. An interesting observation is that
the different settings of cost factor for computational energy
consumption (ηc, ηm) and communication energy consump-
tion (ηt , ηk , ηr ) differ significantly, while the adjustment
of their internal weights does not have a significant effect,
which implies that in practice communication-dominated
and computation-dominated networks will be optimised
differently results.

Finally, in Fig. 8, we present curves depicting the
optimal energy consumption and the optimal number of
retransmissions within the system, varying with the frame
length for different transmission-reliability requirements.
Notably, as the frame length extends, the system’s energy
consumption diminishes, while concurrently witnessing an
upsurge in the optimal number of retransmissions. This
phenomenon can be elucidated by considering (15), where
a fixed frame length necessitates shorter blocklength for
individual transmissions with increased retransmissions.
Therefore, when extending the frame length, the system, in a
bid to reduce energy consumption, opts for more retrans-
missions, corresponding to shorter transmission blocklength.
An intriguing observation is that under stringent transmission
reliability requirements, denoted by εmax, the systemmust opt
for longer transmission blocklength m to enhance decoding
accuracy. Consequently, this choice results in heightened
expected energy consumption and a decrease in the optimal
transmission numberN ∗. Additionally, in scenarios where the

frame length T is short, retransmissions are precluded to meet
latency requirements.

VI. CONCLUSION
In this paper, we focus on partial offloading scenarios of
fog computing networks equipped with DVFS technology.
The emphasis is on optimizing the expected total energy
consumption of the system under the FBL regime. By ana-
lyzing the variables, we transform the original problem into a
bivariate convex optimization problem and propose the cor-
responding BCD algorithm. Specifically, we determine the
explicit feasible domain of the system variables, establish the
convexity of the expected energy consumption concerning
the error rate in terms of the transmission blocklength, and
offloading ratio, and analyse the form of the optimal solution
using KKT conditions. Finally, we evaluate the proposed
framework and algorithms through simulations, and we have
found that our design is significantly improved compared to
benchmarks. In addition, our work has significant potential
for extension, particularly in determining the offloading ratio
of each FU with the allocation strategy of the FBL codes
in multi-FS-to-multi-FU scenarios. Moreover, based on our
simplification of the original problem, the application of deep
learning in similar models will be more convenient.
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