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ABSTRACT Accurately predicting grape yield in vineyards is essential for strategic decision-making in the
wine industry. Current methods are labour-intensive, costly, and lack spatial coverage, reducing accuracy and
cost-efficiency. Efforts to automate and enhance yield estimation focus on scaling fruit weight assessments.
Machine learning, particularly deep learning, shows promise in improving accuracy through automatic
feature extraction and hierarchical representation. However, most of these methods have been developed
for analyses at a particular time point and solutions able to consider temporal information captured across
sequential frames are currently poorly developed. This paper addresses this gap by introducing a system
for yield estimation, utilising publicly available data repositories, such as Embrapa WGISD, alongside an
in-house dataset collected by a Blackmagic camera at the pre-harvest stage. We introduce a system that
utilises bunch weight regression to estimate grape yield. Bunch weight estimates are obtained by summing
samples randomly drawn from the grape bunch weight distribution through empirical calibration. Grapevine
bunches are identified and segmented using Mask R-CNN with Swin Transformer, and a SiamFC-based
tracking mechanism is employed to estimate the number of unique bunches per panel or row. The number of
berries for each tracked bunch is determined using a density approach known as multitask point supervision.
In our experiments, we demonstrate the effectiveness of the proposed system for yield estimation, achieving
harvested weight errors of less than 5% in two of the three vineyard panels. Larger harvest weight errors
(around 15%) were observed due to inaccuracies in tracking certain bunches caused by dense concentration
of bunches in one panel. However, these errors should be contrasted with the current practice error of up to
30%, highlighting the potential of machine vision for hands-off yield estimation at scale.

INDEX TERMS Precision viticulture, bunch detection and segmentation with transformers, multi-bunch
tracking and counting, density-based berry counting, weight regression, grapevine yield estimation.

I. INTRODUCTION
Yield estimation is an essential tool in horticulture, being
used throughout the supply chain for everything from harvest,
storage and processing logistics to product pricing and
advertising. This is particularly critical for the wine industry
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due to the additional logistical complexities embedded in
the winemaking process, as fruit cannot be stored prior to
winemaking and fruit quality degrades if left on the vine.
Further, even once fermentation is complete, maturation
and storage require advance planning. Winemaking typically
multiples the farm-gate value of the fruit three to four folds,
demonstrating the critical nature of the planning around this
process. Yield estimation in viticulture is heavily dependent
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on the vineyard manager’s experience, often being simply a
visual assessment at various points in the growing season.
Where formal yield estimation is undertaken, it is usually
based on counting grape bunches in a very small subset of
the vineyard, possibly combined with a small number of
bunch weight measures. Consequently, yield estimation is
labour-intensive and, therefore, expensive. This can result in
significant error, potentially causing over- or under-supply of
grapes to wineries and affecting the pricing of wine already
in the market. Grape yield is strongly seasonal, often due
to weather conditions during the growing season and bud
formation in the prior season. This offers the potential to
use modelling and forecasting of climate extremes to predict
yield and potentially mitigate seasonal effects on grape yield
through management changes [1].

Accurate yield predictions enable wineries to plan intake
and make adjustments throughout the value chain accord-
ingly. Even 20 years ago, the cost of best practice yield
estimation to the industry was estimated as AU$16 per
hectare [2], which is further amplified by high error rates.
The same authors estimated, at the time, that a reduction in
yield estimate error from 33% to 20% could save the industry
aroundAU$85million annually, and further reductions would
result in even greater savings.

Grapevine yield can be divided into three main compo-
nents: i) the average berry weight, ii) the average number
of berries per bunch, and iii) the number of bunches within
a given vineyard area. Berry weight will continue to change
until harvest, while themaximum berry number is determined
early in the season and the maximum bunch number is
determined during bud formation and influenced by prun-
ing [3]. These components can be assessed at different times,
allowing for early yield estimates, but accuracy improves
over time. However, traditional assessment methods are often
manual and limited in scope.

The automation of yield prediction is a central challenge in
smart agriculture. Some methods rely on classical image pro-
cessing techniques, which involve developing segmentation,
shape recognition, and feature extraction algorithms tailored
to the task. There is a growing trend towards incorporating
computer vision algorithms and machine learning to assist
with these measurements. This approach utilises available
data instead of subjective criteria and specialised algorithms.
These algorithms have the potential to improve model
accuracy by leveraging the wealth of gathered information,
and their integration into data-driven algorithms holds
promising prospects for enhancing overall analysis [4]. As a
result, researchers are exploring precision viticulture and
automated yield estimation methods [5], [6], [7], especially
with the advent of modern deep learning approaches [8].
A set of typical viticulture practices has already benefited
from the technical advances in computer vision and deep
learning. This includes the detection of basic parts of the vine
(shoots, canes, etc.), the detection of the structural elements
of a vineyard, and supplementary detection sub-tasks that

complement the basic practices [9]. Research efforts focused
on yield estimation in viticulture are summarised in [10].
Specifically, the utilisation of deep learning is highlighted
in [11] and [12]. In Section II, we provide an overview
of current approaches for vision-based yield estimation in
viticulture. This review section provides an overview of
recent advancements in the field, focusing on work published
from 2020 and onwards.

The literature highlights weaknesses, particularly the
lack of focus on dynamic analysis considering temporal
information across sequential frames, with most works
concentrating on static analysis. This study contributes to this
area by introducing algorithms for grapevine berry analysis,
specifically targeting pre-harvest yield estimation from
videos by estimating bunch mass alongside bunch counts.
We employ a transformer-based instance segmentation
approach to identify and segment grapevine bunches while
employing a multi-object tracking-by-association method for
real-time bunch tracking. Berry detection is achieved through
a density estimation-based counting method. Additionally,
a regression model is trained to represent the relationship
between segmented grape bunches’ features and their true
weights. The proposed framework is validated through
experiments conducted on an in-house dataset captured in
an Australian vineyard using a Blackmagic camera attached
to a Kubota RTV. Our approach enables fruit yield from
video data without manual adjustments or additional data
collection.

Detection, segmentation, tracking and weight estimation
of fruits and vegetables are fundamental tasks not only for
grapevine analysis but also for precision agriculture more
broadly, facilitating yield estimation across various crops.
The versatility of the proposed system lies in its ability to
address common challenges in agricultural settings, including
the uneven distribution of produce in the field, variations in
illumination, occlusion caused by foliage or neighbouring
fruits, and clutter from surrounding vegetation.

Our main contributions are summarised as follows:
1) Provided a summary of the most relevant recent

research works concerning the adoption of deep
learning techniques for bunch and berry detection
and counting which are critical for yield estimation.
Case studies reported in this paper are obtained
from various journals, conference proceedings and
open-access repositories published in English between
2020 and early 2024.

2) Designed and constructed a cost-effective image acqui-
sition system using consumer-grade cameras, enabling
researchers to capture sequential images for grapevine
berries analysis.

3) Gathered a novel dataset comprising RGB videos
captured during the pre-harvest stage. The videos were
recorded in an undisturbed natural setting, without
alterations to the background. Ground truth for object
detection and segmentation in computer vision was
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established through meticulous annotation, marking
precise bounding boxes and masks around bunches and
berries following established standards.

4) Employed a dynamic analysis that considers temporal
information captured across sequential frames. This
processing pipeline includes bunch detection, bunch
segmentation, bunch tracking, berry detection, and
bunchweight estimation using a regressionmodel com-
posed of segmented bunch features. The accuracy of the
panel-wise counting results was assessed against the
ground-truth counts, ultimately leading to a promising
yield estimation.

II. RELATED WORKS: DEEP LEARNING FOR VITICULTURE
YIELD ESTIMATION
Current vineyard yield estimation methods are limited by
their labour-intensive and costly nature, resulting in inac-
curacies and biases. However, automation through proximal
sensing and mobile platforms offers non-invasive methods
capable of covering larger vineyard areas, thereby enhancing
accuracy. This advancement relies on the development of
data-driven algorithms [13].

To date, automated yield estimation has focused on
detecting grape bunches and determining both their count
and the number of berries within each bunch. However,
this task poses challenges for computer vision systems due
to significant variations in fruit sizes, shapes, and colours,
along with high occlusion rates and varying illumination
conditions. Challenges also arise from neighbouring bunch
separation, occlusions from leaves and shoots, and colour
confusion between green grapes and foliage. Detecting
individual berries within a bunch in a commercial vineyard
setup is particularly challenging due to the lighting conditions
and significant berry occlusion. Moreover, relying solely
on berry count for yield estimation is prone to errors,
given the variability in berry size influenced by grape
variety, growing conditions, and yield fluctuations within the
same vineyard. Despite these limitations, current practices
rely on these measures as they represent the primary sole
extractable information from visual (RGB image) data
alone.

Previous studies have highlighted limitations in feature
engineering and traditional machine learning methods,
paving the way for advancements in deep learning archi-
tectures. Deep learning approaches have gained popularity
in agricultural applications, due to their ability to address
image-based perceptual challenges [14]. These methodolo-
gies have been successfully employed for tasks such as bunch
and berry detection, segmentation, tracking, and counting,
crucial for accurate yield estimates:
Yield estimation through bunch detection and counting

involves capturing images using movable platforms and
processing them to identify bunches. Object detection
techniques identify bunches and extract features which are
then used to regress bunch weights. Total yield is computed
by aggregating estimated bunch weights [15].

Yield estimation through berry detection and counting
requires a model to find individual berries in images, estimate
their count, and determine total yield by summing the berry
count across all images [16].
Deep learning approaches for bunch and berry analysis,

summarised in Table 1 and Table 2, encompass various
methods for vision-based detection and counting. These
methods include object detection, instance segmentation, and
semantic segmentation, applied to both bunches and berries.
Additionally, density estimation methods are employed
specifically for berry analysis. This section provides a
comprehensive overview of deep learning-based approaches
for bunch and berry detection and tracking.

A. GRAPEVINE BUNCH AND BERRY DETECTION AND
COUNTING
Two primary schemes are commonly employed to build
berry counting networks. The first focuses on explicit object
localisation, where objects are detected before counting.
This can involve identifying object centres, resulting in a
density estimation heat map (a two-dimensional representa-
tion indicating areas with a high probability of containing
objects). Alternatively, localisation may rely on bounding
box detection or segmentation, with the latter being more
widely adopted. The second scheme involves utilising a
global or local direct regression model. Such models adopted
for bunch detection [49], [64] are not discussed further in this
section.

This section focuses on data-driven methods for grape
bunch detection and segmentation, emphasising modern deep
learning techniques [65]. While classical image processing
and traditional machine learning have been used in viticulture
applications, they are limited by the necessity for careful
algorithm selection for feature extraction, shape detection,
and classification, as well as the requirement for partial
control of the environment with artificial backgrounds
or lighting. Methods reliant on handcrafted feature engi-
neering and rule-based algorithms [66], [67], [68] are
excluded from our discussion, as they have been extensively
reviewed in previous survey manuscripts [4], [5], [14]. These
excluded techniques encompass segmentation using thresh-
olds (colour-based segmentation), edge-based segmentation,
contour analysis, texture and shape analysis, and traditional
image processing methods like Otsu’s threshold [13] or the
identification of the Green-Red Vegetation Index [69].

For berry detection, we exclude thresholding and colour-
based methods [18] that rely on specific colour thresholds to
distinguish berries from the background. These techniques
utilise colour information such as hue, saturation, and
intensity for segmenting berries based on their distinct
colour characteristics. We also exclude shape-based meth-
ods that focus on extracting and analysing berry shape
characteristics, including contour analysis, circular Hough
transform, or ellipse fitting. Although 3D information from
reconstruction can enhance detection and segmentation when
combined with 2D techniques, such as colour-based or
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TABLE 1. Deep learning-based approaches for grapevine bunch detection.

TABLE 2. Deep learning-based approaches for berry detection.

edge-based segmentation, none of these handcrafted methods
are included in this review section [70], [71].

1) OBJECT DETECTION APPROACHES
Object detection is a challenging problem that requires the
solution of two main tasks: recognition and localisation.
Recent years have witnessed remarkable performance gains
in object detection, attributable to advancements in deep
convolutional neural networks. These detectors have been
useful for the identification of key areas in each video such
as spurs, grape bunches, and berries [9].

Object detectors can be categorised as anchor-based,
anchor-free and Transformer-based [72]. The core idea
of anchor-based models is to introduce a constant set of
bounding boxes, referred to as anchors, which can be
viewed as a set of pre-defined proposals for bounding
box regression. Notable examples of anchor-based models
include the RCNN [73], YOLO [74], and SSD [75] series
of detectors. Anchor-free methods offer significant promise
to cope with extreme variations in object scales and aspect
ratios [76]. Such approaches, for example, can perform
object bounding box regression based on anchor points
instead of boxes (i.e., the object detection is reformulated
as a key-point localisation problem) (key-point-based and
anchor-point-based methods). Such methods have not been

explored in the domain of viticulture. Object detection
algorithms based on the Transformer architecture can capture
long-range dependencies over the object to extract useful
global information. The use of Transformers has become a
hot research direction within object detection, with prominent
architectures based upon the DETR [77] and ViT [78] series.

The different approaches used for grape bunches and berry
detection are outlined in Table 1 and Table 2. Among these,
the YOLO series and SSD series stand out as prevalent
methodologies, frequently employed for providing bounding
boxes around the detected bunch and berry [19], [31], [39],
[45], [46], [58]. While these object detection approaches are
widely used, they have inherent limitations. The bounding
box representation may not precisely outline the complex
shapes of bunches or the contours of individual berries.
This limitation results in a reduction in spatial precision,
especially when objects are nearby or exhibit irregular
shapes. In addition, the challenges become more pronounced
when bunches or berries overlap, as object detectors struggle
to separate and represent individual instances, leading to
errors in counting and localisation.

2) SEMANTIC SEGMENTATION APPROACHES
Semantic segmentation assigns a class label to each pixel in
an image, enabling pixel-wise identification of bunches and
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berries. By segmenting the image into, for example, bunch
and non-bunch regions, this approach offers a fine-grained
understanding of the spatial distribution of bunches. Tradi-
tional deep learning series such as U-Net [79] and Fully Con-
volutional Network (FCN) have been successfully applied to
the semantic segmentation of vineyard images. FCNs were
among the early methods for semantic segmentation, using
convolutional layers to predict pixel-wise labels. The U-Net
architecture consists of a contracting path, a bottleneck, and
an expansive path. SegNet [80], another model adopted, uses
an encoder-decoder architecture with pooling indices during
the encoding phase and up-sampling during the decoding
phase. Other popular approaches for vineyards analysis are
the DeepLab [81] series which employs dilated convolutions
and spatial pyramid pooling to capture multi-scale contextual
information to bring improvements to the existing encoder-
decoder architectures. Recently, the PSPNet [82] was adopted
for bunch analysis using a pyramid pooling module to capture
contextual information at different scales.

The main limitation of semantic segmentation models is
their inability to separate closed or overlapping bunches.
Small objects or objects with fine details may be challenging
to segment accurately or merge with the background,
resulting in inaccurate grape counting. Such approaches were
adopted for bunch [34], [36] and berries segmentation [51],
[54], [55], [56] as listed in Table 1 and Table 2.

3) INSTANCE SEGMENTATION APPROACHES
Unlike semantic segmentation, instance segmentation is
tasked with distinguishing between individual instances of
the same class, requiring the incorporation of mask prediction
branches alongside bounding box and class prediction
branches. Traditional two-stage detector approaches are com-
monly employed to tackle instance segmentation problems,
involving two main stages: region proposal generation and
instance mask prediction.

Prominent methods follow the two-stage approach includ-
ing the RCNN series, Mask-RCNN [83] and cascade-
RCNN [84], and hybrid task cascade (HTC) [85]. These
methods are widespread adopted in both bunch [17],
[28], [41], [42] and berry [35], [57], [58], [59] instance
segmentation. Other methods such as Fully Convolutional
Instance Segmentation (FCIS) [86] and PointRend [87]
exemplify the effectiveness of the two-stage approach in
accurately delineating object instances within an image.
While two-stage methods may achieve higher accuracy, they
can be computationally more demanding, prioritising preci-
sion. In contrast, one-stage methods, operating end-to-end,
typically feature simpler architectures. Noteworthy examples
of one-stage instance segmentation methods, chosen for their
efficiency in berry detection, include the SOLO series and
YOLO with a mask head (YOLOACT) [60].
It is worth recognising that variations in object detection,

semantic segmentation, and instance segmentation models
often stem from modifications to the primary components
of the standard architecture. Key components subject to

alteration include: i) The backbone, serving as the feature
extractor, commonly involves feed-forward CNNs or resid-
ual networks, recently transformer-based backbones in the
viticulture field. ii) The neck, additional layers positioned
between the backbone and the head, designed to extract
neighbouring feature maps from various stages of the
backbone. Commonly, a neck comprises several bottom-up
and top-down paths, facilitating the conveyance of enriched
information to the head. Examples of the neck include the
feature pyramid network (FPN) [88] and the path aggregation
network (PANet) [89]. iii) The head, the network responsible
for detection (classification and regression).

4) DENSITY MAP ESTIMATION APPROACHES
Techniques developed in the context of automatic crowd
counting (people and vehicles) can be adapted to the scenario
of berry detection due to their capability to solve counting
problems in a highly congested scene. Detection-based
methods discussed previously have been used for crowd
counting, which may perform accurate detection in sparse
scenes, however, with occlusion and extremely dense crowds,
their performance is unsatisfactory. Regression techniques
such as linear regression are used to learn a mapping function
to the crowd counting, they, however, ignore spatial location
information of the targets. Density map estimation methods,
on the other hand, provide a continuous representation of the
spatial distribution and density of berries within an image
or a video frame [90]. Instead of using bounding boxes or
segmentation masks, density maps assign a density value to
each pixel, indicating the likelihood of a berry’s presence in
that location. To detect berries using densitymaps, a threshold
can be applied to distinguish areas with a significant berry
presence from background noise. By selecting an appropriate
threshold, regions of interest can be identifiedwhere the berry
density surpasses a certain threshold value. Density maps can
facilitate accurate berry counting by summing up the density
values across the entire map or within specific regions of
interest.

Density map estimation uses weak labels (dot annotations
on object centres), which are less tedious to annotate
than bounding boxes or segmentation masks. Density
estimation-based counting was first proposed in [91] which
demonstrated higher counting accuracy with smaller amounts
of data, particularly when individual object instances are
challenging to detect or delineate. A traditional deep learning
method known asMulti-column CNN (MCNN) [92] employs
multiple columns (streams) of CNNs operating at different
scales to capture objects of varying size, enabling the
model to adapt to the density distribution in the image.
However, the fixed configuration of multiple scales may
not be optimal for all scenarios, and adapting to scale
variations can still be challenging. Another popular approach
is the convolutional sparse regression network (CSRNet) [93]
designed to represent the relationship between image features
and object density using sparse regression. Such a CSRNet
model was adopted for berry counting [63]. Although density

102150 VOLUME 12, 2024



D. Ahmedt-Aristizabal et al.: In-Field Dynamic Vision-Based Analysis for Vineyard Yield Estimation

estimation approaches are specifically designed for counting
objects, they do not provide instance-level information and
the performance may vary on the complexity of scenes and
the distribution of objects.

B. MULTI-OBJECT TRACKING
Visual trackers are used to maintain the unique identity
of each grape bunch as it moves across the frames of a
video. The raw detection of grape bunches across sequential
video frames would greatly overestimate the true number
of bunches, given each specific bunch would be detected
multiple times. To mitigate this issue, a tracking algorithm is
utilised to link the bounding box detections of a single grape
bunch across video frames, forming a sequence referred to as
a ‘‘bunch track’’. The number of tracks obtained using this
algorithm is then used to estimate the grape bunch count.
Given a detected grape bunch, by identifying 2D features
belonging to it and matching, or triangulating, them across
multiple frames, it is possible to find the same bunch instance
in the following frames.

Following recent advancements in object detection,
‘‘tracking-by-detection’’ has emerged as the predominant
approach for multiple object tracking. This approach consists
of two distinct components: object detection and data
association. The detection component focuses on identifying
potential targets of interest within video frames, thereby
guiding the tracking process. The data association component
utilises both geometric and visual information to assign these
detections to new or existing object trajectories, commonly
referred to in the literature as ‘‘tracklets’’. An example of this
task is the re-identification process [94]. A tracklet is defined
as a set of linked regions across consecutive frames [95].
In numerous implementations, the data association computes
the similarity between detections and existing tracklets,
determines the optimal associations between detections and
tracklets, and generates new tracklets as necessary.

Multi-object tracking approaches can be categorised based
on their complexity into separate detection and embedding
(SDE) methods and joint detection and embedding (JDE)
algorithms. SDEmethods involve distinct stages for detection
and embedding extraction. This design facilitates adaptation
to various detectors with fewer changes, as the two compo-
nents can be fine-tuned independently; popular instances of
SDE include DeepSORT [96] and ByteTrack [97]. On the
other hand, JDE methods learn to detect objects and extract
embeddings through a shared neural network. JDE methods
such as Tracktor [98] and FairMOT [99] leverage multi-task
learning to train the network effectively.

For bunch tracking, SDE methods are the predominant
methods. They are illustrated in Table 3. However, these
methods are not widely considered, as the majority of the
works focus on purely static analysis (single images). Failure
of the tracker to generate a predicted object location indicates
one of two cases: the object has left the field of view, or the
object has become untrackable due to occlusion by another
object (leaf, post). Detected objects were tracked using

Kernelized Correlation Filters to prevent double counting as
well as a Hungarian algorithm to pair new object detections
with existing trackers [32]. The feature matching of surf
features and geometric verification using RANSAC was
adopted by [29]. Other detection-based trackers such as
DeepSORT designed to work in real-time using a deep asso-
ciation metric were validated for multi-object tracking of the
grape bunch instances [29]. Regarding berry tracking, a time-
lapse tracking over successive segmented berries in a control
conditional was explored with tree combined independent
methods: Baseline (matching of berry centre coordinates),
Registration (estimating global bunch deformation before
matching) and Matching Tree (processing the time steps in
an optimal order) [100].

An alternative perspective in object tracking that leverages
three-dimensional (3D) information, particularly through
techniques like structure from motion (SfM), has gained
increasing significance. A notable application of this
approach is in the counting of grapes from videos, where
an SfM method is employed to estimate the 3D positions
along the camera path. This 3D information serves as a unique
identifier, preventing the inadvertent counting of a single
grape multiple times. Some studies [17], [29] have exploited
a SfM software application, namely COLMAP [101].
In essence, COLMAP extracts sparse features from each
frame and conducts a sequential all-versus-all search and
matching of these features extracted from the video. These
correspondences are then employed to triangulate the 3D
points by minimising the 3D-to-2D re-projection error.
However, it is noteworthy that, even with the sparse setting,
the computational costs exhibit exponential growth with an
increase in the number of frames. Existing SfM methods to
reconstruct a 3D point cloud of a grape bunch have been
exploited for berry counting [102].

Approaches that exploit stereo cameras or depth cameras
for 3D reconstruction of detected objects and vineyard SLAM
are not considered in this review [58].

C. GENERAL OBSERVATIONS REGARDING YIELD
ESTIMATION
To estimate the weight of grapes with computer vision,
the relationship between the computed features and the
ground truth weight of grapes must first be identified. This
relationship is usually established under ideal conditions,
independent of whether the features being used are detected
bunches, berry counts or classified grape pixels. A strong
correlation between counted berries and grape weight was
found in [103] confirming its potential value for yield
prediction. Counting berries can be difficult, particularly
closer to harvest, as bunches become more compact (berries
touch each other). Furthermore, it is common for berries to
not be visible as a result of bunch occlusion on the vine. [71]
showed similar yield estimation performance before and after
ripening.

These methods were evaluated in controlled conditions,
i.e. laboratories, or in the field with artificial backgrounds,
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TABLE 3. Representation of approaches for bunch tracking and counting.

FIGURE 1. Overview of the bunch analysis workflow. 1. Design and construction of the hardware for the data collection. 2. Dataset processing and
annotation per panel. 3. The algorithm identifies grapevine bunches throughout all frames of the video and represents them by enclosing them with
bounding boxes. 4. The algorithm performs segmentation on each detected bunch within its corresponding bounding box, accurately delineating its
precise boundaries and shape. 5. The algorithm tracks bunches per panel, providing the count of uniquely detected bunches. 6. The algorithm calculates
the estimated quantity of berries for each of the tracked bunches that are visible in the panel. 7. The algorithm utilises a regression model to estimate
the weight of each bunch by establishing a relationship between the extracted features and the actual weight.

which are not representative of the vineyard environment.
A problem arises from deploying berry detection algorithms
in the field. To obtain berry counts that are sufficiently
representative for yield estimation, detectors will usually
need to be employed with a relatively wide spatial coverage
(i.e.multiple rows of vines) across a vineyard. This is mostly
easily accomplished with the collection of video, however,
the application of a berry detector to sequences of images will
result in berries being multi-counted. Therefore, simplifying
assumptions have been applied to avoid redundancy during
counting. For instance, it is assumed that there is a uniform
distribution of grape bunches on the vine. This can be a poor
assumption, however, given bunches are typically distributed
with a high degree of heterogeneity across a vine.

Computer vision networks need to be trained to be robust
to changes in vineyard conditions, whether that is variations
in the vine canopy appearance, weather or lighting. Models
that can adapt to a wide range of possible vineyard conditions
are crucial for real-world applications [43]. Furthermore,
developing models that can generalise well to various species
of grapes without the need for extensive retraining could
enhance the scalability and applicability of the technology.

III. PROPOSED METHOD
In this paper, we propose a system that employs bunch
weight regression as a means to estimate grape yield. The
system takes into consideration two crucial factors: the
number of grape bunches and the berry count per bunch
within the selected area being imaged. Our approach for
pre-harvest yield estimation builds upon previous research
that aimed to estimate bunch size using computer vision

techniques. However, instead of relying on the traditional
method of counting bunches and using historical average
weights, we adopt a different principle. Our system directly
estimates bunch weight through empirical calibration. The
system workflow is illustrated in Figure 1.
The high-quality 2D images of the vineyard collected

with the acquisition system are passed to a pre-processing
phase that involves generating a new dataset for grape
analysis by utilising both the acquired images and supportive
publicly available datasets. This combined dataset enhances
the performance of our analysis. The pipeline then progresses
through several stages. Initially, grapevine bunches are
detected across all video frames, resulting in bounding
boxes. Subsequently, each bunch is segmented within its
corresponding bounding box, enabling precise boundary
determination and shape characterisation. Geometric features
extracted from segmented bunches can be used for bunch
weight estimation analysis (Section IV-A). To estimate the
number of unique bunches per panel or row, we implement
a tracking mechanism that monitors the movement of
each identified bunch throughout video frames. This allows
for accurate bunch counting (Section IV-B). Moreover,
we estimate the number of berries for each tracked bunch
through the utilisation of density maps. These maps provide
valuable insights into the distribution and density of berries
within each bunch (Section IV-C). To estimate bunch
weight, we employ a regression model that establishes the
relationship between the vision-derived features (i.e. area
and berry count) and the actual weight of each bunch.
Finally, we estimate the total grape weight in a panel or
row by aggregating random samples drawn from a bunch
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FIGURE 2. Acquisition system. Images were taken by commercially
available cameras mounted to a moving vehicle.

FIGURE 3. Representation of one panel of the vineyard recorded with the
Blackmagic video camera (Panoramic image reconstructed from
156 sequential images).

weight distribution generated from our computer vision
approach. This ensures a simple but comprehensive and
reliable estimation of grape yield (Section IV-D). Section IV
elaborates on the specific techniques used on the system
workflow for dynamic analysis.

A. IMAGE ACQUISITION SYSTEM
A sensing platform was mounted on a Kubota RTV 500 and
arranged utilising an aluminium frame to ensure precise
and replicable alignment across all orientations and angles.
The mechanical configuration is illustrated in Figure 2. All
equipment and cabling were calibrated in the laboratory and
placed in the field, as appropriate. A Blackmagic camera of
50 fpswas mounted to the moving vehicle with an acquisition
vehicle speed of approximately 4 km/h. The video length was
typically 10 to 15 minutes. Figure 3 depicts a panoramic
image reconstruction showcasing all of the images captured
within a specific panel using the Blackmagic camera. It also
shows a series of various perspectives (first, middle, and last
views), emphasising the complexity of analysing the temporal
dynamics of the views, as well as the occlusion of bunches
and berries within a selected bunch.

B. DATASET COMPILATION
1) CSIRO PRE-HARVEST DATASET
To address the scarcity of annotated viticulture datasets,
particularly video datasets, we generated a new dataset
named the CSIRO Pre-harvest dataset. The proposed dataset
consists of high-resolution images captured from a vineyard
cultivating the Mataro grape variety during the 2021-2022

FIGURE 4. Top: Representation of the detailed annotation of all bunches.
Bottom: Sample video frames labelled using polygons/masks (in red
colour) to provide digital ground-truth.

FIGURE 5. Sample video frames of the berry annotations (point-based
annotations).

development and harvesting period. We selected 300 images
captured by a Blackmagic camera with a resolution of
6,144 × 3.456 to train our models. These images were taken
under various lighting conditions, including sunny and cloudy
days. Bunch masks were labelled using polygon annotations,
as shown in Figure 4, and point-based annotations were used
for berry detection, as depicted in Figure 5.

2) PUBLICLY AVAILABLE DATASETS
In constructing a comprehensive dataset for vineyard
analysis, a combination of a public dataset, Embrapa
WGISD [104], and our custom dataset was employed. The
chosen dataset was selected based on its longevity and
ability to support the development of different stages of our
analysis pipeline, particularly bunch detection, segmentation,
and berry detection. It’s important to highlight that the
decision to use a single publicly available dataset was
influenced by the scarcity of alternatives providing video,
a necessity for validating our dynamic analysis methodology.
Researchers seeking datasets for vineyard analysis validation
are encouraged to explore other available datasets listed
below, considering their suitability for specific research
objectives and methodologies.

• The Embrapa Wine Grape Instance Segmentation
Dataset [104]. (Embrapa WGISD). The Embrapa
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FIGURE 6. Grapevine bunch detection and segmentation model. The ‘backbone’ consists of a Swin Transformer network to
extract deep and complex image features. The ‘neck’ is a feature pyramid network for multi-scale object detection, and the
‘head’ is comprised of a Mask-RCNN for bounding-box detection, class prediction, and segmentation mask generation for
the grapevine bunches.

(WGISD) was developed to offer images and annota-
tions for studying object detection and instance seg-
mentation in the context of image-based monitoring and
field robotics in viticulture. This dataset encompasses
instances captured from five distinct grape varieties
within vineyards (Chardonnay, Cabernet Franc, Caber-
net Sauvignon, Sauvignon Blanc and Syrah). Extension
of berry counting annotations using Huawei ModelArt
were provided in [18].

• The Grape CS-ML database [10], released by Charles
Sturt University, consists of five datasets showcasing
15 grape varieties at different stages of development,
accompanied by size and Macbeth colour references.

• The CR1 and CR2 Datasets [63] (CR2) provides single
berry annotations.

• The wGrapeUNIPD-DL dataset [105] (wGrapeUNIPD-
DL) comprises 373 images of various grape varieties
captured at different phenological stages across six
Italian vineyard locations.

• GrapesNet [106], published in 2023, offers four datasets
containing RGB and RGB-D images of grape bunches,
facilitating tasks such as grape segmentation and weight
prediction. However, such data are not sequential and
thus do not allow proper dynamic analysis.

Other supportive datasets that are adopted for proper
transfer learning of each component of the workflow are
ImageNet [107] and COCO [108] datasets for detection and
segmentation, and Motional Analysis and Re-identification
Set (MARS) [109] dataset for Multi-object tracking.

IV. PIPELINE FOR YIELD ESTIMATION THROUGH
DYNAMIC ANALYSIS OF GRAPEVINE BUNCHES
A. GRAPEVINE BUNCH DETECTION AND SEGMENTATION
In our prior research [3], we demonstrated the effectiveness
of a detector utilising ResNeXt, a feature pyramid network
(FPN), and RetinaNet deep learning models in efficiently
identifying grapevine inflorescence across diverse lighting
and background conditions. This approach allowed us to
generate early yield potential estimates at budburst. The

detection of small inflorescences in complex backgrounds
with leaves, vines, other rows, clouds, and sun, proved to be
difficult. Still, our detector was good enough to detect those
inflorescences. In this work, we aim to extend and build upon
this knowledge towards grapevine bunch detection, close to
harvest. Our study introduces an object detection framework
centred on instance segmentation techniques for bunch
detection and segmentation as discussed in Section II-A3.

The proposed bunch detection and segmentation frame-
work integrates a Swin Transformer [110] convolutional
neural network for deep and complex feature extraction,
an FPN [88] for capturing multi-resolution features, and a
Mask-RCNN [83] to extract bounding-boxes, class labels,
and segmentation masks. The architecture of this framework
is visually represented in Figure 6 as three main networks: a
backbone, a neck, and a head.

The backbone network is where an input image is fed
to a Swin Transformer. This is a hierarchical Transformer
whose representation is computed with Shifted windows.
The shifted windowing scheme brings greater efficiency by
limiting self-attention computation to non-overlapping local
windows while also allowing for cross-window connection.
Compared to our previously used ResNeXt backbone, the
Swin Transformer provided better accuracy with similar
model size, FLOPs, and latency. The image features extracted
by the Swin Transformer are utilised by an FPN neck, which
is an extension to Faster-RCNN and provides a robust way to
deal with images of different scales while maintaining real-
time performance. Finally, a Mask-RCNN head is used for
detecting bounding-boxes, predicting their class labels, and
generating their segmentation masks. Mask-RCNN is simple
to train and outperforms many state-of-the-art segmentation
models with a small overhead of predicting the segmentation
mask on top of Faster-RCNN’s bounding-box and class
predictions. Region of interest align (RoIAlign) extracts
small features for pixel-to-pixel alignment for each of the
region proposals. This provides much better segmentation
masks as output for each instance, in our case, grapevine
bunches.
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FIGURE 7. Berry detection based on multi-scale crowd counting and localisation by multitask point supervision
approach [111] with task-specific customisation. Cropped, resized bunch bounding box and its ground truth density map at
the left.

B. BUNCH TRACKING AND COUNTING
From existing SDE methods, as discussed in Section II-B,
two multi-object tracking algorithms, DeepSORT [96] and
K-Shortest Path Siamese Network (KSP-SiamFC) [3], were
used to form tracks of individual grape bunches across
consecutive video frames. A tracking algorithm was used
to count the number of grape bunches visible on the vines
reducing the effect of multi-counted bunches. The number
of tracks formed from the DeepSORT or KSP-SiamFC
algorithms was used to estimate the number of bunches on the
vine. Furthermore, the bunch tracks were used to extract more
robust bunch features, given multiple views of each bunch
were combined for bunch weight estimation.

DeepSORT is a simple tracking-by-association method for
real-time applications that exploit object detection results.
DeepSORT utilises the motion and appearance of bounding
box detections in order to track objects across video frames.
In order to perform track assignment, a Kalman filter is
used to predict the future position of tracks, whilst a deep
embedding network is used to compare the appearance of
tracks and newly detected objects. KSP-SiamFC uses the
appearance of detected objects to form long-term tracks of
short, discontinuous track fragments (i.e. the tracklets). The
K-shortest path (KSP) algorithm, which is based on a Linear
Programming formulation, is used to generate an optimal set
of detected object tracks across a batch sequence of video
frames. Furthermore, a deep Siamese network (SiamFC) is
used to compare the appearance of bounding box detections
between different frames of the KSP optimisation.

C. BERRY DETECTION AND COUNTING
In Section II, we introduced various methods to tackle the
berry localisation and counting challenge. These methods
include object detection, segmentation, instance segmenta-
tion and density estimation. For our approach, we leverage
density-based crowd-counting techniques [112], which have

been proven effective in handling counting tasks in densely
crowded environments. Density approaches discussed in
Section II-A4 employ crowd heads as point annotations and
predict both location and number of people at the same
time. Such methods are highly sensitive to the choice of the
kernel and result in inconsistent performance with respect
to varying crowd densities. In addition, this category of
approach typically uses density feature maps to estimate the
object count but fails to capture individual object information
such as its location.

One promising work is the multitask point supervision
(MPS) [111] which benefits from a multitask solution
by learning multi-scale representations of encoded crowd
images and uses point supervision to allow for both crowd
numbers and locations to be accurately estimated. This
approach demonstrates the effectiveness of both counting
and localisation tasks on two popular datasets in the
crowd-counting domain (ShanghaiTech A and B [92]).
We adopt the MPSmodel [111] with customised modifica-

tion. Firstly, the original model used fused feature maps for
counting and one single-scale feature map for localisation.
We believe this creates some inconsistency in the training
process. The proposed variant uses feature maps of varying
scales combining the three losses of the different feature
branches and a loss associated with a fused branch for
training. In the meantime, the authors also set a case-specific
weight for each loss, which needs manual configuration in
different scenarios. It potentially increases the difficulty of
training convergence and reduces the chance of achieving
good estimation for both tasks simultaneously. Meanwhile,
the main difference between the berry counting task and
general crowd counting is that berries are of a similar scale
within images as their distances to the camera do not vary
largely. We, therefore, choose to use a fused feature map for
both counting and localisation tasks and retain the loss for
the fused branch in the training process. Such a framework is
depicted in Figure 7. Similarly to the original paper, we use
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FIGURE 8. Representation of bunch sequences with and without
occlusion and the impact on dynamic berry counting.

the Mean Squared Error (MSE) loss between the estimated
map at a certain scale (consisting of head locations at this
scale) and its ground truths.

The pipeline initiates with an input image featuring
a crowd scene. This image undergoes feature extraction
through three CNN encoders pre-trained on ImageNet [107]
to derive meaningful features at multiple spatial scales.
Subsequently, the extracted feature embedding is fed to
dilated convolutional layers to extend the layers’ receptive
fields and capture higher-level features. Then the dilated
embeddings are fed into the multi-scale fusion module,
which generates the final crowd density map for both crowd
counting and localisation. More specifically, three networks
with different numbers of convolutional layers down-sample
the dilated embedding at three spatial scales, respectively,
and generate the same-sized outputs for concatenation.
The concatenated embedding generates a comprehensive
crowd density map that reflects the overall distribution.
Beyond crowd density estimation, we also use the final
embedding to perform individual localisation, utilising a
connected components algorithm [113] to obtain the blobs,
which represent the central point of each berry in the
scene. Employing a multitask learning approach with point
supervision, the network is trained to predict the coordinates
of individuals as points on the density map. To effectively
train the network, a defined loss function combines the
density map estimation loss and the point localisation loss.
This comprehensive loss function guides the network in
mastering both tasks seamlessly.

It is noted that occlusion will exert a negative impact on the
accuracy of grape counting, as it leads to non-linearities in the
relationship between grape number and weighted heatmap.
The recommended way is to use frames with a relatively low
occlusion rate, as shown in Figure 8 where middle frames
provide the best estimation of berry numbers.

D. BUNCH WEIGHT REGRESSION AND YIELD
ESTIMATION
A regression model representing the relationship between
the features of the segmented grape bunches and their true
weights was trained. In this particular regression, two features
of the segmented bunch were considered as independent
variables; the pixel area and the number of berries.

The Swin Transformer Mask-RCNN model was used to
detect and segment grape bunches that were tracked across
consecutive video frames. To estimate the features of each
grape bunch from its track sequence, different statistical
measures were used. This includes the measures of the
central tendency of a feature sequence (i.e.,mean or median)
or measures that capture the features of a single element
(i.e., one bounding-box segmentation) in the bunch track.
For instance, the maximum values of a bunch segmentation
feature within the track sequence.

In previous studies of bunch weight estimation, other
geometric features were shown to adversely affect prediction
(i.e., the perimeter of the segmented bunch) or were largely
redundant when the pixel area feature was used (the major
axis or minor axis of the segmented bunch).

Once the regression model was applied to grape bunches
segmented from the video associated with the assessment
area, a bunch weight distribution was generated. A threshold
was employed to differentiate partial grape bunches (those
partially occluded in the video) from full grape bunches
based on the segmented area. Only the bunches classed
as ‘‘full size’’ were used to fit the weight distribution
to reduce sampling bias. If all of the segmented bunches
were considered, including the occluded bunches, the weight
distribution would be biased towards very small, low-weight
grape bunches.

The number of random samples drawn from the bunch
weight distribution was selected to be equal to the estimated
grape bunch count i.e., the number of bunch tracks estimated
by the multi-object tracking algorithm. The random samples
were then summed to generate a yield estimate over the
assessment area.

V. EXPERIMENTS AND DISCUSSION
A. GRAPEVINE BUNCH DETECTION AND SEGMENTATION
1) EXPERIMENTAL SETUP
The experiments for the development of the grapevine
bunch detection and segmentation model were performed
using a single GPU of 16GB. During pre-processing, small
annotations of bunches of less than 250 × 250 pixels were
excluded (which usually contained 3 to 5 berries). This lets us
focus on the bunches with better visibility. During inference,
small bunches would typically become large enough for
detection as they were captured from different perspectives
across multiple frames of a video, as shown in Figure 8.
The image dataset of 300 images captured by a Blackmagic
camera with a resolution of 6,144×3.456 was split into 80%
for training and 20% for testing.

We performed transfer learning that is initialising the
network with pre-trained weights of the Swin Transformer
on the COCO benchmark dataset. This allowed quick
training and fine-tuning of the network on our dataset. Data
augmentation included horizontal flips and images were
resized to 1,536 × 864 to fit them into the GPU. The
training phase comprised 50 epochs where one epoch means
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going through all training images once. A learning rate
of 0.0001 and batch size of 1 were set, and the AdamW
optimiser was used. During testing, an intersection-over-
union (IOU) of 0.5 and a minimum bounding-box confidence
of 0.3 were applied. IOU is defined as (A∩B)/(A∪B), where
A and B refer to ground truth and predicted bounding boxes,
respectively.

To quantitatively evaluate the detection and segmentation
results, precision and recall are calculated as p = TP/(TP +

FP) and r = TP/(TP + FN), respectively. Here, TP, FP, and
FN refer to true-positive, false-positive, and false-negative,
respectively. Precision gives a percentage that shows how
accurately a model predicts and recall gives a percentage that
shows how many actual targets are detected out of the total
targets. At each detection, a pair of precision and recall values
is obtained to draw a curve called the recall-precision curve
(RPC). From this curve, average precision (AP) is calculated,
which provides a quantitative score that shows how good the
detection model is. The AP is calculated by finding the area
under the RPC by interpolating over every level of recall as,

AP =

∑
(rn+1 − rn)pinterp(rn+1), (1)

pinterp(rn+1) = max
r̃≥rn+1

p(̃r), (2)

where n = 0 to all, rn represents the nth recall value,
pinterp(rn+1) represents the interpolated precision at recall
level rn+1. Taking a mean of AP of different classes gives the
mean average precision for detection (bounding-box mAP)
and segmentation (segmentation mAP), calculated at IOU =

0.5.

2) RESULTS
Firstly, the training process for grape bunch detection and
segmentation is analysed. Three different types of losses:
bounding-box loss, class loss, and segmentation mask loss,
were calculated during the training process. These losses
were minimised quickly and became stable after 6 to
7 epochs. The network was fine-tuned quickly for our dataset
due to the transfer learning and initialising of the network
using a pre-trained COCOmodel. We trained the network for
50 epochs.

Visual results of the grapevine bunch detection and
segmentation are presented in Figure 9. The red-coloured
bounding boxes and polygons represent the ground truth, and
the blue-coloured bounding boxes with filled areas/masks
represent the detected and segmented bunches. The per-
centages on the bounding boxes in blue colour represent
the confidence of the model in predicting those detections.
We have only one class: Bunch. From the visual results,
we can see that our detection results match the ground truth
quite well. Also, the segmentation results have boundaries
that are very accurate compared to the ground-truth polygons.
The detection and segmentation results for the isolated and
non-overlapping bunches with fewer occlusions from leaves
are shown in Figure 9(a) and for merged and overlapping
bunches with occlusion from leaves are shown in Figure 9(b).

FIGURE 9. Grapevine bunch detection and segmentation results.
Red-coloured bounding-boxes and polygons represent ground-truth. Blue
coloured bounding-boxes and filled areas represent the detected bunches
and their segmentation masks, respectively. The detection confidence
score is given with each bounding-box in blue colour. (a) Isolated bunches
with fewer occlusions. (b) Heavily merged and occluded bunches.

Although the merged and overlapping bunches present
greater challenges, ourmodel can detect their boundaries with
good accuracy.

Finally, the test results of the bunch detection and
segmentation model were evaluated quantitatively using
mAP for bounding-box detections and segmentation masks
of those detections. The model was trained for 50 epochs and
the evaluation metrics: bounding-box mAP and segmentation
mAP were obtained for the test subset after each epoch. The
mAPs were raised quickly for the first 7 epochs and achieved
more than 75% at epoch 10, as shown in Figure 10. The
mAP@50 means that the mAP was calculated using IOU =

0.5 during inference. The highest mAP for bounding-box
predictions achieved was 77.3% and the highest mAP for
segmentation mask predictions achieved was 77.1%, on the
test subset.

The bunch detection and segmentation results that were
presented were promising both quantitatively and visually.
Consequently, the results of this detection and segmentation
approach were used for bunch counting, berry counting, and
weight regression tasks proceeding in the analysis pipeline.

B. BUNCH COUNTING
1) EXPERIMENTAL SETUP
The dataset utilised for training the tracking algorithms
was comprised of a collection of 38 grape bunch tracks.
These grape bunches, belonging to the Mataro species, were
distinctly marked on the vine, allowing for their unique
identification within the video. The trajectory of each grape
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FIGURE 10. Mean average precision (mAP) versus the number of epochs
for the grapevine bunch bounding-box detection and segmentation on
the test dataset.

bunch was generated by manually annotating the bounding
box of the bunch across frames where it was at least partially
observable. To validate the bunch counting algorithm, three
vineyard panels featuring the Mataro species were selected.
The number of grape bunches in each panel was manually
counted by two independent observers using video footage.
The final bunch count for each panel was computed as the
average of the counts provided by the two observers.

The estimation of grape bunch counts in each panel
was accomplished by integrating a grape bunch detector
with a tracking-by-detection-based algorithm. Three different
combinations of object detectors and deep network-based
tracking algorithms were considered: i) the YOLOv4 detector
with the DeepSORT tracker, ii) the YOLOv4 detector with
the K-Shortest Path Siamese Network (KSP-SiamFC)tracker,
and iii) the Swin Transformer Mask-RCNN detector with
the KSP-SiamFC tracker. These combinations were selected
based on the literature reviewed in Section II-B. The deep
embedding networks of the DeepSORT and the KSP-SiamFC
trackers were trained using pairs of bounding boxes associ-
ated with a bunch track. The trackers were fine-tuned with
1000 instances of bounding box pairs randomly selected from
the training set of 38 bunch tracks.

2) RESULTS
Table 4 shows that a combination of the Swin Transformer-
based Mask-RCNN (Swin-T Mask-RCNN) detector and
KSP-SiamFC tracker achieved the most accurate bunch
count estimates. It achieved the lowest estimation error of
11.3% when averaged across the three panels and the most
accurate bunch counts for panels 1 and 3 in particular.
The Yolov4 and KSP-SiamFC combination was the next
most accurate approach for bunch counting, with an average
panel estimation error of 23.6%. The baseline combination
of Yolov4 and DeepSORT offered the lowest bunch count
accuracy with an average panel estimation error of 28.3%,
despite producing a perfect bunch count estimate for panel 2.

TABLE 4. A comparison of grape bunch counts estimated from the video
of three vineyard panels using three different tracking-by-detection
approaches. Each approach considered a different combination of object
detection and tracking methods. The observed count refers to the number
of grape bunches manually counted from the video of each panel.

Tracking grape bunches was found to be challenging as a
result of how bunches were distributed on the vine. Bunches
were often densely concentrated on the vine resulting in the
partial or full occlusion of some bunches. Furthermore, the
appearance of bunches was often quite similar in terms of
texture, shape and colour, and hence, when several bunches
were close to one another, tracking algorithms were highly
susceptible to the misassignment of bounding boxes with
other nearby bunch tracks.

C. BERRY DETECTION
1) EXPERIMENTAL SETUP
Two experiments were conducted—one utilising our CSIRO
pre-harvest dataset and another employing a combined
dataset that included both public (Embrapa) and our cus-
tomised data. The goal was to develop a tailored berry
counting model for our specific application.

The total number of observable berries in the scene
is obtained by summing the predicted multi-scale fusion
map. Counting performance is evaluated using the mean
absolute error (MAE) of the predicted count in comparison
to the ground truths. To assess localisation results, average
precision is employed, measured as the area under the
precision-recall curve. A detected object is considered a true
positive if it overlaps with the ground truth object location
within a specified threshold.

Berry counting is conducted after each bunch has been
detected in the image frame. Since the camera depth remains
consistent, and no morphological traits are utilised at this
step, the bunch bounding boxes are cropped and resized
to a predefined size (1,024 × 512) before entering the
berry counting stage. Simultaneously, ground truth berry
annotations in terms of (x, y) coordinates in the original
image frame are transferred into local coordinates in the
cropped and resized individual image, with both density
map and point map generated for training. Note that these
locations must be normalised to be used at different scales.

The implementation details are outlined as follows:
PyTorch served as the primary deep-learning platform for
berry detection. In the first experiment, we trained our model
using only our customised dataset with a split of 3:1:1
for training, validation, and testing. A total of 110 bunch
bounding boxes were provided as input. The batch size
was set to 512, and the Adam optimiser was used with a
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TABLE 5. Berry counting performance.

FIGURE 11. Predicted berry counts and their heat map from testing
images.

momentum of 0.937 and an initial learning rate of 0.0001.
Themodel converged quickly within 20 epochs. In the second
experiment, we combined our CSIRO pre-harvest dataset
with the Embrapa dataset. Since multiple bounding boxes are
provided for each raw image in the Embrapa dataset, a total
of 4,404 bunch bounding box images were used as input for
berry counting (training, validation, and testing).

2) RESULTS
The results of the two described experiments are presented
in Table 5. As evident from the table, counting performance
improveswith an increased amount of training data. However,
the accuracy of localisation is impacted by the greater
variation in bunch images introduced by the public dataset.
Given our application’s objective of delivering precise berry
counts and the necessity for the model to generalise across
diverse conditions (full bunches, partially occluded bunches,
different viewing angles, etc.), we opt to utilise the model
trained in Experiment 2 for our application. Qualitative
results are illustrated in Figure 11.

D. WEIGHT REGRESSION
1) EXPERIMENTAL SETUP
The dataset used for training and testing the bunch weight
regression models was a set of 38 annotated tracks of visually
taggedMataro bunches. TheMask-RCNNmodel was used to
segment the bounding boxes of each grape bunch track. The

individual weights of these Mataro bunches were recorded
during harvest.

A three-fold cross-validation method was used to train
and test the bunch weight regression models. Four different
regression methods were used; two linear models (the
standard linear regression and Huber regression), and two
non-linear models (Support Vector Regression (SVR) and
Random Forest Regression).

Three different attribute sets were used to represent each
grape bunch; the segmented pixel area, the berry count of
the segmented bunch or a combination of the pixel area
and berry count. The bunch features used by the regression
model were then estimated by computing the mean, the
median or the maximum value (max) of each feature in
the segmented sequence track independently. The fourth
estimation approach was based on the maximum value of a
joint set of the pixel area and berry count features (max-jnt).
This measure was computed by independently scaling the two
features between 0 and 1; the sum of the scaled features was
computed for each sequence element. The original features
associated with the sequence element with the maximum
summed value were then used to estimate the bunch features.
The R-squared (R2) andMean Absolute Error (MAE) metrics
were used to evaluate the performance of the bunch weight
regression models.

2) RESULTS AND DISCUSSION
Table 6 shows the MAE and R2 performance of four different
regression models averaged across different feature sets and
statistical measures for feature estimation. The linear models
achieved superior estimation performance to the non-linear
models with an average MAE and average R2 improvement
of 16.9% and 72.9%, respectively. The Huber model achieved
the highest bunch weight performance with an average MAE
of 27.0 grams and average R2 of 0.44, which is a 4.2%
and 12.8% improvement over the standard linear regression
model. The Huber model’s advantage was associated with
it using a loss function that was less influenced by sample
outliers (such as the outlier features of grape bunches shown
in Figure 12) compared to the least-squares loss of a standard
linear regression.

Table 7 shows the bunch weight estimation performance
of the Huber regression models with respect to the different
feature sets and feature estimation methods. In general,
regression models comprised of bunch area and berry count
features achieved superior performance to the regression
models composed of individual features. The joint feature
model offered an MAE and R2 improvement over the bunch
area-based regressionmodel of 6.6% and 28.6%, respectively.
The joint feature model achieved an even larger MAE and R2

advantage over the berry count regression model of 18.3%
and 171.4%, respectively.

Table 7 shows the four statistics used to estimate the
independent variables of the regression, the statistics of
central tendency (mean and median) were shown to offer
superior weight estimation performance to the maximum
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FIGURE 12. The bunch weight estimation performance of a Huber regression model based on the berry count and bunch area features. The
computed features are shown with respect to their true bunch weights.

TABLE 6. A comparison of the test performance of four different
regression models averaged over four feature estimation methods and
three sets of geometric features. The performance of Linear regression,
Huber regression (Linear regression with outlier detection), Random
Forest regression (Forest) and Support Vector Regression (SVR) were
evaluated with respect to the Mean Absolute Error (MAE) and R-squared
(R2) criteria.

TABLE 7. The test performance of Huber regression models that estimate
the weight of individual grape bunches based on three-fold
cross-validation with respect to four different feature estimation methods
and three different sets of geometric features. The Huber regression
model using area and berry count features, estimated from the mean
features of a segmented bunch sequence, achieved the lowest Mean
Absolute Error (MAE) of 22.1 grams and highest R-squared of 0.68.

statistic when developing the single and joint feature regres-
sion models. Given bunch segmentation and berry detection
methods introduced error into feature estimation, computing

themean or median of a sequence of bunch features smoothed
out some of the estimation error relative to models that
were computed from a single feature of the sequence track.
Finally, the mean computed features achieved the highest
weight estimation performance with a minor MAE and R2

improvement of 3.4% and 4.8% over the median computed
features.

The Huber regression model using the mean area and
mean berry count features as independent variables achieved
the highest weight estimation performance with an MAE of
22.1 grams and R2 of 0.68. Figure 12 shows the estimated
and true weight of the bunches for this particular regression
model based on three-fold cross-validation.

E. YIELD ESTIMATION
1) EXPERIMENTAL SETUP
The video from the three vineyard panels that were used to
validate the bunch counting model was also used to evaluate
yield estimation with our proposed system. The videos were
recorded on the day of harvest; the total count and total weight
of Mataro bunches harvested in each of the three panels were
recorded.

Our initial experiments involved the training and validation
of computer vision modules developed for separate analysis
tasks. In this section, these separate modules were combined
to form a system to produce grape yield estimates. The
Swin transformer Mask-RCNNmodel was used to detect and
segment grape bunches from individual video frames of the
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FIGURE 13. The proposed computer vision system was utilised to estimate the harvested yield of three different vineyard panels. For each
panel, yield estimates were obtained by sampling from a distribution of grape bunch weights computed through computer vision, and
adjusted by the estimated number of grape bunches on the vine. These bunch weight distributions were computed using the Huber weight
regression model, incorporating mean berry count and mean area features, with a range of full bunch thresholds (i.e. number of pixels
required to be a fully segmented bunch). The accuracy of yield estimates was assessed using three different approaches to estimate the
number of grape bunches: (i) the recorded number of harvested grape bunches (actual count), (ii) the number of grape bunches manually
counted from video (visual count), and (iii) an automated bunch count estimated with the SiamFC tracking model (SiamFC count). These
three yield estimates were then compared to the true yield values recorded for each panel.

vine canopy. The SiamFC algorithm was then used to track
the segmented grape bunches across the video to count the
number of bunches.

The bunch weight regression model with the highest
performance in Section V-D2 (using mean pixel area and
mean berry count features) was employed to generate a bunch
weight distribution for each panel. Segmented grape bunches
were classified as either full or partial using an area based
threshold. Only ‘‘full’’ grape bunches were considered to
be sufficiently observable within the video to be used to
estimate the bunch weight. A range of thresholds between
2.5 × 105 and 3.5 × 105 pixels were considered to classify
the segmented bunches within panel videos. A bunch weight
distribution was then generated by fitting the ‘‘full’’ grape
bunch weights to a beta distribution.

Yield estimates were then obtained by computing the sum
of samples randomly drawn from a grape bunch weight
distribution. Yield estimates of each panel were compared
by using three different approaches to draw random samples
from the bunch weight distribution. The number of samples
was equivalent to the number of bunches (i) harvested from
the panel (actual count) (ii) visually counted from the panel
video (visual count) or (iii) automatically counted from
the panel video based on the number of tracks identified
with the SiamFC tracking algorithm. In each case, the
sampling process was repeated 300 times to compute a mean
estimate.

2) RESULTS AND DISCUSSION
Figure 13 shows the estimated grape yields for the three
harvested vineyard panels. The Huber regressionmodel using
mean area andmean berry count features was used to generate
grape bunch weight distributions across various full bunch
thresholds. The yield estimates were then compared using
three different approaches to determine the number of grape
bunches in each panel (as outlined in SectionV-E1): the actual
count, the visual count and the automated SiamFC tracking
count. Given vines had only been imaged from one side, the
number of bunches visible within the video was significantly
lower than the actual number present on the vine. To enhance
the accuracy of yield estimates, we made the assumption that
grape bunches were uniformly distributed on the vine. This
assumption implied that the number of bunches on opposite
sides of the panel vines was equivalent. Consequently, for the
visual and SiamFC tracking approaches, bunch counts were
doubled to estimate the yield.

Figure 13(a) shows the yield estimates based on the
actual bunch count consistently underestimated the true yield
of panel 1 with a minimum estimation error of 10.4%
and mean estimation error of 18.9%. These results suggest
the computer vision-derived bunch weight distribution was
biased towards lower-weight bunches. In contrast, the yield
estimates produced by the visual bunch count had a minimum
error of 3.1%, whilst the automated SiamFC count had a
far larger minimum error of 19.1%. Interestingly, in this
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particular case, the smaller yield estimation errors produced
by the visual bunch count could be attributed to its significant
under-estimation of the true bunch count of panel 1, as is
shown in Table 4.

Figure 13(b)) shows the yield estimation errors derived
from the actual bunch count of panel 2 were smaller than
panel 1 with a minimum error of 2.7% and mean error
of 8.3%. This suggests the computer vision-derived bunch
weight distribution of panel 2 was more representative than
the corresponding weight distribution of panel 1. In contrast,
the yield derived from the visual bunch count was shown to be
under-estimated consistently with a minimum error of 12.3%.

Table 4 shows the SiamFC tracking algorithm slightly
overestimated the observed grape bunch count in panel 2.
Consequently, it is the inflated bunch count that explains why
the SiamFC approach offered superior yield estimates to the
visual approach with a minimum estimation error of 3.0%.

Figure 13(c) shows the yield estimates of panel 3 were
the most accurate of the three panels. The yield estimates
derived from the actual bunch count achieved a minimum
estimation error of 2.5% and mean estimation error of
6.0% indicating the computer vision-derived bunch weight
distributions of panel 3 were the most representative of all
three panels. Furthermore, the yield estimates produced by
observed and SiamFC derived bunch counts were accurate
with a minimum estimation error of 1.0% and 1.3%,
respectively.
Performance Comparison With Previous Work: Most of

the computer vision work in viticulture does not propose a
complete system for grape yield estimation, instead focusing
on one particular aspect (i.e. bunch segmentation) of a
potential solution. There are a couple of examples of
completely automated solutions that we will discuss here.
[114] proposed a remote sensing-based approach to grape
yield estimation using NDVI data products with yield errors
ranging between 5.9% and 14.8%. In contrast to all other
approaches, the results in [114] were reported on the training
data as opposed to independent test data, and hence, were
likely to be of a higher accuracy.

Nuske et.al [16] proposed an automated grape yield solu-
tion based on an unsupervised approach to berry detection
producing yield errors of between 6.48% and 11.47%.
In contrast to our more general approach, their methodology
was tailored for use with a specialised imaging system that
acquired images at a fixed distance to the vine canopy with
artificial lighting at night.

Most similar to our work, [115] proposed an end-to-end
deep learning model that produced grape yield errors of
between 15% and 27.1% in a commercial vineyard. Although
it was impossible to directly compare the performance
of different automated methods, due to the significant
differences between their evaluation trials, the reported
results suggest our complete computer vision-based system
was highly competitive with panel yield errors ranging
between 1% and 19.3%.

VI. CONCLUSION
In grapevine production and breeding, accurate yield esti-
mation and forecasting are crucial for managing logistics
throughout the value chain. There is also a perceived trade-off
between fruit quality and quantity, which is often reflected
in grower contracts through limits on maximum yield. Early
yield forecasting is, therefore, crucial as it allows targeted
berry thinning, ensuring a high-quality outcome.

Our study contributes significantly to vineyard yield
estimation by (1) Summarising recent research on deep
learning techniques for bunch and berry detection and
counting, (2) Designing a cost-effective image acquisition
system, (3) Curating a novel dataset of RGB videos, and (4)
Implementing a dynamic analysis pipeline for accurate yield
estimation. Our pipeline integrates computer vision tasks for
precise grape bunch and berry detection and counting from
videos. A bunch weight regression model, using features
extracted from segmented bunch tracks, computes a bunch
weight distribution for the imaged area. Yield estimations are
generated by randomly sampling this distribution based on
the detected bunch count.

The yield estimates obtained with the proposed computer
vision system were reasonable in two of the three vineyard
panels with harvested weight errors of less than 5%.
There was still some estimation inconsistency, however,
as demonstrated by the large harvest weight errors (of more
than 15%) for both the visually observed and tracking-based
estimates of one panel. However, these errors should be
contrasted with current practice errors of up to 30%.

Whilst the experiments indicate that there are errors
associated with all tasks in the computer vision pipeline,
the bunch tracking models were considered to be the major
source of estimation error. Bunch tracking was used to
produce an automated count of the number of bunches on
the vine. Yield estimates produced by sampling computer
vision-derived bunch weight distributions with true harvested
bunch counts were found to be more robust and consistent
than the yield estimates obtained by sampling distributions
with tracking-based bunch counts. The dense concentration
of bunches on the vine, bunch occlusion within images and
the similarity of bunch appearance made tracking challenging
and led to inaccurate bunch counts.

One potential future direction is to address the bunch
tracking problem by employing a 3D multi-object track-
ing approach where depth information can be used to
assist with bunch occlusion and appearance issues. Whilst
the computational complexity associated with constructing
three-dimensional structures from sequences of 2D images is
traditionally high, the field is evolving. New computationally
efficient methods are being developed to construct 3D
structures in real time.

When the geometric features of bunches are used to
estimate the yield, the accuracy will be affected by the
distance at which the bunches are imaged. Consequently,
the ultimate goal is to develop methods to detect and size
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individual berries that potentially reduce the effect of imaging
distance to produce more accurate yield estimates.
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