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ABSTRACT This paper introduces a novel neural network adaptive fractional-order sliding mode control
strategy based on the minimal learning parameter method (MLPNN-FOSMC). This method aims to solve the
problem of relative position control in satellite formation flying (SFF), especially in the presence of model
uncertainties, external disturbances, input saturation, and unknown actuator gains. First, the mathematical
model for satellite relative positioning is derived. Then, a fractional-order sliding mode controller is
introduced and integrated with a radial basis function (RBF) neural network and the minimal learning
parameter (MLP) strategy to compensate for errors caused by model uncertainties and external disturbances.
At the same time, adaptive control is employed to mitigate the impact of unknown actuator gains on the
system. To address the non-smooth input saturation nonlinearity problem, a new saturation function with
the smoothing properties of the hyperbolic tangent function is introduced. The system’s stability is ensured
by employing the Lyapunov theorem. Finally, a comparative analysis with traditional sliding mode control
(SMC) and neural network sliding mode control based on minimal learning parameter (MLPNN-SMC)
highlights the superiority of the proposed method.

INDEX TERMS Neural network, fractional order sliding mode control, adaptive control, satellite formation
flying (SFF), radial basis function (RBF), minimum learning parameter (MLP).

I. INTRODUCTION
Satellite formation flying technology, as a significant
innovation in modern aerospace exploration and applica-
tion, has emerged prominently in various fields such as
resource exploration, environmental monitoring, meteorolog-
ical observations, and high-precision 3D imaging. Compared
with traditional single satellite operations, SFF employs
efficient and close coordination among multiple satellites,
significantly enhancing mission coverage, data processing
efficiency, and the flexibility and reliability of task execution.
The importance of this technological innovation in modern
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aerospace missions has been widely recognized, as empha-
sized in [1] and [2]. However, the highly nonlinear, closely
coupled dynamic model of formation flight control, along
with challenges such as parameter perturbations and external
disturbances, significantly increases the complexity of con-
trol system design.

To effectively address these challenges, a series of
advanced control strategies have been developed and applied
by researchers, including robust control [3], [4], adaptive con-
trol [5], [6], sliding mode control (SMC) [7], [8], and optimal
control [9], [10]. Among these, sliding mode control (SMC)
is a powerful robust control scheme that has been widely
used in various fields. SMC has become a focal point of
research due to its excellent capability in suppressing internal
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uncertainties and external disturbances. The core strategy of
sliding mode control is to design a rapidly switching control
law that guides the system states towards a predefined sliding
surface and stabilizes them on it, ensuring precise control
of the system states. However, in practical situations, adap-
tive control techniques are often used in conjunction with
SMC, as adaptive slidingmode control (ASMC) combines the
advantages of both adaptive control and sliding mode control.
In [11], a finite-time adaptive terminal sliding mode control
strategy was adopted, achieving precise formation control
while effectively maintaining the stability of the internal
structure.

In [12], the successful application of fast terminal slid-
ing mode control technology in the rapid reconfiguration
of satellite formations was demonstrated, showcasing its
rapid response advantages. A comprehensive satellite atti-
tude control scheme based on sliding mode control theory,
utilizing Lorentz forces and magnetic torques, was proposed
in [13], which confirmed the potential of adaptive sliding
mode control in aerospace applications. Additionally, ASMC
has been applied in other fields, such as trajectory tracking for
robotic airships [14], [15], attitude adjustment for quadrotor
UAVs [16], [17], and landing control for helicopters [18].
Integer-order sliding mode control is pertained to in [13],
[14], [15], [16], [17], and [18]. However, ASMC can also
be used for the control of fractional-order systems. In [19],
an adaptive fractional-order SMC scheme with a fuzzy
logic estimator was proposed for a class of uncertain linear
continuous-time systems. Furthermore, in [20], an adap-
tive fractional-order sliding mode controller with a neural
network was proposed for vibration dynamic mass testing
of Z-axis MEMS gyroscopes. Compared to integer-order
SMC, fractional-order SMC includes fractional-order terms
in the sliding manifold, enhancing tracking performance
and disturbance rejection capabilities. Despite the numerous
advantages of fractional-order sliding mode control, its lim-
itations in terms of convergence speed and dependency on
disturbance information cannot be overlooked.

Neural network, with its powerful nonlinear model approx-
imation capability and self-learning and adjustment ability,
have shown great potential in improving system control accu-
racy and convergence speed. Neural network was utilized
in [21] to perform online estimation of the system’s nonlinear
uncertainties and external disturbances, effectively imple-
menting control strategy. In [22], an adaptive learningmethod
based on the RBF neural network was employed for sliding
mode control, effectively addressing a series of challenges
encountered in grid-connected inverter control. A sliding
mode controller that used the switching function as input
and controlled with continuous RBF functions was designed
in [23], significantly mitigating harmonic current issues
caused by nonlinear loads and thus improving the overall
system performance. Additionally, high efficiency in dealing
with high uncertainties and nonlinearity in magnetic levi-
tation systems was demonstrated in [24], achieving precise

tracking control targets and providing excellent robustness.
In [25], an output feedback control scheme based on a neural
network adaptive state observer was proposed to compensate
for system uncertainties and noise, significantly enhancing
the tracking accuracy and anti-interference capability of DC
motor systems. Furthermore, neural networks have been
applied in the control of hydraulic manipulator systems [26].
Similarly, in the control design of dual-arm robotic manipula-
tors [27], a sliding mode control scheme based on Lyapunov
stability theory and the RBF neural network not only ensured
the asymptotic stability of the system under sliding mode but
also effectively eliminated system disturbances. However, the
impact of input saturation was not considered.

Inspired by the aforementioned research, this paper
proposes an innovative control method named MPLNN-
FOSMC, aimed at addressing model uncertainties, external
disturbances, input saturation and partial actuator failure
in SFF. This algorithm integrates fractional-order sliding
mode control (FSMC), adaptive control, neural network tech-
nology, and the minimal learning parameter method. The
stability of the system is proven through the Lyapunov
equation. The main contributions of this paper are summa-
rized as follows:

(1) By replacing traditional neural network weight adjust-
ment with minimal learning parameter, the computational
burden of the system is significantly reduced, enhancing
convergence speed and real-time performance.

(2) Increasing the degrees of freedom and flexibility of
the system improves its adaptability and stability in dynamic
responses.

(3) By integrating adaptive fractional-order sliding mode
control, minimal learning parameters, and neural networks,
the proposed approach effectively addresses model uncer-
tainties, external disturbances, and input saturation issues,
compensating for the disturbances affecting actuators and
thereby further improving control accuracy and system
robustness.

The structure of the remainder of this paper is as follows:
Section II introduces fractional-order and the mathematical
model for satellite relative motion. Section III presents the
controller design and stability analysis. Section IV shows
the comparative simulation results. Section V concludes the
paper and discusses future research directions.

II. PRELIMINARY AND SYSTEM DESCRIPTION
A. PRELIMINARIES OF FRACTIONAL- ORDER
Fractional-order extends the traditional operations of differ-
entiation and integration to include non-integer orders [28],
[29]. Denoted by aDα

t , the fractional-order operator encom-
passes both fractional-order derivatives and fractional-order
integrals in a unified expression defined as

aDα
t =


dα

dtα
1α = 0∫ t
a (dτ )−αα < 0

(1)
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FIGURE 1. Diagram of satellite relative motion.

where a and t are the limits of the operator, and α is the
fractional order of the operator. The operator is denoted by
Dα for clarity in the following parts.
There are three commonly used definitions for gen-

eral fractional-order operators: Grunwald–Letnikov (GL),
Riemann–Letnikov (RL), and Caputo. Due to its stability and
ease of use, the Caputo definition is more suitable for this
system than the other two. Hence, we have chosen the Caputo.
The αth Caputo derivative is defined as follows [28], [29]

Dαf (t) =
1

0 (1 − α)

∫ t

a
(t − τ)−αf (τ ) dτ (2)

where, 0 < α < 1, and 0 (1 − α) =
∫

∞

0 e−t t−αdt is the
Gamma function.

B. RELATIVE MOTION MODELING
Consider the two satellites depicted in Fig.1, which are orbit-
ing the Earth. These satellites are referred to as the tracking
satellite s (active satellite) and the target satellite d (passive
satellite). To accurately describe their relative motion, two
coordinate systems are introduced: Earth-Centered Inertial
(ECI) and Local Vertical Local Horizontal (LVLH).

In the Earth-Centered Inertial (ECI) coordinate system,
a coordinate system is established with the Earth at the origin
and the equatorial plane as the reference. The X axis points
towards the vernal equinox (a designated observation point
on Earth), the Z axis is perpendicular to the equatorial plane
and points towards the North Pole, and the Y axis completes
the right-handed Cartesian coordinate system with the X and
Z axes.

In the Local Vertical Local Horizontal (LVLH) coordi-
nate system, the origin is set at the position of the target
satellite, and a coordinate system is established that aligns
with the satellite’s motion. The Xd axis is defined to extend
along the radial direction between the target and tracking
satellites. The Zd axis is perpendicular to the orbital plane and
points in the direction of the satellite’s angular momentum.
Completing the right-handed Cartesian coordinate system,
the Yd axis is orthogonal to both the Xd and Zd axes.

Under the influence of external disturbances, the relative
motion equations of the two satellite with respect to the
Earth-Centered Inertial coordinate system can be expressed
as a set of equations.

r̈d = −
µ

r3s
rs

r̈s = −
µ

r3d
rs + (1d + bu) /ms

(3)

where rs, rd are the position vectors of the tracking satellite
and the target satellite, respectively. rs = ∥rs∥ , rd = ∥rd∥,
µ = 398600 km3/s2. b is the actuator disturbance. 1d
represent external disturbances and u represents the control
torques.

To determine the relative motion between the tracking
satellite and the target satellite, their relative position vector
is defined as

ρ = rs − rd (4)

By substituting Eq. (4) into Eq. (3), the relative motion
equation of the satellite in the Earth inertial coordinate system
can be obtained

ρ̈ = −
µ

∥rd + ρ∥3
(rd + ρ) +

µ

r3d
rd + (1d + bu) /ms (5)

With the angular velocity of the orbital coordinate system
relative to the Earth’s inertial coordinate system being w, ρ̈

can be represented as

ρ̈ =
d2ρ

dt2
+ 2w ×

dρ
dt

+
dw
dt

× ρ + w × (w × ρ) (6)

Let ρ = [x y z]T, The pursuing satellite and the target
satellite can be represented in the orbital coordinate system
as

rs =

 rd + x
y
z

 , rd =

 rd0
0

 (7)

where, rd = a
(
1 − e2

)
/ (1 + ecosv), v is true anomaly.

According to the Eqs. (3)-(7), the nonlinear differential
equations describing the relative motion between satellite can
be derived as follows [30], [31]

ẍ − w2x − ẇ2y− 2wẏ− µ/r2d + µ (rd + x) /r3s
= bux/ms + 1dx
ÿ+ ẇx − w2y+ 2wẋ + µy/r3s = buy/ms + 1dy
z̈+ µz/r3s = buz/ms + 1dz

(8)

In the space environment, satellites are subject to various
disturbances that significantly impact their motion, creat-
ing challenges for numerical analysis and implementation.
To address these issues, the dynamics of satellites can be
modeled as an interconnected system where forces are mutu-
ally coupled. For ease of calculation and practical application,
a dynamic model can be constructed in the Local Vertical
Local Horizontal (LVLH) coordinate system by separating
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the terms that depend on satellite orbit information from other
satellite-specific terms.
ẍ − w2x − ẇ2y− 2wẏ− 2µx/r3d − 1dcx − 1dx = bux/ms

ÿ+ ẇx − w2y+ 2wẋ + µy/r3d − 1dcy − 1dy = buy/ms

z̈+ µz/r3d − 1dcz − 1dz = buz/ms

(9)

where

1dc =


1dcx

1dcy

1dcz



=


µ/r2d − µ (rd + x) /r3s − 2µx/r3d

−µy/r3s + µy/r3d
−µz/r3s − µz/r3d

 .

We define d = 1d/ms + 1dc, ui is the control acceleration.
A group of state variables are selected as X =

[x ẋ y ẏ z ż]T and Ẋ = [ẋ ẍ ẏ ÿ ż z̈]T ,then the relative motion
dynamics of Eq. (9) can be transformed into the following
forms

Ẋ = f + d + gu (10)

where, g = b/ms is the controller gain, f =

l0 1 0 0 0 0
w2

+ 2n2d ẇ2 0 0 −2w 0
0 0 0 1 0 0

−ẇ w2
− n2d 0 −2w 0 0

0 0 0 0 0 1
0 0 −n2d 0 0 0




x
ẋ
y
ẏ
z
ż

 and n2d =

µ/r3d .
Remark 1: When 0 < g < 1, the actuator undergoes a

partial loss of effectiveness, which results in reduced control
authority. Conversely, when g = 0, the actuator suffers a com-
plete loss of effectiveness, rendering it entirely nonfunctional.
This paper primarily addresses the scenario of partial actuator
failure, focusing on developing robust control strategies to
maintain system performance despite the diminished actuator
capability.

Due to the limitations of spacecraft engine thrust, it is
necessary to consider the design of control commands ui to
ensure they complywith the saturation constraints. Therefore,
a saturation formula has been established to describe this
constraint, which is as follows

sat (ui) =

{
sgn (ui) ui,max, if |ui| > ui,max

ui,, if |ui| ⩽ ui,max,
(11)

It is clear from equation (11) that the actual control sig-
nal sat (ui),being a piecewise-continuous function of ui,
exhibits nonsmoothed characteristic. This makes it difficult to
implement in practical applications. To overcome this issue,

we have developed a novel saturation nonlinearity function,
described as follows

sat (ui) = ui,max tanh
(

ui
ui,max

)

+

(
1− tanh2

(
ui

ui,max

)) ui − ui,max tanh
(

ui
ui,max

)
ui

(12)

Assumption 1: Both d and g are bounded, and they satisfy
a condition wherein{

ϱ − ∥d∥ > εM > ∥ε∥

1 > g > 0
(13)

where ∥ε∥ and εM are positive constants.

III. MPLNN -FOSMC CONTROLLER DESIGN
The objective of the tracking control problem in the system
is to find a control law that enables the state trajectory X
to track a desired reference trajectory Xd. Assuming perfect
knowledge of all system parameters, the design of an ideal
fractional-order sliding mode controller for the system can
be described step by step as follows:

Define the tracking error as

e = X − Xd (14)

The derivative of tracking error is

ė = Ẋ − Ẋd (15)

The fractional-order sliding mode surface is designed as

s = λ1e + λ2

∫
edt + λ3Dα−1e (16)

where λ1, λ2 and λ3 are designed and adjustable parameters.
α − 1 is the fractional-order operation.
The derivative of the sliding surface is

ṡ = λ1ė + λ2e + λ3Dαe (17)

Substituting the Eqs. (14) and (15) into (17) and setting ṡ = 0
yields

ṡ = λ1ė + λ2e + λ3Dαe

= (f + gu + d − Xd ) + λ2e + λ3Dαe = 0 (18)

The equivalent control force can be derived as

ueq = (λ1g)−1 (−λ1f + λ1Xd −λ2e − λ3Dαe
)

(19)

Since the control law{
u = ueq + usw
usw = λ1ϱsgn (s) + λ1ρs

(20)

where ϱ, ρ ∈ Rn denote the constant reaching coefficient and
exponential reaching coefficient, respectively. sgn (s) is the
signum function.
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Then the proposed control can be designed as

u = (λ1g)−1 (−λ1f + λ1Xd − λ2e

− λ3Dαe − λ1ϱsgn (s) − λ1ρs
)

(21)

Define a Lyapunov function candidate as

V1 =
1
2
sTs (22)

Substituting Eqs. (15) and (21) into the derivative of the
Lyapunov function yields

V̇1 = sT [λ1 (f + gu + d − Xd) +λ2e + λ3Dαe
]

= sT (λ1 (d − ϱsgn (s) − ρs)) (23)

Based on the assumption 1 and Lyapunov theorem, it is easy
to prove that V̇1 ⩽ 0 and the system is global asymptotically
stable.

In satellite formation flight control, while classical Radial
Basis Function (RBF) networks can be utilized to approxi-
mate the uncertain terms between satellites, such algorithms
do not perform optimally in meeting the demands of real-time
control. To address this shortcoming, a minimum parameter
learning method can be implemented to replace the weights
within the existing neural network. This strategy, grounded in
minimum parameter estimation, accelerates the convergence
speed of the adaptive algorithm, thereby better conforming
to the stringent real-time control requirements of satellite
formation flight.

The RBFNN constructs dual mappings based on the input
vector X = [X1,X2, · · ·,Xn]T ∈ Rn to the output f̂ (X).

f̂ (X) = ŴTh (X) (24)

where, W ∈ Rp is the weight vector;p and n are the
node number and input number, respectively;h (X) =[
h1 (X) , h2 (X) , · · ·, hp (X)

]
∈ RP, A typical choice for

hi (X) is a radial basis function.

hi (X) = exp

(
−

∥X − ci∥

2b2i

)
, i = 1, 2, . . . , p (25)

where, ci is the center vector of the i-th hidden layer, and
bi is the width of the i-th hidden layer. The center of the
hidden layer ci and thewidth bi are determined by the iterative
algorithm adopted in [22]1bi = (y − ym)Wihi

∥X − c∥2

b3i
bi (t) = bi (t − 1) + θ1bj + β

[
bi (t − 1) − bj (t − 2)

]
(26)1bji = (y − ym)Wi

Xi − cji
b2j

cji(t) = cji (t − 1) + θ1cji + β
[
cji (t − 1) − cji (t − 2)

]
(27)

where θ is the learning rate and β is the momentum factor.

For any continuous functions f (X), there exists an optimal
weight vectorW∗, such that

f (X) = W∗Th (X) + ε (28)

where, ∥ε∥ ⩽ εM , and ε represents the approximation error.
Remark 2: We employ the Minimal Parameter Learning

(MLP) method to approximate the function f (X). Let φ =

sup
t>0

∥W∗ (t) ∥
2 be a positive real number, where φ̂ represents

the online estimation of φ, and the learning error is denoted as
φ̃ = φ−φ̂. This approach ensures that the minimal parameter
learning can dynamically adjust to changes in the function’s
behavior over time, providing a robust method for real-time
function approximation.
Remark 3: From Eq (24), f (X) is a six-dimensional

unknown vector. Traditional neural networks, when estimat-
ing f (X) online, require six radial basis function (RBF)
neural networks to update parameters simultaneously, signif-
icantly increasing the computational burden of the system.
In contrast, we have adopted the minimal parameter learning
method as shown inRemark 2, where only one neural network
is needed to meet our requirements. This approach sub-
stantially reduces the computational load by simplifying the
parameter update process. Additionally, the minimal learning
parameter method can handle multi-dimensional outputs with
a single network, enhancing efficiency and maintaining accu-
racy, making it a more practical choice for online estimation
tasks.
The control law in Eq. (21) is redesigned as

u =
(
λ1ĝ

)−1
(

−
1
2
λ1sφ̂hT (X)h (X) + λ1Xd

− λ2e −λ3Dαe − λ1ϱsgn (s) − λ1ρs
)

(29)

Substituting the controller (29) into ṡ, we can obtain equation
as follows:

ṡ = λ1 (f (X) + gu + d − Xd) + λ2e + λ3Dαe

= λ1ĝ
1

λ1ĝ

(
−
1
2
λ1sφ̂hT (X)h (X) + λ1Xd − λ2e

−λ1ρs − λ3Dαe − λ1ϱsgn (s)
)
+ λ1

(
g− ĝ

)
u

+ λ1f (X) + λ1d − λ1Xd + λ2e + λ3Dαe

= −
1
2
λ1sφ̂hT (X)h (X) + λ1Xd − λ2e − λ3Dαe

− λ1ϱsgn (s) − λ1ρs + λ1g̃u + λ1d − λ1Xd

+ λ2e + λ3Dαe + λ1

(
W∗Th (X) + ε

)
= λ1W∗Th (X) + λ1 (ε + d) −

1
2
λ1sφ̂hT (X)h (X)

− λ1ϱsgn (s) − λ1ρs + λ1g̃u (30)

According to the minimum parameter learning method and
the adaptive law are designed as

˙̂
φ =

γ1

2
λ1sTshT (X)h (X) − κ1γ1φ̂ (31)

˙̂g = γ2λ1sTu − κ2γ2ĝ (32)

where γ1,2, κ1,2 are positive constants.
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Theorem 1: For the SFF nonlinear system with model
uncertainties and external disturbances, as described by
Equation (10), if the sliding surface is chosen accord-
ing to Equation (16) and the MLPNN-FOSMC con-
troller is designed according to Equation (30), where the
dynamic uncertainties of the satellite are approximated by
Equation (28) and the adaptation laws are given by Equa-
tions (31) and (32), then all signals of the closed-loop system
are globally uniformly bounded and the position tracking
error and angular velocity will asymptotically converge to
zero.
Lemma 1: For the proof of system stability, the following

derivations are necessitated.

sTsφhT (X)h (X) + 1 = ∥s∥2
∥∥W∗

∥∥2 hT (X)h (X) + 1

= ∥s∥2
∥∥W∗

∥∥2 ∥h (X)∥2 + 1

⩾ ∥s∥2
∥∥∥W∗Th (X)

∥∥∥2 + 1

⩾ 2 ∥s∥ ∥W∗Th (X) ∥

that is

∥s∥
∥∥∥W∗Th (X)

∥∥∥ ⩽
1
2
sTsφhT (X)h (X) +

1
2

(33)

Lemma 2: Due to (ã+ a)2 ⩾ 0, thus ã2 + 2ãa+ a2 ⩾ 0,
that is

2φ̃φ̂ ⩾ φ̃2
− φ2 (34)

2g̃ĝ ⩾ g̃2 − g2 (35)

Proof. Select the following Lyapunov function candidate

V2 =
1
2
sTs +

1
2γ1

φ̃2
+

1
2γ2

g̃2 (36)

Differentiating Eq. (36) with respect to time, we obtain

V̇2 = sTṡ −
1
γ1

φ̃
˙̂
φ −

1
γ2
g̃ ˙̂g (37)

According to Eq. (30), Eq. (37) can be rewritten as

V̇2 ⩽ sT
[
λ1W∗Th (X) + λ1 (ε + d) − λ1ρs

−
1
2
λ1sφ̂hT (X)h (X) −λ1ϱsgn (s) + λ1g̃u

]
−

1
γ1

φ̃
˙̂
φ −

1
γ2
g̃ ˙̂g

⩽ sT [λ1ε + λ1d − λ1ρs − λ1ϱsgn (s)

+ λ1g̃u −
1
2
λ1sφ̂hT (X)h (X)

]
+ λ1 ∥s∥

∥∥∥W∗Th (X)

∥∥∥−
1
γ1

φ̃
˙̂
φ −

1
γ2
g̃ ˙̂g (38)

From lemma 1, we obtain

V̇2 ⩽
1
2
λ1sTsφhT (X)h (X) +

1
2
sTλ1 (ε + d) +

λ1

2

−
1
2
λ1sTsφ̂hT (X)h (X) − sTλ1ϱsgn (s)

− sTλ1ρs − λ1g̃sTu −
1
γ1

φ̃
˙̂
φ −

1
γ2
g̃ ˙̂g

⩽
1
2
λ1sTsφ̃hT (X)h (X) + λ1sT (ε + d) + λ1g̃sTu

+
1
2
λ1 − λ1ϱ ∥s∥ − λ1sTρs −

1
γ1

φ̃
˙̂
φ −

1
γ2
g̃ ˙̂g (39)

Lemma 3: [26] For V : [0, ∞) ∈ R, to solve inequality
V̇ < −aV + f , ∀t ⩾ t0 ⩾ 0

V (t) ⩽ e−a(t−t0)V (0) +

∫ t

t0
e−a(t−t0)f (τ ) dτ (40)

Due to, ∥s∥ ∥ε + d∥ ⩾ sT (ε + d),Eq. (39) will become

V̇2 ⩽ φ̃

(
1
2
λ1sTshT (X)h (X) −

1
γ1

˙̂
φ

)
+

1
2
λ1 − λ1sTρs

+ g̃
(

λ1sTu −
1
γ2

˙̂g
)

+ λ1 ∥s∥ ∥ε + d∥ − λ1ϱ ∥s∥

(41)

By choosing ϱ ⩾ εM + ∥d∥, the V̇2 can be rewritten as
follows:

V̇2 ⩽ φ̃

(
1
2
λ1sTshT (X)h (X) −

1
γ1

˙̂
φ

)
+ g̃

(
λ1sTu −

1
γ2

˙̂g
)

+
1
2
λ1 − λ1sTρs (42)

Substituting adaptive laws (31) and (32) into Eq. (42),
it yields

V̇2 ⩽ −κ1φ̃φ̂ +
1
2
λ1 − κ2g̃ĝ− λ1ρsTs

⩽ −
κ1

2

(
φ̃2

− φ2
)

−
κ2

2

(
g̃2 − g2

)
+

1
2
λ1 − λ1sTρs

= −
κ1

2
φ̃2

−
κ2

2
g̃2 − λ1sTρs +

κ1

2
φ2

+
κ2

2
g2 +

1
2
λ1

(43)

From lemma 2, it can be obtained.

V̇2 ⩽ −
κ1γ1

2γ1
φ̃2

−
κ2γ2

2γ2
g̃2 − λ1ρsTs +

κ1

2
φ2

+
κ2

2
g2 +

1
2
λ1

⩽ −
κ1γ1

2γ1
φ̃2

−
κ2γ2

2γ2
g̃2 −

2λ1ρsTs
2

+
κ1

2
φ2

+
κ2

2
g2 +

1
2
λ1

⩽ −23V2 + R (44)

where, 3 = min (κ1γ1, κ2γ2, 2λ1ρ) ,R =
κ1
2 φ2

+
κ2
2 g

2
+

1
2λ1.
From lemma 3, the information can be obtained as follows:

V2 (t) ⩽

(
V2 (0) −

3

R

)
exp (−3t) +

3

R
(45)

Thus, V2 = lim
t→∞

V2 (t) =
3
R ,which implies that

∥s∥ ⩽

√
2
(
V2 (0) −

3

R

)
exp (−3t) +

3

R
(46)
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FIGURE 2. The structure of RBF neural network.

From Eqs (44)-(46), it can be seen that s, e, φ̃ and g̃ are all
bounded, implying that all signals are bounded. This com-
pletes the proof.
Remark 4: Due to the presence of the discontinuous func-

tion sgn (s) in the control law (29), the discontinuous control
input can lead to chattering phenomena. To mitigate the
occurrence of chattering, we replace the discontinuous func-
tion with a continuous one. Specifically, sgn (s) is replaced
with sgn (s) =

s
s+8

, where 8 is a small positive parameter.

IV. SIMULATION RESULTS
In the current section, simulation results and corresponding
discussions are presented to demonstrate the effectiveness
and robustness of the designed controllers. i The components
of the expected trajectory along the xd , yd and zd axes are
xd = 40 ∗ cos (10t) , yd = 40 ∗ cos (11t) and zd = 40 ∗

cos (12t), respectively. In Eq. (16), the sliding parameters are
chosen as λ1 = 1, λ2 = 1.3, λ3 = 5. 8 is selected as 0.01.
The initial values of φ and g are 0.1, the initial value

of c is always chosen between −1 and +1, we choose

c =

[
−0.1639 0.7487 0.5359
−0.39 −0.97 0.9717

]
and b =

[
0.2 0.2 0.2

]T .
In (27), The gain coefficients are β = 0.3, θ = 0.2 and in (30)
γ1 = 30, κ1 = 0.1, γ2 = 1.2, κ2 = 0.2. At the same time,
We choose the coefficient for the exponential convergence
rate ρ and the switching gain coefficient in sliding mode
control ϱ.
When g = 1, the simulation results are shown in

Figures 3 to 8.
Figures 3 and 4 respectively show the tracking performance

and stability accuracy of the three controllers, indicating
that they can all enable the actual trajectory to follow the
desired trajectory within a limited time. However, the new
method stabilizes the system in just 1.8 seconds, while tra-
ditional SMC and MLPNN-SMC require 9.89 seconds and
7.09 seconds, respectively. The significantly improved con-
vergence speed is also accompanied by enhanced steady-state
accuracy.

Additionally, as shown in Figure 5, the controller’s velocity
error enhances the stability of formation flying, reducing the
need for frequent position adjustments due to velocity errors
and improving system performance. As shown in Figure 6,

FIGURE 3. Property of the trajectory tracking.

FIGURE 4. Property of the position tracking error.

FIGURE 5. Property of the velocity tracking error.

the historical fluctuations of the sliding surface indicate that
the new control method significantly reduces oscillations
after stabilization. Figure 7 shows that, compared to SMC
and MLPNN-SMC, the new method can stabilize the con-
trol force more quickly, reducing excessive oscillations and
improving system operational efficiency.
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FIGURE 6. Property of the sliding surface.

FIGURE 7. Control torques.

FIGURE 8. Energy consumption.

Lastly, Fig 8 presents a comparative analysis of the energy
consumption by the three control schemes, assessed via the

energy metric function E =
∫ tf
t0

3∑
i=1

|ui (t)|dt . It is discernibly

evident from Fig 8 that, relative to SMC and MLPNN-SMC,

FIGURE 9. Property of the trajectory tracking.

FIGURE 10. Property of the position tracking error.

the novel approach incurs significantly lower energy con-
sumption.

When g = 0.6 + 0.4 exp (−0.2t) and the saturation limit
is 150 N · m,this means that the actuator is constrained and
cannot reach its maximum expected output. The simulation
results are shown in Figures 9 to 14.

Figures 9 and 10 show the tracking curves and their errors,
indicating that the system remains stable even when the actu-
ators lose partial effectiveness and are subject to saturation
limits. Figure 11 presents the historical fluctuations of the
sliding surface, demonstrating that the sliding surface can
stabilize near the zero region within a finite time. Figure 12
shows that the control torques are successfully constrained
within the range of 150 N · m.

Figure 13 indicates that ĝ and φ̂ are both bounded.
Figure 14 illustrates that in the xyz -plane, the actual trajec-
tory can fully track the desired trajectory. These results indi-
cate that, as stated in Theorem 1, all signals in the closed-loop
tracking control system of SFF are bounded. Therefore, the
proposed neural network adaptive fractional-order sliding
mode control scheme with minimal learning parameter is
effective for tracking SFF under the influence ofmodel uncer-
tainties, external disturbances, input saturation, and partial
actuator failures.
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FIGURE 11. Property of the sliding surface.

FIGURE 12. Control torques.

FIGURE 13. The estimations of φ and ϕ.

Remark 5: (1) The proposed MLPNN-FOSMC controller
exhibits efficiency and robustness in controlling the relative
position of satellites, capable of handling model uncer-
tainties, external disturbances, input saturation, and partial
actuator failures. (2) The designed MLPNN approxima-
tor can effectively estimate the upper bounds of the total
uncertainties of the satellite online and compensate for the
impact of uncertainties. (3) Compared to SMC controllers
and MLPNN-SMC, the MLPNN-FOSMC controller pro-
vides higher precision and effectively reduces chattering,

FIGURE 14. Reference and actual trajectories in the xyz-plane.

demonstrating its advanced and practical capabilities in the
field of aerospace relative position control.

V. CONCLUSION
This paper proposes an innovative neural network adaptive
fractional-order sliding mode control strategy to address the
problem of relative position control in satellite formation
flying, characterized by model uncertainties, external dis-
turbances, input saturation, and unknown actuator gains.
By integrating fractional-order sliding mode control, neural
networks, andminimal parameter learning, this methodmeets
real-time requirements and effectively handles model uncer-
tainties and external disturbances. Additionally, adaptive
control is employed to manage unknown actuator gains, and
the introduction of a smooth saturation function successfully
addresses the issue of non-smooth input saturation nonlin-
earity. Using the proposed control scheme, all signals of the
closed-loop system are uniformly bounded, achieving relative
position control in satellite formation flying. Future research
should include expanding the event-triggering mechanism
under limited communication resources and investigating
prescribed performance control to meet specific performance
criteria within a predetermined time.
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